Project Study Report-Project Development Support (PSR-PDS)

To

Request Programming for Capital Support (Project Approval and Environmental Document Phase) in the 2022 STIP

On Route 12th Street
Between 1000 Feet South of 12th Street US 101 Overcrossing
And $\quad 1000$ Feet North of 12th Street US 101 Overcrossing

APPROVED:

$$
9 / 15 / 21
$$

Brendan E. Byrd
Date
City Engineer
City of Fortuna

This project study report-project development support has been prepared under the direction of the following registered civil engineer. The registered civil engineer attests to the technical information contained herein and the engineering data upon which recommendations, conclusions, and decisions are based.

$$
9 / 15 / 21
$$

REGISTERED CIVIL ENGINEER
DATE

Table of Contents

1. INTRODUCTION 1
2. BACKGROUND 1
3. PURPOSE AND NEED 3
4. TRAFFIC ENGINEERING PERFORMANCE ASSESSMENT4
5. DEFICIENCIES 9
6. CORRIDOR AND SYSTEM COORDINATION 11
7. ALTERNATIVES 13
8. RIGHT-OF-WAY 18
9. STAKEHOLDER INVOLVEMENT 20
10. ENVIRONMENTAL COMPLIANCE 21
11. FUNDING 23
12. DELIVERY SCHEDULE 23
13. RISKS 24
14. EXTERNAL AGENCY COORDINATION 24
15. PROJECT REVIEWS 24
16. PROJECT PERSONNEL 25
17. ATTACHMENTS 25

Attachments

A. Location map
B. Traffic Counts and LOS Analysis
C. Review of Geometric Design Standards
D. Conceptual Design Drawings
E. Truck Turning Analysis
F. Fast Path Exhibits
G. Preliminary Structures Analysis
H. Landscaping/Gateway Concepts
I. Cost Estimates
J. Right-of-Way and Property Ownership
K. Environmental Constraints Analysis

1. INTRODUCTION

Project Description:

The project proposes to improve traffic, pedestrian, and bicycle operations at the 12th Street interchange with US 101 in Fortuna in Humboldt County. The existing intersection controls, roadway geometry, and the high volumes of local and regional traffic on 12th Street result in poor traffic operation at and near the interchange. Proposed project components include roundabouts on 12th Street at the two intersections with the US 101 interchange, modifications to the US 101 on- and offramps, the realignment of Newburg Road, and widening the highway overcrossing bridge in order to accommodate non-motorized facilities.
This PSR-PDS was developed in conjunction with the Highway 101, Fortuna Downtown and Riverwalk Area Complete Streets and Connectivity Planning Study (GHD, 2016) which provides a detailed evaluation of interchange alternatives.

Table 1: Project Summary

Project Limits	On 12th Street between 1000 feet south of US 101 Overcrossing and 1000 feet north of US 101 Overcrossing (BR 04-0130, PM 60.49)
Number of Alternatives	5
Current Capital Outlay Support	North Roundabout: \$1M South Roundabout: \$850K
Estimate for PA\&ED	North Roundabout: \$1.3M South Roundabout: \$1.1M
Estimate forital Outlay Support	North Roundabout: \$7.8M South Roundabout: \$7.8M
Current Capital Outlay Construction Cost	North Roundabout: $\$ 1.1 \mathrm{M}$ South Roundabout: \$100K
Current Capital Outlay Right-of-	
Way Cost	RTIP/STIP
Funding Source	12 th Street: Minor Arterial Newburg Road: Major Collector Riverwalk Drive: Major Collector Dinsmore Drive: Local Road
Type of Facility	1 (US 101 12th Street OC)
Number of Structures	CEQA Mitigated Negative Declaration
NEPA	On 12th Street in Humboldt County in Fortuna between 1000 feet south of US 101 Overcrossing and 1000 feet north of US 101 Overcrossing
Legal Description	3
Project Development Category	

2. BACKGROUND

The project need originates from desires expressed in the City's 2010 General Plan, user-based experience and public request for improvements.
In 2016, a planning study was conducted to identify ways to improve access to the Riverwalk area and improve safety for all users (motorized \& non-motorized), improve operations, apply Complete Streets concepts to create an entry statement/gateway, and ready the project for next steps in project development. The study was focused on US 101 interchanges at 12th Street and Kenmar Road and was funded by a 2015-2016 Sustainable Communities Planning Grant awarded to the Humboldt County Association of Governments (HCAOG) and the City of Fortuna as a sub-recipient.
The study process included researching and evaluating existing conditions, including right-of-way boundaries and ownership, maintenance responsibilities, identifying potentially sensitive environmental areas and potential permits, and obtaining traffic counts (motorized and non-motorized). Community
meetings and stakeholder outreach were used to understand concerns with the existing facilities, solicit ideas for improvements, and obtain comments on preliminary design concepts. A deficiency analysis was performed to identify existing facilities which do not conform to current design standards or City goals. Traffic modeling showed that many of the intersections were operating below a level of service (LOS) C (Fortuna's standard) for current conditions, with the LOS expected to significantly decline for full buildout over 20-years with no improvements to the intersections.
Improvements to the 12th Street Interchange was also identified as a priority in the City of Fortuna's draft Local Road Safety Plan (August 27, 2021).

Existing Conditions

The 12th Street Interchange study area includes 12th Street from north of Newburg Road to Riverwalk Drive south of the US 101 interchange. 12th Street crosses US 101 via a curving 32 -foot wide overcrossing, with two 14 -foot lanes and two two-foot wide raised concrete shoulders. The interchange at 12th Street has a significant distance between the southbound (SB) and northbound (NB) ramps intersections. However, the corridor on the north and south side of US 101 has several closely spaced intersections.

On the north side of US 101, there are a series of complex intersections on with 12th Street with an atgrade railroad crossing near Newburg Road. 12th Street branches off to intersect the US 101 NB offramp with Pond Street and intersects the US 101 NB on-ramp at a separate intersection approximately 100 feet to the west. There is a short length of Pond Street that connects these two intersections. Newburg Road intersects 12th Street approximately 500 feet to the north. There are no bike or pedestrian facilities in or around these intersections, with the exception of a sidewalk at the northeast corner of 12th Street and Newburg Road. Utility poles and vegetation sporadically reduce the usable area of the sidewalk to approximately three feet in width. From just north of Newburg Road to Main Street, 12th Street is an approximately 48-foot wide two-lane road with on-street parking and five-foot curb and sidewalks.
Riverwalk Drive is a north-south major collector with intersections at private driveways, Dinsmore Drive, and US 101 SB ramps. The close proximity of Dinsmore, 12th Street, the US 101 SB on-ramp, and Strongs Creek create wayfinding confusion. These intersections could be interpreted as one fiveleg intersection. There are no bike or pedestrian facilities in or around the intersections along Riverwalk Drive, with the exception of a stretch of sidewalk on the east side south of Strongs Creek. Riverwalk Drive transitions into 12th Street and crosses over US 101. This overcrossing is approximately 28 -feet wide with no shoulders or sidewalks.
Riverwalk Drive between the Kenmar and 12th Street interchange is approximately 36 feet wide, consisting of two lanes with 12-foot striped shoulders and parking on the east side, and a 14-foot lane with no striped shoulder on the west. There are intermittent segments of five-foot wide sidewalks. The existing NB off-ramp and on-ramp meet to form a large asphalt triangle with 12th Street. The SB onramp and off-ramp at 12th Street both lack directional clarity.
Caltrans's California Road System (CRS) maps show that 12th Street is classified as a minor arterial which connects to Riverwalk Drive, a major collector. 12th Street connects the Riverwalk Area to the City's south, and to downtown, including Main Street area and schools. The 12th Street arterial also connects Riverwalk Drive to residential areas to the north.

Figure 1: Existing Intersection Geometrics and Control

3. PURPOSE AND NEED

Purpose:

- Simplify and improve navigation and traffic operations on 12th Street between Newburg Road and Riverwalk Drive, including the 12th Street/US 101 interchange;
- Improve operations, reduce congestion, minimize conflicts, and improve safety at the 12th Street intersections;
- Improve the local and regional bicycle and pedestrian facilities through the 12th Street/US 101 interchange area; and
- Create a Gateway into central Fortuna that incorporates landscaping and wayfinding.

Need:

- Existing and future poor Level of Service (LOS) at the 12th Street intersections during peak hours as a result of closely spaced, stop-controlled intersections;
- No existing bicycle or pedestrian facilities resulting in a barrier to bicycle and pedestrian circulation and connectivity; and
- Intersections lack directional legibility, making it difficult for visitors to access the City's existing amenities.

Humboldt County's most significant regional thoroughfare for economic, tourist, recreational and commuting activity is US 101. The City of Fortuna is divided by US 101, which parallels the Eel River, and separates the Eel River and the Riverwalk Area from the majority of the City. Safer transportation alternatives, wayfinding signage, and improved traffic operations will support active living, provide better service to users, and support economic development and land use goals of the City.

4. TRAFFIC ENGINEERING PERFORMANCE ASSESSMENT

The information contained in this section is based on the findings from a preliminary traffic assessment conducted for the intersection at the 12th Street/US 101 interchange. The preliminary assessment include an Access Strategy and Configuration Assessment/Screening in accordance to the Intersection Control Evaluation (ICE) process outlined in Caltrans Traffic Operations Policy Directive 13-02. Refer to Attachment B for traffic counts and the LOS analysis. A formal Traffic Operations Analysis and ICE will be developed during the PA\&ED phase to further define the scope of work, and more accurately analyze and identify the forecasted operational impacts of the proposed improvements.

Existing Conditions

Traffic Counts: The AM and PM peak hour intersection turn movement traffic counts were collected in March 2016. The AM peak hour is defined as one-hour of peak traffic flow counted between 7:00 am and 9:00 AM. The PM peak hour is defined as one-hour of peak traffic flow counted between 4:00 pm and 6:00 PM. The existing peak hour traffic volumes are presented in Figure 2.
Bicycle and Pedestrian Counts: HCAOG obtained bicycle and pedestrian counts for the project area in May 2016. The existing bicycle and pedestrian daily counts are presented in Table 1.

Table 1: Average Total Daily Bicycle and Pedestrian Counts

Intersection Name	Average Daily Bicycle Count	Average Daily Pedestrian Count
12th Street/US 101 NB On-Ramp	25	35
Newburg Road/12th Street	27	69

Figure 2: Existing Peak Hour Traffic Counts (2016)

Modeling Tools and Methodologies

Operational deficiencies were estimated using future traffic volumes estimated using the travel demand model (TRAFFIX) prepared for the City's General Plan update. The cumulative condition was established by adding additional trips to the traffic counts obtained in 2016, by assuming full buildout over 20 years in accordance with the City's General Plan (growth rate of 1.6% per year).
The existing, no build, and signal alternatives were analyzed using Synchro/SimTraffic traffic analysis software. Roundabout alternatives were analyzed using Signalized and Unsignalized Intersection Design and Research Aid (SIDRA) analysis software. The LOS for all intersection control types were calculated using the methods documented in the Transportation Research Board Publication Highway Capacity Manual, 2010.

Synchro/SimTraffic was used to provide the queuing analysis. SimTraffic data was seeded into the network for 15 simulated minutes, and then recorded five runs of 60 simulated minutes. The $95^{5 \text { th }}$ percentile queue lengths were determined for each lane group based on an average of the five recorded runs. The $95^{\text {th }}$-percentile queue was defined to be the queue length (in feet) that has a 5 percent probability of being exceeded during the analysis time period. The $95^{\text {th }}$-percentile queue was utilized to determine the appropriate length of turn pockets.

Summary of Existing Conditions Analysis and Findings

Existing weekday AM and PM peak hour intersection traffic operations were quantified utilizing the exiting traffic volumes and existing intersection lane geometrics and control. Table 2 provides a summary of the existing vehicular AM and PM peak hour intersection delay and LOS. The 12th Street and Newburg Road intersections was found to currently operate below the LOS C target.
Table 2: Existing Levels of Service

Intersection	Control	Target Type	AM Peak Hour		PM Peak Hour	
			Delay	LOS	Delay	LOS
Riverwalk Drive and Private Driveway	TWSC	C	10.1	B	9.1	A
Riverwalk Drive and Dinsmore Drive	TWSC	C	10.4	B	10.3	B
Riverwalk Drive and US 101 SB Ramps	AWSC	C	9.3	A	10.2	B
Riverwalk Drive/12th Street and US 101 NB On-Ramp/Pond Street	TWSC	C	16.7	C	16.1	C
US 101 NB Off-Ramp/12th Street and Pond Street	TWSC	C	11.8	B	9.8	A
12th Street and Newburg Road	TWSC	C	106	F	26.6	D

Notes:

1. AWSC = All Way Stop Control; TWSC = Two Way Stop Control
2. LOS = Delay based on worst minor street approach for TWSC intersections, average of all approaches for AWSC and Signal

Summary of No Build Operation Analysis and Findings

Table 3 provides a summary of the No Build intersection LOS for cumulative conditions. The following intersections are expected to operate below LOS C for the No Build alternative for both AM and PM peak hour conditions:

- Riverwalk Drive and US 101 SB Ramps
- Riverwalk Drive/12th Street and US 101 NB On-Ramp/Pond Street
- 12th Street and Newburg Road

Table 3: No Build Levels of Service

Intersection	Control Type ${ }^{1,2}$	Target LOS	AM Peak Hour		PM Peak Hour	
			Delay	LOS	Delay	LOS
Riverwalk Drive and Private Driveway	TWSC	C	13.3	B	10.4	B
Riverwalk Drive and Dinsmore Drive	TWSC	C	14.2	B	18.5	C
Riverwalk Drive and US 101 SB Ramps	AWSC	C	19.0	C	65.1	F
Riverwalk Drive/12th Street and US 101 NB On-Ramp/Pond Street	TWSC	C	35.7	E	OVR	F
US 101 NB Off-Ramp/12th Street and Pond Street	TWSC	C	12.0	B	10.7	B
12th Street and Newburg Road	TWSC	C	OVR	F	95.3	F
Notes: 1. $\mathrm{AWSC}=$ All Way Stop Control; TWSC $=$ Two Way Stop Control 2. LOS = Delay based on worst minor street approach for TWSC intersections, average of all approaches for AWSC and Signal						

Summary of Traffic Signal Operation Analysis and Findings

Table 4 provides a summary of the intersection LOS for the signal intersections. All intersections are projected to operate at or above the threshold LOS for the signal alternative. Figure 3 presents the cumulative peak hour volumes at the signalized intersections.
Table 4: Signalized Intersection Levels of Service

Intersection	Control Type ${ }^{1}$	Target LOS	AM Peak Hour		PM Peak Hour	
			Delay	LOS	Delay	LOS
Riverwalk Drive and Private Driveway	TWSC	C	15.5	C	14.9	B
Riverwalk Drive and Dinsmore Drive	Signal	C	NA	NA	NA	NA
Riverwalk Drive and US 101 SB Ramps	Signal	C	7.7	A	32.6	C
Riverwalk Drive/12th Street and US 101 NB On-Ramp/Pond Street	Signal	C	19.8	B	21.0	C
US 101 NB Off-Ramp/12th Street and Pond Street	Intersection Eliminated					
12th Street and Newburg Road	Signal	C	17.7	B	26.0	C
Notes: 1. TWSC = Two Way Stop Control 2. LOS = Delay based on worst minor street approach for TWSC intersections, average of all approaches for AWSC and Signal 3. NA=information not available						

Figure 3: Cumulative Peak Volumes - Signalized Intersections

Summary of Roundabout Operation Analysis and Findings

Table 5 provides a summary of the intersection LOS for the roundabout intersections. All intersections are projected to operate at or above the threshold LOS for the roundabout alternatives. Figure 4 presents the cumulative peak hour volumes at the roundabout intersections.
Table 5: Roundabout Intersections Levels of Service

Intersection	Control Type ${ }^{1,2}$	Target LOS	AM Peak Hour		PM Peak Hour	
			Delay	LOS	Delay	LOS
Riverwalk Drive and Private Driveway	RNDBT	C	4.3	A	4.3	A
Riverwalk Drive and US 101 SB Ramps	RNDBT	C	6.6	A	10.7	B
12th Street and US 101 NB Ramps/Newburg Road	RNDBT	C	8.7	A	19.9	B
Notes: 1. $\mathrm{AWSC}=$ All Way Stop Control; TWSC $=$ Two Way Stop Control 2. LOS = Delay based on worst minor street approach for TWSC intersections, average of all approaches for AWSC and Signal						

Figure 4: Cumulative Peak Volumes - Roundabout Intersections

Scope of Future Traffic Engineering Studies, Activities, \& Tasks

The following discussion highlights the scope of traffic engineering studies, activities, and tasks to be completed during the PA\&ED phase.

Project Study Limits: The existing interchange study area includes the following intersections:

- 12th Street Road and Newburg Road
- 12th Street and Pond Street
- 12th Street and US 101 Northbound Ramps
- Riverwalk Drive/12th Street and US 101 Southbound Ramps
- Riverwalk Drive/Dinsmore Drive

Traffic Data Collection: The preliminary traffic assessment was prepared using existing AM and PM peak hour intersection traffic counts collected in March 2016 and bicycle/pedestrian counts collected in May 2016 for a preliminary study. Future traffic engineering studies may obtain new vehicle, pedestrian and bicycle traffic counts or may rely on the data already collected. Future traffic data obtained may include origin-destination surveys to gauge the movements and to observe driver behavior upon entry to the intersection.

Traffic Forecasting: In the PA\&ED phase, the Project Development Team (PDT) may update the future design year forecasting of traffic volumes and movements for the 12th Street intersections within the project area based on new data or assumptions, if available.

Traffic Operations Analysis Report (TOAR) and Intersection Control Evaluation (ICE): A TOAR and ICE Engineering Analysis (Step Two) will be prepared which may include intersection traffic control warrant studies, a capacity, operations and safety analysis, design performance checks, an economic analysis, and consultations with the District ICE Coordinator.

Traffic Management Plan: The traffic impacts during construction will be evaluated and mitigation strategy identified. The plan will include an analysis of the number of working days, staging, and detours.
Pedestrian and Bicycles Improvement Analysis: During the PA\&ED phase, additional analysis will be prepared to ensure the inclusion of context sensitive bicycle and pedestrian improvements, such as dedicated bike lanes, shared-use paths and crosswalks, some of which are included in the conceptual layouts of the alternatives. Preliminary designs will be analyzed to ensure adequate facilities are included to support bicyclists and pedestrians.
Traffic Index for Pavement Design: The traffic index (TI) required for the pavement design for the new pavement at the roundabout alternatives will be completed during the PA\&ED Phase.

5. DEFICIENCIES

US 101 bisects the community cutting off the Riverwalk area from other areas of the City. The existing 12th Street interchange creates a significant barrier to bicycle and pedestrian movement, does not conform to current design standards, and will not accommodate future projected traffic volumes or the anticipated needs of roadway users. The interchanges also lack directional legibility, making it difficult for visitors to access the City's existing amenities.

Existing and Forecasted (No Build) Operational Deficiencies

Traffic modeling conducted in 2016 showed that 1 of the 6 intersections analyzed are currently operating below a LOS C (Fortuna's standard). For full buildout over 20 -years with no improvements to the intersections (No Build), 3 of the 6 intersections are expected to operate below a LOS C. Refer to Table 6 for a summary of LOS for existing and no build future conditions.

Table 6: Existing Levels of Service

Intersection	Control Type ${ }^{1,2}$	Target LOS	Existing LOS		Future No Build LOS	
			AM Peak	PM Peak	AM Peak	PM Peak
Riverwalk Drive and Private Driveway	TWSC	C	B	A	B	B
Riverwalk Drive and Dinsmore Drive	TWSC	C	B	B	B	C
Riverwalk Drive and US 101 SB Ramps	AWSC	C	A	B	C	F
Riverwalk Drive/12th Street and US 101 NB On- Ramp/Pond Street	TWSC	C	C	C	E	F
US 101 NB Off-Ramp/12th Street and Pond Street	TWSC	C	B	A	B	B
12th Street and Newburg Road	TWSC	C	F	D	F	F
Notes: 1. AWSC = All Way Stop Control; TWSC = Two Way Stop Control 2. LOS = Delay based on worst minor street approach for TWSC intersections, average of all approaches for AWSC and Signal						

Geometric Design Deficiencies

The following summarizes the non-standard features and geometric deficiencies identified for existing conditions in the project area:

12th Street:

- Overcrossing Width per HDM 308.1
- Right Shoulder Width per HDM 302.1 and 308.1
- Curve Radii per HDM Index 203.2
- Decision Sight Distance per HDM Index 201.7
- Intersection Spacing per HDM 504.3
- Vertical Clearance per HDM 309.2

Newburg Road:

- Angle of Intersection per HDM 403.3
- Horizontal Clearance per HDM 309.1

US 101 NB On- and Off-Ramps:

- Curve Radii per HDM Index 203.2
- Decision Sight Distance per HDM Index 201.7
- Intersection Spacing per HDM 504.3

US 101 SB On- and Off-Ramps:

- Intersection Spacing per HDM 504.3

Refer to Attachment C for a more comprehensive review of existing conditions and project design standards.

Pedestrian and Bicycle Deficiencies

The existing 12th Street interchange lacks bicycle and pedestrian infrastructure and there are no ADAcompliant pedestrian facilities.

6. CORRIDOR AND SYSTEM COORDINATION

The following discussion highlights the state, regional and local planning considerations for the proposed project improvements.

State Planning

Complete Streets

Caltrans Deputy Directive 64-Revision (DD-64R) provides for the needs of travelers of all ages and abilities in all planning, programming, design, construction, operations, and maintenance activities on the State Highway System. The Department views all transportation improvements (new and retrofit) as opportunities to improve safety, access, and mobility for all travelers and recognizes bicycle, pedestrian, and transit modes as integral elements of the transportation system.

Regional Planning

The 12th Street US101 Interchange Improvement Project was identified in HCAOG's 2017 Regional Transportation Plan (RTP) Update as a high-priority project.

Local Planning

General Plan

The City of Fortuna General Plan 2030 (General Plan) formalizes a long-term vision for the City's physical development. The 12th Street Interchange Improvement Project fulfils or meets many policies set forth in the General Plan, including specific direction to improve interchanges within the study area. These policies are detailed below.

Roadways and Highways
Policy TC-1.1 Reducing Mode Conflicts. The City shall seek to minimize conflicts between pedestrians, automobiles, and bicycles.

Policy TC-1.2 New Roadway Improvements. The City shall design and phase roadway improvements so that a level of service (LOS) C or better is maintained on all City streets, except that LOS D or better shall be maintained on Main Street.
Policy TC-1.3 Balanced Transportation System. The City shall strive to meet the level of service standard through a balanced transportation system that provides alternatives to the automobile and by promoting pedestrian, bicycle, and transit connections between employment areas and major residential and commercial areas.
Policy TC-1.4 Improved LOS. The City shall identify economic, design, and planning solutions to improve levels of service currently below LOS C. Where physical mitigation is infeasible, the City shall consider developing programs that enhance alternative access or otherwise reduce automobile travel demand.

Policy TC-1.15 Interchange Improvements. The City, through HCAOG in cooperation with Caltrans, shall allocate the costs for funding interchange improvements to areas of benefit and assign proportionate share costs to individual projects.

Bicycle and Trail Facilities

Policy TC-5.2 Bicycle System. The City shall develop and maintain a safe, convenient, and effective bicycle system that encourages increased bicycle use.

Policy TC-5.5 Rails-to-Trails. The City shall explore the concept of converting any abandoned railroad rights-of-way into multi-use bike and pedestrian paths for local and regional use per Sections 2540 through 2549 of the Streets and Highways Code.
The General Plan proposes a Class II bike lanes on 12th Street through the interchange, as well as Class II bike lanes on Newburg Road and Riverwalk Drive (refer to Figure 5).

Figure 5: Bicycle Network in Fortuna General Plan

Pedestrian Facilities

Policy TC-4.2 New Developments. The City shall continue to require new development to finance and install sidewalks and pedestrian pathways connecting them to existing sidewalks or widening the right-of-way fronting the development to accommodate new sidewalks.
Policy TC-4.3 Specific Plans. The City shall encourage specific development plans to include design continuity of pedestrian access that enables residents to walk from their homes to places of work, recreation, and shopping.

Policy TC-4.7 Pedestrian Trails Interconnection. Where feasible, the City shall loop and interconnect pedestrian trails.

7. ALTERNATIVES

Intersection Alternatives

Unless noted otherwise, the alternatives identified below address the purpose and need of the project. Although the signal alternative does meet the projects' purpose and need, its high estimated cost makes it infeasible for the City to implement, and therefore it is rejected from further consideration during the PA\&ED phase. Only the roundabout alternatives are recommended to be carried forward to the PA\&ED Phase of the project.
Based on the preliminary conceptual layouts, none of the build alternatives are anticipated to contain non-standard geometries with respect to both Caltrans Design Standards and City of Fortuna Design Standards. Further refinements to the proposed alternatives will be conducted during the PA\&ED phase of the project.
Refer to Attachment \mathbf{D} for conceptual design drawings, Attachment \mathbf{E} for truck turning analysis, and Attachment F for roundabout fast path exhibits.

The "No Build" Alternative

This is the "No Build" condition, where the study intersections would remain unaltered with respect to intersection geometrics and stop control. This alternative does not meet the purpose and need of the proposed project.

Traffic Signal Alternative

This signalized intersection concept corridor would require the removal of the existing structure over US 101, the construction of a new overcrossing, realignment of Dinsmore Drive with a new bridge over Strongs Creek, and widening from the intersection of Riverwalk Drive and US 101 SB Ramps to the intersection of 12th Street and Newburg Road. The current two-lane roadway would require expansion to four lanes throughout the corridor to accommodate the projected growth. The existing two-lane structure over Strongs Creek would need to be replaced. The freeway ramps to US 101 would need to be reconstructed and the existing Rohner Creek Bridge on US 101 widened.

After analyzing the forecasted traffic volumes with Synchro, the lane geometry was determined for each intersection as shown in the conceptual design. Left-turn and right-turn pocket lengths were based on the 95th percentile queue length.
The signal alternative accommodates pedestrians and bicycles with standard Class II bike lanes, sidewalks, and intersection crossings (crosswalks) along 12th Street, US 101 ramps, and Newburg Road. Each crossing is 10 ' wide and extends across the entire intersection length. Due to the number of lanes at each approach, long crosswalks will increase pedestrian crossing times and will affect the traffic signal timing to ensure that pedestrians can safely cross the roadway.

North Roundabout Alternative

A five-leg roundabout at the 12th Street/US 101 NB Ramps intersection that incorporates a realigned Newburg Road as the fifth leg. The existing Newburg Road connection to 12th Street would be closed by creating a cul-de-sac. The NB ramps would need to be reconstructed to current Caltrans standards. According to the City's General Plan, 12th Street and Newburg Road are to have Class II bike lanes, and there is a planned "rail with trail" along the existing railroad corridor.
After analyzing the forecasted traffic volumes with the Sidra software, it was determined that the fiveway intersection would operate at an acceptable level of service as a multi-lane roundabout. Newburg Road was realigned beginning near the intersection with Sunnybrook Drive. The concept shows connections to the planned rail with trail and the bike lanes on 12th Street and Newburg Road. The Class I Bike Path will provide bike and pedestrian connectivity across US 101. Since the existing
overcrossing is not wide enough to accommodate a bike path, the bridge structure would require widening or a separate pedestrian bridge would be required.

South Roundabout Alternative 1

South Roundabout Alternative 1 uses the "dog bone" roundabout concept to route traffic through two closely spaced intersections. Southbound US 101 on- and off-ramps, NB Dinsmore Drive, and 12th Street will connect to the northern roundabout. 12th Street, Riverwalk Drive, and a private driveway would meet in the southern roundabout which would be located south of the Strong Creek bridge and require replacement of the bridge.
SB Dinsmore Drive would connect to Riverwalk Drive between the two roundabouts and be stop controlled. Left hand turns to and from Dinsmore Drive would be prohibited, so traffic would need to navigate both roundabouts for some movements (e.g. northbound Riverwalk Drive to Dinsmore Drive, or Dinsmore Drive to 12th Street).
The concept includes bike lanes and sidewalks on Riverwalk Drive south of the roundabout with connections to 10 wide shared use paths through the roundabouts, which would connect over the 12th Street/US 101 bridge.
After analyzing the forecasted traffic volumes with Sidra, it was determined that the roundabout south of Strongs Creek would operate at an acceptable level of service as a single lane roundabout. However, the SB off-ramp and Riverwalk Drive approaches to the northern intersection need dedicated right-turn lanes to operate at an acceptable levels of service.

Roundabout Alternative - 12th Street South Alternative 2 ($a, ~ b \& c$)

This alternative uses a single roundabout at the southbound ramp intersection and a realigned Dinsmore Drive. The roundabout is placed on the north side of Strongs Creek and directs traffic from 12th Street, Riverwalk Drive, and the southbound US 101 on and offramps.
Three different Dinsmore Drive realignments options were developed:

- Alternative 2a realigns Dinsmore Drive across Strongs Creek through private property, collects adjacent driveways, and intersects Riverwalk Drive to the south with a minor street stop controlled intersection. The private driveway south of Strongs Creek is also directed onto Dinsmore Drive.
- Alternative 2b avoids the new Strongs Creek crossing with a less significant realignment of Dinsmore Drive, bringing it into 12th Street north of the roundabout. This reduces impacts to Strongs Creek and private property.
- Alternative 2c proposes a similar roundabout solution as Alternative 2b, but realigns Dinsmore Drive to connect to 12th Street closer to the US 101 bridge.
All of the Alternative 2 concepts include bike lanes on Riverwalk Drive with connections to 10' wide shared use paths through the roundabouts, which would connect over the 12th Street/US 101 bridge.

Structure Alternatives

A preliminary structural analysis was prepared to determine preliminary scope, feasibility, rough cost range, and a list of potential project risks required for proposed structural improvements.
The 12th Street Overcrossing Bridge (Br. No. 04-0130) spans over Route US 101 at the interchange. The bridge is on curved alignment with supports skewed and parallel to US 101. The structure is a 34-foot-wide, 4 -span, 197-foot-long, concrete tee-beam structure, with a span arrangement of 44, 65, 53, and 35 feet. The structure was constructed in 1962. End supports are short seat abutments on concrete pile foundations, and intermediate supports are 2-column bents on concrete pile foundations. US 101 currently passes under the spans 2 and 3 with a 15-foot 5 -inch vertical clearance over northbound lanes and 15 -foot 6 -inch vertical clearance over southbound lanes. The 34 -foot-width currently carries two 12-foot travel lanes, two 2-foot shoulders, and two 3-foot-wide Type 2 Barrier railings. The clear width between barrier railings is 28 feet.

The Overcrossing is State-owned, on the National Highway System, and rated adequate for permit loads. The structure is in good condition with a health index of 100, but the sufficiency rating (SR) is 80.1 because of the bridge's narrow width and ADT. When originally built, the ADT was much lower and the 28 feet width was adequate.

To accommodate the proposed lane configurations and bicycle and pedestrian connectivity on 12th Street at the US 101 interchange, the following structural alternatives were considered:

12th Street Overcrossing Bridge - Replace Structure

The signal alternative requires the replacement of the existing bridge structure over US 101. Based on the conditions at the site and the interchange geometrics, a new 12th Street Overcrossing will be approximately 200 feet in length. The most economical structure type will likely be a 4-span, precast, prestressed, concrete girder structure with a 4.3-foot structure depth. Approximate span configuration will be 58 feet, 82 feet, 82 feet, and 58 feet. End supports will be short-seat concrete abutments and interior supports will be 5-column bents. All supports will be pile supported. Clear roadway width will be 58 feet between 8 -foot-wide Type 732SW barriers. Chain link railing will be mounted on the barrier walls above the interior spans and tubular handrailing will be mounted to the barrier wall above the end spans. Falsework is not necessary to erect this type of girder structure. Girders will be set in place from US 101 using traffic closures.

12th Street Overcrossing Bridge - Widen Structure or New Standalone Bicycle/Pedestrian Overcrossing

To provide bicycle and pedestrian connectivity for the 12th Street Roundabout Concepts, either the existing US 101 bridge structure would need to be widened, or a new standalone bicycle/pedestrian overcrossing will need to be provided. The estimated cost of both options are similar, therefore further analysis is needed as the project develops to determine which option would be most preferred.

Widen US 101 Overcrossing Structure

The proposed bridge widening would consist of constructing a 197-foot-long, 9.7-foot-wide, 4 -span, precast, prestressed concrete girder addition along the north side of the existing Overcrossing. The widening would provide a clear width of $10^{\prime}-0^{\prime \prime}$ between barriers and match the existing bridge structure depth, structure type, profile, and pile foundation supports. Both the east and west approaches to the bridge will be on widened fill embankment closely matching existing conditions. Vertical clearance from the soffit of the widened bridge to the surface of US 101 below would not be affected.

The existing barrier and deck slab along the north side of the overcrossing would need to be removed and replaced. Traffic control and temporary barriers along the 12th Street roadway would be required to construct the widening. Additionally, traffic control systems would be required on US 101 to construct pile foundations and widen the existing column bents. Falsework would not be necessary to erect this type of girder structure. Girders will be set in place from US 101 using traffic closures.
Overall width of the widened structure would be 43-feet 8-inches. Clear vehicular roadway width would be 28 feet between the existing Type 3 concrete barrier along the south edge of the existing bridge and a new Type ST-30 bridge rail located to separate the 10 -foot-wide pedestrian/bicycle facility from the vehicular traffic. MASH bridge barrier with chain link railing mounted on the barrier wall would bound the pedestrian/bicycle facility along the north edge of the widened structure.

New Standalone Bicycle/Pedestrian US 101 Overcrossing

A new pedestrian/bicycle overcrossing would consist of constructing a 203-foot-long, 12-foot-wide, 4span, precast, prestressed concrete girder structure along the north side and close to the existing overcrossing. The new structure would provide a clear width of 10 '- 0 " between barriers and match the existing bridge structure depth, structure type, profile, and pile foundation supports. Both the east and west approaches to the bridge would be on widened fill embankment closely matching existing conditions. Vertical clearance from the soffit of the new bridge to the surface of US 101 below should maintain approximately 16 feet.

MASH bridge barriers with chain link railing mounted on the barrier wall would bound the pedestrian/bicycle facility along both edges of the new structure.

Strongs Creek Bridge on Riverwalk Drive - Replace Structure

The south roundabout alternatives would require the existing Strongs Creek bridge be replaced with a new structure. The existing Strongs Creek Bridge on Riverwalk Drive (Br. No. 04C-0085) is a Countyowned, 99-foot-long, continuous 3-span, concrete flat slab structure constructed in 1962 with a clear roadway width of 28 feet. The roadway is classified as a major collector and current ADT is approximately 2300 vehicles per day. Two steel pipelines are carried on the bridge, one on each edge. The structure is in fair condition with a health index of 100, but the SR is 72.4 because of the bridge's narrow width and ADT. When originally built, the ADT was much lower and the 28 feet width was adequate.
Based on the conditions at the site and the proposed roadway geometrics, the bridge width required at Strongs Creek on Riverwalk Drive will need to vary from about 58 feet at the west abutment (west creek bank) to about 76 feet at the east abutment (east creek bank). The existing 99 -foot-long bridge length is adequate. Because the proposed bridge width is more than twice the existing 28 feet, it would be most economical to replace the entire structure rather than to widen it.

The most economical replacement structure type would likely be a continuous 3-span, concrete flat slab structure with a 1.5 foot structure depth. Approximate span configuration would be 33.5 feet, 32 feet, and 33.5 feet. End supports will be concrete diaphragm abutments supported on concrete piles and interior supports would be concrete pile bents. Bridge width would varry (58 feet at the west abutment to 76 feet at the east abutment) and the bridge would include concrete barriers, a 10 -footwide pedestrian/bicycle facility, and 12-foot eastbound and westbound travel lanes, shoulders, and edge and road medians of varying widths. Tubular hand railing would be mounted to the barrier walls. Falsework is necessary to erect this type of slab structure. The pipeline utilities would have to be relocated and supported on the new bridge or buried in the stream bottom.

Strongs Creek Bridge (New Bridge) on Dinsmore Drive

The Signal Alternative and the Roundabout Alternative 2a both require a new bridge over Strongs Creek to accommodate the realigned Dinsmore Drive. Based on the conditions at the site and the proposed roadway geometrics, the new Strongs Creek Bridge on Dinsmore Drive will be approximately 157 feet in length and 38-feet-wide. The most economical structure type will likely be a continuous 5span, concrete flat slab structure with a 1.5 foot structure depth. Approximate span configuration will be 27.5 feet, 34 feet, 34 feet, 34 feet, and 27.5 feet. End supports will be concrete diaphragm abutments supported on concrete piles and interior supports will be concrete pile bents. Supports will be parallel to the channel and skewed approximately 60 degrees from normal to the roadway. Clear roadway width will be 24 feet between concrete barriers. Tubular handrailing will be mounted to the barrier walls. Falsework is necessary to erect this type of slab structure.

Rohner Creek Bridge on US 101

The Signal Alternative requires the existing Rohner Creek bridge on US101 be widened to accommodate the extended NB onramp. The existing Rohner Creek Bridge on U.S. 101 (Br. No. 040108) is a pile supported, 87 -foot-long, 74 -feet-wide, continuous 3-span, concrete flat slab structure constructed in 1962. The structure is in good condition with a SR of 95.9.
Based on the conditions at the site and the proposed roadway geometrics, the existing bridge would need to be widened on its east edge approximately 16 feet to accommodate the proposed 12th Street/U.S. 101 IC northbound on-ramp widening. The widening would match the existing bridge type and will be a continuous 3-span, concrete flat slab structure with a 1.33 foot structure depth. Approximate span configuration will be 29.5 feet, 28 feet, and 29.5 feet. End supports would be concrete diaphragm abutments supported on concrete piles and interior supports would be concrete pile bents. Supports would be parallel to the channel and skewed approximately 20 degrees from normal to the roadway. Concrete barrier would be mounted along the new right edge of deck. Falsework is necessary to erect this type of slab structure.

Pedestrian and Bike Facilities and Connectivity

Signal Alternative

The signal alternative accommodates pedestrians and bicycles with standard Class II bike lanes, sidewalks, and intersection crossings along 12th Street, US 101 ramps, and Newburg Road. Each crossing is 10 ' wide and extends across the entire intersection length. Due to the number of lanes at each approach, long crosswalks will increase pedestrian crossing times and will affect the traffic signal timing to ensure that pedestrians can safely cross the roadway.

Roundabout Alternatives

Pedestrian crossings are provided on all legs of all roundabout alternatives. Crossings are 10 feet in width and set back a minimum of 20 feet from the roundabout's circulating roadway. Where crosswalks intersect splitter islands or medians, a 6 -foot long minimum paved pathway is provided between the travel lanes for safety and refuge when waiting to cross. Shared-use pathways, 10 feet in width and located outside of the roundabout, are setback a minimum of 5 feet from the circulatory road with a landscape strip to increase accessibility and discourage pedestrians from crossing into the central traveled way.
Bicycles are accommodated by navigating through the roundabouts in two ways. Cyclists may choose to take the travel lane and travel through the roundabout as a vehicle or may choose to take the separated bike ramp / shared use path and travel around the roundabout as a pedestrian.

Gateway and Landscaping

Wayfinding, gateway aesthetics and plantings can be featured in each alternative in undeveloped open space along or within each intersection. Roundabouts, with their central landscape areas, lend themselves to focal points with artistic gateway treatments. Refer to Attachment H for preliminary landscape and gateway concepts.

Cost Estimates

Capital, support, and total estimated costs for each alternative are summarized in Table 7. The total capital costs include traffic control, mobilization, right-of-way, utility relocation, and contingencies. The total support costs include costs for environmental clearance, plans, specifications, and estimates (PS\&E), right-of-way engineering and acquisition, and construction support and management. Refer to Attachment I for detailed costs estimates for each alternative.

Table 7: Cost Estimate Summary

Alternative	Total Capital Cost	Total Support Cost	Total Estimated Cost (Rounded)
Signal	$\$ 31.1 \mathrm{M}$	$\$ 12.0 \mathrm{M}$	$\$ 43.1 \mathrm{M}$
Roundabout North	$\$ 9.1 \mathrm{M}$	$\$ 3.5 \mathrm{M}$	$\$ 12.6 \mathrm{M}$
Roundabout South 1	$\$ 8.1 \mathrm{M}$	$\$ 3.3 \mathrm{M}$	$\$ 11.4 \mathrm{M}$
Roundabout South 2a	$\$ 10.7 \mathrm{M}$	$\$ 4.3 \mathrm{M}$	$\$ 15.0 \mathrm{M}$
Roundabout South 2b	$\$ 8.4 \mathrm{M}$	$\$ 3.4 \mathrm{M}$	$\$ 11.8 \mathrm{M}$
Roundabout South 2c	$\$ 7.7 \mathrm{M}$	$\$ 3.0 \mathrm{M}$	$\$ 10.7 \mathrm{M}$

Alternatives Comparison

A preliminary alternatives analysis was conducted to identify a preferred alternative. The analysis considered the following: cost, truck accommodation, safety, local access, complete streets, environmental impacts, right-of-way impacts, public input, and the purpose and need.

As previously stated, the signal alternative does meet the projects purpose and need, however, its high estimated cost makes it infeasible for the City to implement, and therefore it is rejected from further consideration.

The roundabout alternatives were generally considered comparable in terms of meeting the performance criteria, however the roundabout North Alternative and South Alternative 2c were identified as the preferred alternative as they best met the performance criteria and was preferred by the public and stakeholders.

No design exceptions have been identified as at this point. However, as the project is further developed, the need for exceptions to design standards should be analyzed.

8. RIGHT-OF-WAY

Initial research was conducted to determine road widths, rights-of-way, adjacent parcel ownerships and maintenance responsibilities, as these factors can affect feasible design solutions or preferred alternatives. Refer to Attachment J for additional information on right-of-way and ownership. Right-ofway data sheets will be prepared during the PA\&ED phase of the project.

Ownership

A railroad corridor owned by the North Coast Railroad Authority (NCRA) cuts through the project site. While Caltrans owns 12th Street from the interchange to just south of the railroad, Humboldt County has a pavement maintenance agreement from 50 feet south of the railroad to Dinsmore Drive. Dinsmore Drive at the north end of Riverwalk Drive is indicated as being in Humboldt County ownership. However, there is also documentation describing annexation of Strongs Creek Road (Dinsmore Drive) by the City. The ownership of Strongs Creek bridge and exact limits of this annexation will need to be determined in the future as the project develops.
The rights-of-way through the 12th Street interchange are largely publicly held by the City, County, or State. Dinsmore Drive provides access to the public Fortuna Dog Park and industrial land uses such as the Fortuna Wastewater Treatment Plant. The northeast quadrant of the interchange is designated for industrial land use and is owned and occupied by Sequoia Gas Company. Clendenen's Cider works, an agricultural land use, is located on the northwest quadrant.

Right-of-Way Widths

North of the railroad tracks, 12th Street right-of-way is 60 feet wide. South of the railroad tracks, the street is indicated to be 75 feet wide. Newburg Road varies in width from 40 to 50 feet.
Table 8 summarizes the approximate anticipated right-of-way impacts for each project alternative.
In addition to permanent acquisitions, temporary permissions/easements and/or encroachment permits will need to be obtained during the Right-of-Way phase of the project.

Table 8: Right-of-way Impacts

Alternative	APN \#	Right-of-Way Acquisition	
		SQFT	Acre
Signal Concept		215,894	4.96
	200-353-035	26,670	0.61
	200-353-044	25,114	0.58
	200-353-005	2,786	0.06
	200-381-001	18,310	0.42
	200-381-002	2,165	0.05
	200-381-003	15,607	0.36
	200-381-004	31,722	0.73
	200-381-005	34,852	0.80
	200-381-006	28,621	0.66
	200-381-007	7,855	0.18
	200-381-009	22,943	0.53
Roundabout Concept - Option 1		5,078	0.12
	200-353-021	2,467	0.06
	200-353-035	2,610	0.06
Roundabout Concept - Option 2a		51,030	1.17
	200-353-035	25,916	0.59
	200-353-044	25,114	0.58
Roundabout Concept - Option 2b		N/A	N/A
		N/A	N/A
Roundabout Concept - Option 2c		N/A	N/A
		N/A	N/A
Roundabout Concept		51,687	1.19
	200-381-001	18,311	0.42
	200-381-002	11,852	0.27
	200-381-009	199	0.004
	201-331-005	21,325	0.49

Utilities

Existing underground and above ground utilities in the vicinity of the 12th Street interchange will need to be modified or relocated to accommodate the proposed improvements. Utility ownership is presented in Table 9.

Table 9: Utilities in Vicinity of 12th Street Interchange

Utility	Owner
Storm Drain	Caltrans/City of Fortuna
Cable Television	Suddenlink
Telephone	AT\&T
Electrical	PG\&E
Water	City of Fortuna
Railroad Signal	NCRA

Railroad

The railroad corridor roughly parallels the east side of US 101 and crosses through the project area at the intersection with Newburg Road. The NCRA is the public agency that owns right-of-way and the Northwestern Pacific Railroad (NWPRR) is the contract operator of the railroad. Together they have the responsibility for the safety, operation and maintenance of the railroad. Although there is currently no active rail service, any modifications to railroad crossings at roadway intersections require the approval of the California Public Utilities Commission (CPUC) under General Order 88-B.

California Senate Bill (SB) 1029 mandates that the NCRA property and right-of-way be railbanked in order to create the Great Redwood Trail. According to discussions with CPUC staff, if the rail corridor is railbanked and the rails and ties removed, then CPUC no longer have jurisdiction over the crossing.

As the project moves forward to project development, close coordination with the NCRA (or its successor agency) and the CPUC will be required to ensure the interchange improvements are consistent with rail corridor operations.

9. STAKEHOLDER INVOLVEMENT

The project concepts were developed and vetted through a public process that included regular meetings of a Technical Advisory Group (TAG), the general public, and specific project stakeholders. This section discusses the results of the public and stakeholder engagement during the design development process.

Technical Advisory Group (TAG)

A TAG was convened in January 2016 to support initial project planning and the development of project alternatives. The TAG met on five different occasions provide technical information relevant to the project, to coordinate with local agencies, and to act as the "eyes and ears" of the community to guide the project. Group members included representatives from HCAOG, the City of Fortuna, the Humboldt County Department Public Work, and Caltrans District 1.

Community Meetings

Two workshops were held in March and July of 2016 to obtain public input into the project assessment and design. Outreach for the project was conducted with flyers, emails, radio public service announcements on six or more stations, social media posts, and targeted in-person outreach to colleagues and residents. In order to encourage participation, each workshop offered food, a childfriendly space with activities, and Spanish-English interpretation. Both workshops resulted in specific and helpful feedback from stakeholders that was utilized during the development and evaluation of design alternatives.

First Community Meeting (March 2016)

The goals of this first workshop was to understand how residents and visitors currently navigate 12th Street interchange area, to identify specific concerns related to safety, operations, and connectivity, and to discuss potential design treatments that could be implements

The attendees identified many challenges for pedestrians and bicyclists, including narrow or virtually non-existent shoulders, and challenging road crossings. Meeting participants showed a preference for design alternatives involving roundabouts. Signalized intersection alternative comments were mostly mildly negative. Roundabout options with fewer roundabouts, and fewer bicycle/pedestrian crossings were preferred.

Second Community Meeting (July 2016)

The second workshop, conducted on July 20, 2016, was primarily focused on presenting design alternatives, answering questions and soliciting community feedback. There was a clear preference for the North Roundabout Alternative and South Roundabout Alternative 2 for Kenmar Road.

Public Presentations

The results of the 2016 Highway 101, Fortuna Downtown and Riverwalk Area Complete Streets and Connectivity Study was presented at the following public meetings:

- Fortuna City Council Meeting - November 8, 2016
- HCAOG Board Meeting - November 17, 2016
- HCAOG Technical Advisory Committee (TAC) Meeting - December 1, 2016

In addition, the results of the study were presented to the Caltrans District 1 Executive Committee on January 3, 2017.

10. ENVIRONMENTAL COMPLIANCE

Preliminary Environmental Analysis
In 2016, an initial environmental evaluation of the project and alternatives was conducted to help anticipate potential environmental constraints that may affect project design, alternatives, cost, schedule, and delivery. The evaluation included a reconnaissance-level site investigation of existing conditions in the project area to identify the presence or potential presence of biological resources listed under the Federal Endangered Species Act (ESA), the presence of wetlands and Waters of the US as regulated by the US Army Corps of Engineers (USACE), the presence or potential presence of species listed as endangered or threatened under the California Endangered Species Act (CESA) or considered a species of special concern (SSC) by the California Department of Fish and Wildlife (CDFW), or the potential for special-status plant species having a rare plant ranking as determined by the California Native Plant Society (CNPS) rare plant inventory, and to present the potential of sensitive habitats as listed by the CDFW. Refer to Attachment \mathbf{K} for more information on the initial environmental evaluation that was prepared. During the PA\&ED phase of the project, a formal Preliminary Environmental Analysis Report (PEAR) may be completed to satisfy Caltrans if required.

NEPA, CEQA and Permitting

During the PA\&ED phase, the project will be evaluated for potential impacts on the environment in compliance with the California Environmental Quality Act (CEQA) and National Environmental Policy Act (NEPA). Feasible opportunities to avoid or reduce impacts will be pursued and mitigation measures will be developed to reduce potentially significant impacts as appropriate. The draft CEQA document will be made available to the public for review and comment.

Based on the information currently available, the expected compliance pathways are a Mitigated Negative Declaration of environmental impact for CEQA and a Categorical Exclusion for NEPA in conformance with the Federal Highways Administration/Caltrans programmatic process.

The wetland and riparian habitats in the project area have a moderate to high likelihood of supporting listed reptile, frog and fish species including Western Pond Turtle Emys (Actinymys) marmorata, Northern Red-legged Frog Rana aurora, and Foothill Yellow-legged Frog Rana boylii. Several sensitive plant species also have a moderate likelihood of occurring in the study area.
Subsequent environmental investigations including a wetland delineation will be needed to address potential sensitive species identified and address any impacts to protected habitats. Additionally, a variety of permits and related environmental review will be necessary for project planning and design.
Anticipated Environmental Permitting and Compliance Requirements are presented in Table 10.
Table 10. Anticipated Environmental Permitting and Compliance Requirements

Law/Regulation	Permit/Approval	Authority
CEQA	Mitigated Negative Declaration	Lead Agency
NEPA	Categorical Exclusion	Caltrans on behalf of Federal Highways Administration
Clean Water Act Section 404	Nationwide Permit	US Army Corps of Engineers
Porter-Cologne/Clean Water Act Section 401	401 Certification and/or Waste Discharge Requirements (WDR)	North Coast Regional Water Quality Control Board
National Historic Preservation Act	Letter of Concurrence	State Historic Preservation Office \& Tribal Historic Preservation Office

A Preliminary Environmental Study (PES) Form will be developed during the PA\&ED phase of the project. The following technical studies and plans are anticipated to be required:

- Natural Environmental Study (NES) of Biological Resources
- Wetland Delineation and Rare Plant Survey
- Initial Site Assessment (ISA)
- Visual Impact Assessment (VIA), Minor VIA, or Visual Technical Memorandum
- Floodplain Evaluation \& Location Hydraulic Study
- Geotechnical Investigation
- Historic Property Survey Report (HPSR) and Archaeological Survey Report (ARS)
- Preliminary Hydraulics/Hydrology Study
- Stormwater Data Report (SWDR)
- Water Quality Assessment Report
- Structures Advanced Planning Study and Preliminary Foundation Report

11. FUNDING

Funding to advance the project has not yet been programmed, however the City of Fortuna intends to request funding to advance the PA\&ED phase of the project utilizing funds from the 2022 State Transportation Improvement Program (STIP).
Funding for PS\&E, right-of-way and construction has not been programmed. Potential funding sources for PS\&E, right-of-way and construction include: the state Active Transportation Program (ATP), the federal RAISE program, future STIP cycles, and local funds.

It has been determined that this project is eligible for Federal-aid funding.

Capital Outlay Project Estimate

Table 11 presents a summary of the capital outlay estimates for the proposed alternatives. Detailed estimates for the various alternatives are presented in Attachment I.

Table 11: Summary of Capital Outlay Estimate

Alternative	Estimated Capital Cost		
	Construction	Right-of-Way	Utilities
Signal	$\$ 26.6 \mathrm{M}$	$\$ 4.3 \mathrm{M}$	$\$ 200 \mathrm{~K}$
North Roundabout	$\$ 7.8 \mathrm{M}$	$\$ 1.1 \mathrm{M}$	$\$ 200 \mathrm{~K}$
South Roundabout 1	$\$ 7.8 \mathrm{M}$	$\$ 100 \mathrm{~K}$	$\$ 200 \mathrm{~K}$
South Roundabout 2a	$\$ 10.5 \mathrm{M}$	$\$ 0$	$\$ 200 \mathrm{~K}$
South Roundabout 2b	$\$ 8.2 \mathrm{M}$	$\$ 0$	$\$ 200 \mathrm{~K}$
South Roundabout 2c	$\$ 7.5 \mathrm{M}$	$\$ 0$	$\$ 200 \mathrm{~K}$

The level of detail available to develop these capital outlay project estimates is useful for long-range planning purposes only. The capital outlay project estimates should not be used to program or commit State-programmed capital outlay funds.

Capital Outlay Support Estimate

Capital outlay support estimate for programming PA\&ED in the 2022 STIP for this project by phase is as follows:

North Roundabout: \$1,000,000
South Roundabout 2C: $\$ 850,000$

12. DELIVERY SCHEDULE

The following section outlines the delivery schedule for the proposed alternative.

Table 10: Project Delivery Schedule

Project Milestones	Scheduled Delivery Date
Program Project	$12 / 15 / 2021$
Begin Environmental (PA\&ED) Phase	$08 / 01 / 2023$
Circulate Draft Environmental Document	$12 / 01 / 2024$
Draft Project Report	$12 / 01 / 2024$
End Environmental Milestone	$6 / 30 / 2025$

The anticipated funding fiscal year for construction is 2029/30

13. RISKS

A risk register and risk analysis will be complete for the project during the PA\&ED phase of the project.

14. EXTERNAL AGENCY COORDINATION

This project does not anticipate coordination with the Federal Highway Administration (FHWA).

Coordination between the City of Fortuna, County of Humboldt and Caltrans will be required throughout all phases of this project. In addition, the project will require the following coordination:

Caltrans

Encroachment Permit

US Army Corps of Engineers

Department of the Army Permit for:
Clean Water Act Section 404
California Department of Fish and Wildlife
California Fish and Game Code Section 1602
Lake or Streambed Alteration Agreement
Regional Water Quality Control Board
Clean Water Act Section 401
Water Quality Certification
Railroads
North Coast Railroad Authority
California Public Utilities Commission (unless rail corridor railbanked and rail and ties removed) Modification to an Existing Rail Crossing, GO-88B

15. PROJECT REVIEWS

Caltrans District 1 has indicated that formal approval of this PSR is not required at this time. The City will engage Caltrans prior to proceeding with PA\&ED at which time formal Caltrans reviews can occur, if requested.

16. PROJECT PERSONNEL

City of Fortuna

Merritt Perry, City Manager, 707-725-1410
Brendan Byrd, City Engineer, 707-725-1469
Kevin Carter, Director of Public Works, 707-725-1472
Bob Natt, General Services Superintendent, 707-725-1466

Caltrans District 1

Brad Mettam, Deputy District Director, Planning and Local Assistance, 707-496-4794
Jesse Roberts, Transportation Planning, 707-441-4693
Humboldt County Association of Governments
Beth Burks, Director, 707-444-8208
County of Humboldt
Tony Seghetti, Deputy Director Engineering, 707-445-7377
Tom Mattson, Director of Public Works, 707-445-7491
GHD (Consultant)
Josh Wolf, PE, Project Manager, 707-443-8326

17. ATTACHMENTS

A. Location map
B. Traffic Counts and LOS Analysis
C. Review of Geometric Design Standards
D. Conceptual Design Drawings
E. Truck Turning Analysis
F. Fast Path Exhibits
G. Preliminary Structures Analysis
H. Landscaping/Gateway Concepts
I. Cost Estimates
J. Right-of-Way and Property Ownership
K. Environmental Constraints Analysis

Attachment A - Location map

Attachment B - Traffic Counts and LOS Analysis

Existing Conditions

Intersection						
Int Delay, s/veh 0.1						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Traffic Vol, veh/h	2	0	0	105	95	4
Future Vol, veh/h	2	0	0	105	95	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	75	75	75	75	75	75
Heavy Vehicles, \%	9	9	9	9	9	9
Mvmt Flow	3	0	0	140	127	5

Intersection						
Int Delay, s/veh	1.6					
		EBL	EBR	NBL	NBT	SBT
Movement	25	1	18	89	98	18
Traffic Vol, veh/h	25	1	18	89	98	18
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, \#/hr	Stop	Stop	Free	Free	Free	Free
Sign Control	-	None	-	None	-	None
RT Channelized	0	-	-	-	-	-
Storage Length	0	-	-	0	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	84	84	84	84	84	84
Peak Hour Factor	6	6	6	6	6	6
Heavy Vehicles, \%	30	1	21	106	117	21
Mvmt Flow						

Intersection												
Intersection Delay, s/veh	9.3											
Intersection LOS	A											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Traffic Vol, veh/h	0	0	113	63	0	0	0	0	0	105	0	9
Future Vol, veh/h	0	0	113	63	0	0	0	0	0	105	0	9
Peak Hour Factor	0.92	0.84	0.84	0.84	0.92	0.84	0.84	0.84	0.92	0.84	0.84	0.84
Heavy Vehicles, \%	2	6	6	6	2	6	6	6	2	6	6	6
Mvmt Flow	0	0	135	75	0	0	0	0	0	125	0	11
Number of Lanes	0	0	1	0	0	0	0	0	0	1	0	0
Approach			EB							NB		
Opposing Approach										SB		
Opposing Lanes			0							1		
Conflicting Approach Left			SB							EB		
Conflicting Lanes Left			1							1		
Conflicting Approach Right			NB									
Conflicting Lanes Right			1							0		
HCM Control Delay			9.5							9.1		
HCM LOS			A							A		
Lane		NBLn1	EBLn1	SBLn1								
Vol Left, \%		92\%	0\%	0\%								
Vol Thru, \%		0\%	64\%	24\%								
Vol Right, \%		8\%	36\%	76\%								
Sign Control		Stop	Stop	Stop								
Traffic Vol by Lane		114	176	224								
LT Vol		105	0	0								
Through Vol		0	113	53								
RT Vol		9	63	171								
Lane Flow Rate		136	210	267								
Geometry Grp		1	1	1								
Degree of Util (X)		0.186	0.272	0.313								
Departure Headway (Hd)		4.935	4.68	4.222								
Convergence, Y/N		Yes	Yes	Yes								
Cap		726	765	851								
Service Time		2.974	2.721	2.254								
HCM Lane V/C Ratio		0.187	0.275	0.314								
HCM Control Delay		9.1	9.5	9.2								
HCM Lane LOS		A	A	A								
HCM 95th-tile Q		0.7	1.1	1.3								

Intersection												
Int Delay, s/veh	0.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	0	0	7	0	0	48	228	0	1	169	156
Future Vol, veh/h	0	0	0	7	0	0	48	228	0	1	169	156
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	78	78	78	78	78	78	78	78	78	78	78	78
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	0	0	0	9	0	0	62	292	0	1	217	200

Major/Minor			Minor1				Major1		Major2			
Conflicting Flow All				734	834	292	417	0	0	292	0	0
Stage 1				415	415	-	-	-	-	-	-	-
Stage 2				319	419	-	-	-	-	-	-	-
Critical Hdwy				7.13	6.53	6.23	4.13	-	-	4.13	-	-
Critical Hdwy Stg 1				6.13	5.53	-	-	-	-	-	-	-
Critical Hdwy Stg 2				6.13	5.53	-	-	-	-	-	-	-
Follow-up Hdwy				3.527	4.027	3.327	2.227	-	-	2.227	-	-
Pot Cap-1 Maneuver				334	303	745	1137	-	-	1264	-	-
Stage 1				613	591	-	-	-	-	-	-	-
Stage 2				690	588	-	-	-	-	-	-	-
Platoon blocked, \%								-	-		-	-
Mov Cap-1 Maneuver				317	283	745	1137	-	-	1264	-	-
Mov Cap-2 Maneuver				317	283	-	-	-	-	-	-	-
Stage 1				573	553	-	-	-	-	-	-	-
Stage 2				689	587	-	-	-	-	-	-	-
Approach				WB			NB			SB		
HCM Control Delay, s				16.7			1.5			0		
HCM LOS				C								
Minor Lane/Major Mvmt	NBL	NBT	NBRWBLn1	SBL	SBT	SBR						
Capacity (veh/h)	1137	-	- 317	1264	-	-						
HCM Lane V/C Ratio	0.054	-	- 0.028	0.001	-	-						
HCM Control Delay (s)	8.3	0	- 16.7	7.9	-	-						
HCM Lane LOS	A	A	- C	A	-	-						
HCM 95th \%tile Q(veh)	0.2	-	- 0.1	0	-	-						

Intersection												
Int Delay, s/veh 0.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	1	0	0	1	2	6	310	0	0	0	0
Future Vol, veh/h	0	1	0	0	1	2	6	310	0	0	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-		-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	78	78	78	78	78	78	78	78	78	78	78	78
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	0	1	0	0	1	3	8	397	0	0	0	0

Intersection						
Int Delay, s/veh 31.2						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Traffic Vol, veh/h	155	172	366	174	107	171
Future Vol, veh/h	155	172	366	174	107	171
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	25	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	72	72	72	72	72	72
Heavy Vehicles, \%	1	1	1	1	1	1
Mvmt Flow	215	239	508	242	149	238

Major/Minor	Minor1			Major1		Major2		
Conflicting Flow All	1164	629		0	0	750	0	
Stage 1	629	-		-	-	-	-	
Stage 2	535	-		-	-	-	-	
Critical Hdwy	6.41	6.21		-	-	4.11	-	
Critical Hdwy Stg 1	5.41	-		-	-	-	-	
Critical Hdwy Stg 2	5.41	-		-	-	-	-	
Follow-up Hdwy	3.509	3.309		-	-	2.209	-	
Pot Cap-1 Maneuver	216	484		-	-	864	-	
Stage 1	533	-		-	-	-	-	
Stage 2	589	-		-	-	-	-	
Platoon blocked, \%				-	-		-	
Mov Cap-1 Maneuver	~ 173	484		-	-	864	-	
Mov Cap-2 Maneuver	~ 173	-		-	-	-	-	
Stage 1	533	-		-	-	-	-	
Stage 2	472	-		-	-	-	-	
Approach	WB			NB		SB		
HCM Control Delay, s	106			0		3.9		
HCM LOS	F							
Minor Lane/Major Mvmt	NBT	NBRWBLn1WBLn2	SBL	SBT				
Capacity (veh/h)	-	- 173484	864	-				
HCM Lane V/C Ratio	-	- 1.2440 .494	0.172	-				
HCM Control Delay (s)	-	- 201.919 .5	10	0				
HCM Lane LOS	-	- F C	B	A				
HCM 95th \%tile Q(veh)	-	- 122.7	0.6	-				
Notes								
\sim : Volume exceeds capacity	\$: D	ay exceeds 300s +	+: Comp	putation		*: All	倍	volume in platoon

Intersection												
Int Delay, s/veh 86	86.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	126	22	332	107	0	0	0	0	352	0	19
Future Vol, veh/h	0	126	22	332	107	0	0	0	0	352	0	19
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	134	23	353	114	0	0	0	0	374	0	20

Major/Minor		Major2			Minor2		
Conflicting Flow All		0	0	0	820	820	114
Stage 1		-	-	-	820	820	
Stage 2		-	-	-	0	0	
Critical Hdwy		4.12	-	-	7.12	6.52	6.22
Critical Hdwy Stg 1		-	-	-	6.12	5.52	
Critical Hdwy Stg 2		-	-	-	-		
Follow-up Hdwy		2.218	-	-	3.518	4.018	3.318
Pot Cap-1 Maneuver		-	-	0	~ 294	310	939
Stage 1		-	-	0	~ 369	389	
Stage 2		-	-	0	-	-	
Platoon blocked, \%			-				
Mov Cap-1 Maneuver		-	-	-	~ 294	310	939
Mov Cap-2 Maneuver		-	-	-	~ 294	310	
Stage 1		-	-	-	~ 369	389	
Stage 2		-	-	-	-	-	
Approach		WB			SB		
HCM Control Delay, s					189		
HCM LOS					F		
Minor Lane/Major Mvmt	WBL WBT SBL 1 1						
Capacity (veh/h)	- 305						
HCM Lane V/C Ratio	- 1.294						
HCM Control Delay (s)	- 189						
HCM Lane LOS	- F						
HCM 95th \%tile Q(veh)	- 19						
Notes							
\sim : Volume exceeds capacity	\$: Delay exceeds 300s	+: Com	ation	Defined			

Intersection Int Delay, s/veh 3.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	13	465	0	0	413	228	26	0	220	0	0	0
Future Vol, veh/h	13	465	0	0	413	228	26	0	220	0	0	0
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	Free	-	-	Yield	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	14	495	0	0	439	243	28	0	234	0	0	0

Intersection												
Int Delay, s/veh 1.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	642	43	9	611	0	30	0	13	0	0	0
Future Vol, veh/h	0	642	43	9	611	0	30	0	13	0	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-		-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, \%	1	1	1	1	1	1	1	1	1	1	1	1
Mvmt Flow	0	683	46	10	650	0	32	0	14	0	0	0

	＊	\rightarrow		4		4	4	\dagger	\％		\dagger	\pm
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\uparrow	「	${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{1}$	中4	
Traffic Volume（veh／h）	271	119	265	5	75	55	123	175	11	60	223	422
Future Volume（veh／h）	271	119	265	5	75	55	123	175	11	60	223	422
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow，veh／h／ln	1900	1881	1881	1900	1881	1881	1881	1881	1900	1881	1881	1900
Adj Flow Rate，veh／h	274	120	268	5	76	56	124	177	11	61	225	0
Adj No．of Lanes	0	1	1	0	1	1	1	2	0	1	2	0
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Percent Heavy Veh，\％	1	1	1	1	1	1	1	1	1	1	1	1
Cap，veh／h	359	157	454	10	157	143	165	612	38	105	520	0
Arrive On Green	0.28	0.28	0.28	0.09	0.09	0.09	0.09	0.18	0.18	0.06	0.15	0.00
Sat Flow，veh／h	1264	554	1599	116	1760	1599	1792	3420	211	1792	3668	0
Grp Volume（v），veh／h	394	0	268	81	0	56	124	92	96	61	225	0
Grp Sat Flow（s），veh／h／ln	1818	0	1599	1875	0	1599	1792	1787	1844	1792	1787	0
Q Serve（g＿s），s	9.2	0.0	6.7	1.9	0.0	1.5	3.1	2.1	2.1	1.5	2.7	0.0
Cycle Q Clear（g＿c），s	9.2	0.0	6.7	1.9	0.0	1.5	3.1	2.1	2.1	1.5	2.7	0.0
Prop In Lane	0.70		1.00	0.06		1.00	1.00		0.11	1.00		0.00
Lane Grp Cap（c），veh／h	517	0	454	168	0	143	165	320	330	105	520	0
V／C Ratio（X）	0.76	0.00	0.59	0.48	0.00	0.39	0.75	0.29	0.29	0.58	0.43	0.00
Avail Cap（c＿a），veh／h	707	0	622	729	0	622	677	1181	1219	209	1428	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay（d），s／veh	15.1	0.0	14.2	20.1	0.0	19.9	20.5	16.5	16.5	21.2	18.0	0.0
Incr Delay（d2），s／veh	3.3	0.0	1.2	2.1	0.0	1.7	6.7	0.5	0.5	5.0	0.6	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／In	5.1	0.0	3.1	1.1	0.0	0.7	1.9	1.1	1.1	0.9	1.4	0.0
LnGrp Delay（d），s／veh	18.5	0.0	15.5	22.2	0.0	21.6	27.2	16.9	16.9	26.2	18.6	0.0
LnGrp LOS	B		B	C		C	C	B	B	C	B	
Approach Vol，veh／h		662			137			312			286	
Approach Delay，s／veh		17.3			22.0			21.0			20.2	
Approach LOS		B			C			C			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration（ $G+Y+R \mathrm{c}$ ），s	7.2	12.8		17.7	8.8	11.2		8.6				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ）， s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting（Gmax），s	5.4	30.6		18.0	17.5	18.5		18.0				
Max Q Clear Time（g＿c＋11），s	3.5	4.1		11.2	5.1	4.7		3.9				
Green Ext Time（p＿c），s	0.0	2.6		2.0	0.2	2.1		0.4				
Intersection Summary												
HCM 2010 Ctrl Delay			19.2									
HCM 2010 LOS			B									

Intersection						
Int Delay, s/veh 0.1						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Traffic Vol, veh/h	0	2	0	163	137	1
Future Vol, veh/h	0	2	0	163	137	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	81	81	81	81	81	81
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	0	2	0	201	169	1

Intersection							
Int Delay, s/veh	1.4						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Traffic Vol, veh/h	28	15	6	157	123	18	
Future Vol, veh/h	28	15	6	157	123	18	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, \#	0	-	-	0	0	-	
Grade, \%	0	-	-	0	0	-	
Peak Hour Factor	88	88	88	88	88	88	
Heavy Vehicles, \%	1	1	1	1	1	1	
Mvmt Flow	32	17	7	178	140	20	

Intersection												
Intersection Delay, s/veh	10.2											
Intersection LOS	B											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Traffic Vol, veh/h	0	0	124	89	0	0	0	0	0	176	0	9
Future Vol, veh/h	0	0	124	89	0	0	0	0	0	176	0	9
Peak Hour Factor	0.92	0.88	0.88	0.88	0.92	0.88	0.88	0.88	0.92	0.88	0.88	0.88
Heavy Vehicles, \%	2	1	1	1	2	1	1	1	2	1	1	1
Mvmt Flow	0	0	141	101	0	0	0	0	0	200	0	10
Number of Lanes	0	0	1	0	0	0	0	0	0	1	0	0
Approach			EB							NB		
Opposing Approach										SB		
Opposing Lanes			0							1		
Conflicting Approach Left			SB							EB		
Conflicting Lanes Left			1							1		
Conflicting Approach Right			NB									
Conflicting Lanes Right			1							0		
HCM Control Delay			10.3							10.2		
HCM LOS			B							B		
Lane		NBLn1	EBLn1	SBLn1								
Vol Left, \%		95\%	0\%	0\%								
Vol Thru, \%		0\%	58\%	18\%								
Vol Right, \%		5\%	42\%	82\%								
Sign Control		Stop	Stop	Stop								
Traffic Vol by Lane		185	213	295								
LT Vol		176	0	0								
Through Vol		0	124	52								
RT Vol		9	89	243								
Lane Flow Rate		210	242	335								
Geometry Grp		1	1	1								
Degree of Util (X)		0.295	0.327	0.4								
Departure Headway (Hd)		5.048	4.868	4.295								
Convergence, Y/N		Yes	Yes	Yes								
Cap		706	733	831								
Service Time		3.114	2.94	2.35								
HCM Lane V/C Ratio		0.297	0.33	0.403								
HCM Control Delay		10.2	10.3	10.2								
HCM Lane LOS		B	B	B								
HCM 95th-tile Q		1.2	1.4	1.9								

Intersection												
Int Delay, s/veh	0.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	0	0	7	0	0	55	363	1	2	206	133
Future Vol, veh/h	0	0	0	7	0	0	55	363	1	2	206	133
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	7	0	0	59	386	1	2	219	141

Major/Minor			Minor1			Major1			Major2			
Conflicting Flow All				798	869	387	361	0	0	387	0	0
Stage 1				504	504	-	-	-	-	-	-	-
Stage 2				294	365	-	-	-	-	-	-	-
Critical Hdwy				6.42	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1				5.42	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2				5.42	5.52	-	-	-	-	-	-	-
Follow-up Hdwy				3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver				355	290	661	1198	-	-	1171	-	-
Stage 1				607	541	-	-	-	-	-	-	-
Stage 2				756	623	-	-	-	-	-	-	
Platoon blocked, \%								-	-		-	
Mov Cap-1 Maneuver				332	0	661	1198	-	-	1171	-	-
Mov Cap-2 Maneuver				332	0	-	-	-	-	-	-	-
Stage 1				569	0	-	-	-	-	-	-	-
Stage 2				754	0	-	-	-	-	-	-	-
Approach				WB			NB			SB		
HCM Control Delay, s				16.1			1.1			0		
HCM LOS				C								
Minor Lane/Major Mvmt	NBL	NBT	NBRWBLn1	SBL	SBT	SBR						
Capacity (veh/h)	1198	-	- 332	1171	-	-						
HCM Lane V/C Ratio	0.049	-	- 0.022	0.002	-	-						
HCM Control Delay (s)	8.2	0	- 16.1	8.1	-	-						
HCM Lane LOS	A	A	- C	A	-	-						
HCM 95th \%tile Q(veh)	0.2	-	- 0.1	0	-	-						

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	3	0	0	1	3	6	121	0	0	0	0
Future Vol, veh/h	0	3	0	0	1	3	6	121	0	0	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	3	0	0	1	3	6	129	0	0	0	0

Intersection	7.5					
Int Delay, s/veh	WBL	WBR	NBT	NBR	SBL	SBT
Movement	143	112	206	281	149	198
Traffic Vol, veh/h	143	112	206	281	149	198
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, \#/hr	Stop	Stop	Free	Free	Free	Free
Sign Control	-	None	-	None	-	None
RT Channelized	0	25	-	-	-	-
Storage Length	0	-	0	-	-	0
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	93	93	93	93	93	93
Peak Hour Factor	1	1	1	1	1	1
Heavy Vehicles, \%	154	120	222	302	160	213
Mvmt Flow						

Cumulative No Build Alternative

Intersection						
Int Delay, s/veh	0.1					
			EBL	NBL	NBT	
Movement	5	0	0	245	295	8
Traffic Vol, veh/h	5	0	0	245	295	8
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, \#/hr	Stop	Stop	Free	Free	Free	Free
Sign Control	-	None	-	None	-	None
RT Channelized	0	-	-	-	-	-
Storage Length	0	-	-	0	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	88	88	88	88	88	88
Peak Hour Factor	9	9	9	9	9	9
Heavy Vehicles, \%	6	0	0	278	335	9
Mvmt Flow						

Intersection						
Int Delay, s/veh 0.9						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Traffic Vol, veh/h	25	1	18	232	302	25
Future Vol, veh/h	25	1	18	232	302	25
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	6	6	6	6	6	6
Mumt Flow	28	1	20	264	343	28

Intersection												
Intersection Delay, s/veh	19											
Intersection LOS	C											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Traffic Vol, veh/h	0	0	164	174	0	0	0	0	0	238	0	19
Future Vol, veh/h	0	0	164	174	0	0	0	0	0	238	0	19
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, \%	2	6	6	6	2	6	6	6	2	6	6	6
Mvmt Flow	0	0	186	198	0	0	0	0	0	270	0	22
Number of Lanes	0	0	1	0	0	0	0	0	0	1	0	0
Approach			EB							NB		
Opposing Approach										SB		
Opposing Lanes			0							1		
Conflicting Approach Left			SB							EB		
Conflicting Lanes Left			1							1		
Conflicting Approach Right			NB									
Conflicting Lanes Right			1							0		
HCM Control Delay			17.8							15.1		
HCM LOS			C							C		
Lane		NBLn1	EBLn1	SBLn1								
Vol Left, \%		93\%	0\%	0\%								
Vol Thru, \%		0\%	49\%	34\%								
Vol Right, \%		7\%	51\%	66\%								
Sign Control		Stop	Stop	Stop								
Traffic Vol by Lane		257	338	444								
LT Vol		238	0	0								
Through Vol		0	164	153								
RT Vol		19	174	291								
Lane Flow Rate		292	384	505								
Geometry Grp		1	1	1								
Degree of Util (X)		0.495	0.617	0.742								
Departure Headway (Hd)		6.099	5.784	5.294								
Convergence, Y/N		Yes	Yes	Yes								
Cap		587	622	681								
Service Time		4.178	3.854	3.363								
HCM Lane V/C Ratio		0.497	0.617	0.742								
HCM Control Delay		15.1	17.8	22.1								
HCM Lane LOS		C	C	C								
HCM 95th-tile Q		2.7	4.2	6.6								

Intersection												
Int Delay, s/veh 1.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	0	0	15	0	0	109	420	0	1	323	410
Future Vol, veh/h	0	0	0	15	0	0	109	420	0	1	323	410
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-		-	-		-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	0	0	0	17	0	0	124	477	0	1	367	466

Major/Minor			Minor1				Major1		Major2			
Conflicting Flow All				1327	1560	477	833	0	0	477	0	0
Stage 1				725	725	-	-	-	-	-	-	-
Stage 2				602	835	-	-	-	-	-	-	-
Critical Hdwy				6.43	6.53	6.23	4.13	-	-	4.13	-	-
Critical Hdwy Stg 1				5.43	5.53	-	-	-	-	-	-	-
Critical Hdwy Stg 2				5.43	5.53	-	-	-	-	-	-	-
Follow-up Hdwy				3.527	4.027	3.327	2.227	-	-	2.227	-	-
Pot Cap-1 Maneuver				170	112	586	796	-	-	1080	-	-
Stage 1				478	428	-	-	-	-	-	-	-
Stage 2				545	381	-	-	-	-	-	-	-
Platoon blocked, \%								-	-		-	-
Mov Cap-1 Maneuver				134	0	586	796	-	-	1080	-	-
Mov Cap-2 Maneuver				134	0	-	-	-	-	-	-	-
Stage 1				377	0	-	-	-	-	-	-	-
Stage 2				544	0	-	-	-	-	-	-	-
Approach				WB			NB			SB		
HCM Control Delay, s				35.7			2.1			0		
HCM LOS				E								
Minor Lane/Major Mvmt	NBL	NBT	NBRWBLn1	SBL	SBT	SBR						
Capacity (veh/h)	796	-	- 134	1080	-	-						
HCM Lane V/C Ratio	0.156	-	- 0.127	0.001	-	-						
HCM Control Delay (s)	10.4	0	- 35.7	8.3	-	-						
HCM Lane LOS	B	A	- E	A	-	-						
HCM 95th \%tile Q(veh)	0.5	-	- 0.4	0	-	-						

Intersection												
Int Delay, s/veh	0.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	1	0	0	1	2	15	351	0	0	0	0
Future Vol, veh/h	0	1	0	0	1	2	15	351	0	0	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	0	1	0	0	1	2	17	399	0	0	0	0

Intersection						
Int Delay, s/veh 605.8						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Traffic Vol, veh/h	487	471	422	349	230	246
Future Vol, veh/h	487	471	422	349	230	246
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	25	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	1	1	1	1	1	1
Mvmt Flow	553	535	480	397	261	280

Intersection: 7: Riverwalk Drive \& US 101 SB On \& US 101 SB Off

Movement	EB	NB	SB
Directions Served	TR	LTR	LTR
Maximum Queue (ft)	101	72	209
Average Queue (ft)	40	44	71
95th Queue (ft)	75	62	146
Link Distance (ft)	343	40	310
Upstream Blk Time (\%)		7	
Queuing Penalty (veh)		19	
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 8: Riverwalk Drive/12th Street \& US 101 NB On

Movement	WB	NB	SB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	36	152	29
Average Queue (ft)	12	34	2
95th Queue (ft)	37	98	13
Link Distance (ft)	52	591	169
Upstream Blk Time (\%)	0		
Queuing Penalty (veh)	0		
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 9: US 101 NB Off/12th Street \& Pond Street

Movement	EB	WB	NB
Directions Served	LT	TR	LTR
Maximum Queue (ft)	6	23	56
Average Queue (ft)	0	2	2
95th Queue (ft)	3	12	25
Link Distance (ft)	52	163	255
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			

Intersection: 10: 12th Street \& Newburg Road

Movement	WB	WB	NB	SB
Directions Served	L	R	TR	LT
Maximum Queue (ft)	875	12	151	578
Average Queue (ft)	857	1	36	519
95th Queue (ft)	870	11	101	657
Link Distance (ft)	855		182	529
Upstream Blk Time (\%)	100		0	79
Queuing Penalty (veh)	0		1	0
Storage Bay Dist (ft)		25		
Storage Blk Time (\%)	100	0		
Queuing Penalty (veh)	470	1		

Zone Summary

Zone wide Queuing Penalty: 590

Intersection						
Int Delay, s/veh	0.1					
			EBL	NBL	NBT	
Movement	0	6	0	459	353	6
Traffic Vol, veh/h	0	6	0	459	353	6
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, \#/hr	Stop	Stop	Free	Free	Free	Free
Sign Control	-	None	-	None	-	None
RT Channelized	0	-	-	-	-	-
Storage Length	0	-	-	0	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	95	95	95	95	95	95
Peak Hour Factor	2	2	2	2	2	2
Heavy Vehicles, \%	0	6	0	483	372	6
Mvmt Flow						

Intersection						
Int Delay, s/veh	2.5					
		EBL	EBR	NBL	NBT	SBT
Movement	79	43	17	442	316	47
Traffic Vol, veh/h	79	43	17	442	316	47
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, \#/hr	Stop	Stop	Free	Free	Free	Free
Sign Control	-	None	-	None	-	None
RT Channelized	0	-	-	-	-	-
Storage Length	0	-	-	0	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	95	95	95	95	95	95
Peak Hour Factor	2	2	2	2	2	2
Heavy Vehicles, \%	83	45	18	465	333	49
Mvmt Flow						

Intersection												
Intersection Delay, s/veh	65.1											
Intersection LOS	F											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Traffic Vol, veh/h	0	0	301	216	0	0	0	0	0	496	0	25
Future Vol, veh/h	0	0	301	216	0	0	0	0	0	496	0	25
Peak Hour Factor	0.92	0.95	0.95	0.95	0.92	0.95	0.95	0.95	0.92	0.95	0.95	0.95
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	317	227	0	0	0	0	0	522	0	26
Number of Lanes	0	0	1	0	0	0	0	0	0	1	0	0
Approach			EB							NB		
Opposing Approach										SB		
Opposing Lanes			0							1		
Conflicting Approach Left			SB							EB		
Conflicting Lanes Left			1							1		
Conflicting Approach Right			NB									
Conflicting Lanes Right			1							0		
HCM Control Delay			65							67.1		
HCM LOS			F							F		
Lane		NBLn1	EBLn1	SBLn1								
Vol Left, \%		95\%	0\%	0\%								
Vol Thru, \%		0\%	58\%	18\%								
Vol Right, \%		5\%	42\%	82\%								
Sign Control		Stop	Stop	Stop								
Traffic Vol by Lane		521	517	831								
LT Vol		496	0	0								
Through Vol		0	301	147								
RT Vol		25	216	684								
Lane Flow Rate		548	544	875								
Geometry Grp		1	1	1								
Degree of Util (X)		1	1	1								
Departure Headway (Hd)		7.193	6.781	6.537								
Convergence, Y/N		Yes	Yes	Yes								
Cap		510	539	560								
Service Time		5.193	4.781	4.537								
HCM Lane V/C Ratio		1.075	1.009	1.563								
HCM Control Delay		67.1	65	63.8								
HCM Lane LOS		F	F	F								
HCM 95th-tile Q		13.7	14.1	14.4								

Intersection												
Int Delay, s/veh 11.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	0	0	25	0	0	180	1006	1	2	492	484
Future Vol, veh/h	0	0	0	25	0	0	180	1006	1	2	492	484
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	26	0	0	189	1059	1	2	518	509

Major/Minor			Minor1				Major1			Major2		
Conflicting Flow All				2215	2470	1059	1027	0	0	1060	0	0
Stage 1				1438	1438		-	-	-	-	-	
Stage 2				777	1032			-	-	-	-	
Critical Hdwy				6.42	6.52	6.22	4.12	-	-	4.12	-	
Critical Hdwy Stg 1				5.42	5.52		-	-	-	-	-	
Critical Hdwy Stg 2				5.42	5.52			-	-	-	-	
Follow-up Hdwy				3.518	4.018	3.318	2.218	-	-	2.218	-	
Pot Cap-1 Maneuver				48	30	273	676	-	-	657	-	
Stage 1				219	198		-	-	-	-	-	
Stage 2				453	310		-	-	-	-	-	
Platoon blocked, \%								-	-		-	
Mov Cap-1 Maneuver				~ 15	0	273	676	-	-	657	-	
Mov Cap-2 Maneuver				~ 15	0		-	-	-	-	-	
Stage 1				70	0		-	-	-	-	-	
Stage 2				449	0		-	-	-	-	-	
Approach				WB			NB			SB		
HCM Control Delay, s				\$ 881.9			1.9			0		
HCM LOS				F								
Minor Lane/Major Mvmt	NBL	NBT	NBRWBLn1	SBL	SBT	SBR						
Capacity (veh/h)	676	-	15	657	-							
HCM Lane V/C Ratio	0.28	-	- 1.754	0.003	-							
HCM Control Delay (s)	12.4	0	\$ 881.9	10.5	-							
HCM Lane LOS	B	A	F	B	-							
HCM 95th \%tile Q(veh)	1.1	-	3.9	0	-	-						
Notes												
$\sim:$ Volume exceeds capacity	\$: De	ay exc	S 300 s	+: Comp	outation	Not D	*: All	orvar	e			

Intersection												
Int Delay, s/veh 0.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	3	0	0	1	3	25	207	0	0	0	0
Future Vol, veh/h	0	3	0	0	1	3	25	207	0	0	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-		-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	3	0	0	1	3	26	218	0	0	0	0

Intersection						
Int Delay, s/veh 11.8						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Traffic Vol, veh/h	656	380	328	885	524	320
Future Vol, veh/h	656	380	328	885	524	320
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	25	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	691	400	345	932	552	337

Intersection: 7: Riverwalk Drive \& US 101 SB On \& US 101 SB Off

Movement	EB	NB	SB
Directions Served	TR	LTR	LTR
Maximum Queue (ft)	57	114	364
Average Queue (ft)	16	64	331
95th Queue (ft)	39	96	350
Link Distance (ft)	343	40	310
Upstream Blk Time (\%)		20	97
Queuing Penalty (veh)		105	0
Storage Bay Dist (ft)			
Storage Blk Time (\%)			

Intersection: 8: Riverwalk Drive/12th Street \& US 101 NB On

Movement	WB	NB	SB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	46	92	9
Average Queue (ft)	17	10	0
95th Queue (ft)	46	51	4
Link Distance (ft)	51	591	169
Upstream Blk Time (\%)	1		
Queuing Penalty (veh)	0		
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 9: US 101 NB Off/12th Street \& Pond Street

Movement	EB	WB	NB
Directions Served	LT	TR	LTR
Maximum Queue (ft)	15	31	174
Average Queue (ft)	1	4	21
95th Queue (ft)	7	20	110
Link Distance (ft)	51	95	255
Upstream Blk Time (\%)			2
Queuing Penalty (veh)			0
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 10: 12th Street \& Newburg Road

Movement	WB	NB	SB
Directions Served	L	TR	LT
Maximum Queue (ft)	862	152	555
Average Queue (ft)	855	21	539
95th Queue (ft)	864	83	552
Link Distance (ft)	855	182	529
Upstream Blk Time (\%)	100	0	100
Queuing Penalty (veh)	0	0	0
Storage Bay Dist (ft)			
Storage Blk Time (\%)	100		
Queuing Penalty (veh)	380		

Zone Summary

[^0]
Cumulative Signal Alternative

Intersection						
Int Delay, s/veh 0.9						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			*4	\uparrow	
Traffic Vol, veh/h	30	5	18	227	453	27
Future Vol, veh/h	30	5	18	227	453	27
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	9	9	9	9	9	9
Mvmt Flow	34	6	20	258	515	31

	4			\dagger			4	T	1	*	\dagger	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow						中t		${ }^{7}$	4	
Traffic Volume (veh/h)	291	0	153	0	0	0	0	238	19	11	327	0
Future Volume (veh/h)	291	0	153	0	0	0	0	238	19	11	327	0
Number	7	4	14				5	2	12	1	6	16
Initial $Q(Q b)$, veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1792	1792	1900				0	1792	1900	1792	1792	0
Adj Flow Rate, veh/h	252	110	174				0	270	22	12	372	0
Adj No. of Lanes	1	1	0				0	2	0	1	1	0
Peak Hour Factor	0.88	0.88	0.88				0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, \%	6	6	6				0	6	6	6	6	0
Cap, veh/h	508	187	295				0	1154	93	587	648	0
Arrive On Green	0.30	0.30	0.30				0.00	0.36	0.36	0.36	0.36	0.00
Sat Flow, veh/h	1707	627	991				0	3281	258	1042	1792	0
Grp Volume(v), veh/h	252	0	284				0	143	149	12	372	0
Grp Sat Flow(s),veh/h/ln	1707	0	1618				0	1703	1747	1042	1792	0
Q Serve(g_s), s	3.2	0.0	4.0				0.0	1.5	1.6	0.2	4.4	0.0
Cycle Q Clear(g_c), s	3.2	0.0	4.0				0.0	1.5	1.6	1.8	4.4	0.0
Prop In Lane	1.00		0.61				0.00		0.15	1.00		0.00
Lane Grp Cap(c), veh/h	508	0	482				0	616	632	587	648	0
V/C Ratio(X)	0.50	0.00	0.59				0.00	0.23	0.24	0.02	0.57	0.00
Avail Cap(c_a), veh/h	1162	0	1102				0	1160	1190	920	1221	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00				0.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	7.6	0.0	7.9				0.0	5.9	5.9	6.5	6.8	0.0
Incr Delay (d2), s/veh	0.7	0.0	1.2				0.0	0.2	0.2	0.0	0.8	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	1.6	0.0	1.9				0.0	0.7	0.8	0.1	2.3	0.0
LnGrp Delay(d),s/veh	8.4	0.0	9.1				0.0	6.1	6.1	6.5	7.6	0.0
LnGrp LOS	A		A					A	A	A	A	
Approach Vol, veh/h		536						292			384	
Approach Delay, s/veh		8.7						6.1			7.6	
Approach LOS		A						A			A	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6						
Phs Duration ($G+Y+R \mathrm{c}$), s		14.1		12.4		14.1						
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s		4.5		4.5		4.5						
Max Green Setting (Gmax), s		18.0		18.0		18.0						
Max Q Clear Time (g_c+l1), s		3.6		6.0		6.4						
Green Ext Time (p_c), s		3.5		2.1		3.1						
Intersection Summary												
HCM 2010 Ctrl Delay			7.7									
HCM 2010 LOS			A									
Notes												

Intersection: 7: Riverwalk Drive \& US 101 SB On \& US 101 SB Off

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	LTR	T	TR	L	T
Maximum Queue (ft)	121	104	90	77	28	202
Average Queue (ft)	53	35	34	27	3	90
95th Queue (ft)	99	84	71	62	16	172
Link Distance (ft)	351	351	189	189		854
Upstream Blk Time (\%)						
Queuing Penalty (veh)					200	
Storage Bay Dist (ft)						0
Storage Blk Time (\%)						0

Intersection: 8: Riverwalk Drive/12th Street \& US 101 NB On

Movement	WB	WB	NB	NB	NB	SB	SB
Directions Served	LT	R	L	T	T	T	R
Maximum Queue (ft)	124	209	140	161	151	237	195
Average Queue (ft)	19	87	52	56	49	109	87
95th Queue (ft)	121	185	105	134	115	204	160
Link Distance (ft)	408			854	854	251	251
Upstream Blk Time (\%)	0					0	
Queuing Penalty (veh)	0					0	
Storage Bay Dist (ft)		250	150				
Storage Blk Time (\%)	0	1		2			
Queuing Penalty (veh)	0	0		2			

Intersection: 10: 12th Street \& Newburg Road

Movement	WB	WB	WB	NB	NB	SB	SB	SB
Directions Served	L	L	R	T	R	L	L	T
Maximum Queue (ft)	174	187	229	273	255	143	175	149
Average Queue (ft)	78	86	75	203	81	17	95	64
95th Queue (ft)	147	162	159	287	187	73	152	116
Link Distance (ft)		821		251	251			530
Upstream Blk Time (\%)				6	1			
Queuing Penalty (veh)				21	3			
Storage Bay Dist (ft)	225		225			200	200	
Storage Blk Time (\%)	0		0				0	0
Queuing Penalty (veh)	0		1				0	0

Zone Summary
Zone wide Queuing Penalty: 48

Intersection						
Int Delay, s/veh	2.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*			¢4	\uparrow	
Traffic Vol, veh/h	79	49	17	442	310	53
Future Vol, veh/h	79	49	17	442	310	53
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	S	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	83	52	18	465	326	56

	*			\dagger			,	\dagger	p		\dagger	/
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	\$						中 ${ }^{\text {a }}$		${ }^{7}$	4	
Traffic Volume (veh/h)	684	0	147	0	0	0	0	496	25	301	216	0
Future Volume (veh/h)	684	0	147	0	0	0	0	496	25	301	216	0
Number	7	4	14				5	2	12	1	6	16
Initial Q $(Q b)$, veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1845	1845	1900				0	1845	1900	1845	1845	0
Adj Flow Rate, veh/h	865	0	0				0	522	26	317	227	0
Adj No. of Lanes	2	1	0				0	2	0	1	1	0
Peak Hour Factor	0.95	0.95	0.95				0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	3	3	3				0	3	3	3	3	0
Cap, veh/h	1450	761	0				0	753	37	354	874	0
Arrive On Green	0.41	0.00	0.00				0.00	0.22	0.22	0.07	0.16	0.00
Sat Flow, veh/h	3514	1845	0				0	3491	169	1757	1845	0
Grp Volume(v), veh/h	865	0	0				0	269	279	317	227	0
Grp Sat Flow(s), veh/h/ln	1757	1845	0				0	1752	1815	1757	1845	0
Q Serve(g_s), s	17.3	0.0	0.0				0.0	12.7	12.7	16.1	9.7	0.0
Cycle Q Clear(g_c), s	17.3	0.0	0.0				0.0	12.7	12.7	16.1	9.7	0.0
Prop In Lane	1.00		0.00				0.00		0.09	1.00		0.00
Lane Grp Cap(c), veh/h	1450	761	0				0	388	402	354	874	0
V/C Ratio(X)	0.60	0.00	0.00				0.00	0.69	0.69	0.90	0.26	0.00
Avail Cap(c_a), veh/h	1450	761	0				0	543	563	359	1043	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	0.33	0.33	1.00
Upstream Filter(I)	1.00	0.00	0.00				0.00	1.00	1.00	0.87	0.87	0.00
Uniform Delay (d), s/veh	20.6	0.0	0.0				0.0	32.2	32.2	41.1	24.1	0.0
Incr Delay (d2), s/veh	1.8	0.0	0.0				0.0	3.1	3.1	20.6	0.2	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	8.7	0.0	0.0				0.0	6.5	6.7	9.9	5.0	0.0
LnGrp Delay (d), s/veh	22.4	0.0	0.0				0.0	35.4	35.3	61.7	24.3	0.0
LnGrp LOS	C							D	D	E	C	
Approach Vol, veh/h		865						548			544	
Approach Delay, s/veh		22.4						35.3			46.1	
Approach LOS		C						D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4		6						
Phs Duration ($G+Y+R \mathrm{c}$), s	22.7	25.0		42.2		47.8						
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	4.6	5.1		5.1		5.1						
Max Green Setting (Gmax), s	18.4	27.9		28.9		50.9						
Max Q Clear Time (g_c+11), s	18.1	14.7		19.3		11.7						
Green Ext Time (p_c), s	0.0	5.2		3.7		8.0						
Intersection Summary												
HCM 2010 Ctrl Delay			32.6									
HCM 2010 LOS			C									
Notes												

4						4	\dagger	p		\downarrow	4
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				\$	「	${ }^{1}$	44			4	「
Traffic Volume (veh/h) 0	0	0	25	0	207	180	1006	0	0	492	484
Future Volume (veh/h) 0	0	0	25	0	207	180	1006	0	0	492	484
Number			3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh			0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)			1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln			1900	1845	1845	1845	1845	0	0	1845	1845
Adj Flow Rate, veh/h			0	0	246	189	1059	0	0	518	509
Adj No. of Lanes			0	1	2	1	2	0	0	1	1
Peak Hour Factor			0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%			3	3	3	3	3	0	0	3	3
Cap, veh/h			0	205	348	688	2766	0	0	641	544
Arrive On Green			0.00	0.00	0.11	0.26	0.53	0.00	0.00	0.69	0.69
Sat Flow, veh/h			0	1845	3136	1757	3597	0	0	1845	1568
Grp Volume(v), veh/h			0	0	246	189	1059	0	0	518	509
Grp Sat Flow(s),veh/h/ln			0	1845	1568	1757	1752	0	0	1845	1568
Q Serve(g_s), s			0.0	0.0	6.8	7.7	16.1	0.0	0.0	17.6	25.5
Cycle Q Clear(g_c), s			0.0	0.0	6.8	7.7	16.1	0.0	0.0	17.6	25.5
Prop In Lane			0.00		1.00	1.00		0.00	0.00		1.00
Lane Grp Cap(c), veh/h			0	205	348	688	2766	0	0	641	544
V/C Ratio(X)			0.00	0.00	0.71	0.27	0.38	0.00	0.00	0.81	0.93
Avail Cap(c_a), veh/h			0	451	767	688	2766	0	0	758	645
HCM Platoon Ratio			1.00	1.00	1.00	0.67	0.67	1.00	1.00	2.00	2.00
Upstream Filter(I)			0.00	0.00	1.00	0.69	0.69	0.00	0.00	0.88	0.88
Uniform Delay (d), s/veh			0.0	0.0	38.6	23.0	8.3	0.0	0.0	11.7	12.9
Incr Delay (d2), s/veh			0.0	0.0	2.7	0.1	0.3	0.0	0.0	9.4	23.2
Initial Q Delay(d3),s/veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln			0.0	0.0	3.1	3.8	7.8	0.0	0.0	10.3	14.0
LnGrp Delay(d),s/veh			0.0	0.0	41.3	23.2	8.5	0.0	0.0	21.0	36.1
LnGrp LOS					D	C	A			C	D
Approach Vol, veh/h				246			1248			1027	
Approach Delay, s/veh				41.3			10.8			28.5	
Approach LOS				D			B			C	
Timer 1	2	3	4	5	6	7	8				
Assigned Phs	2			5	6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s	75.5			39.8	35.8		14.5				
Change Period ($Y+R \mathrm{Rc}$), s	4.5			4.5	4.5		4.5				
Max Green Setting (Gmax), s	59.0			17.5	37.0		22.0				
Max Q Clear Time (g_c+11), s	18.1			9.7	27.5		8.8				
Green Ext Time (p_c), s	10.8			4.6	3.8		0.8				
Intersection Summary											
HCM 2010 Ctrl Delay		21.0									
HCM 2010 LOS		C									
Notes											

Intersection: 7: Riverwalk Drive/US 101 SB Off \& US 101 SB Ramp

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	LTR	T	TR	L	T
Maximum Queue (ft)	346	396	231	240	293	233
Average Queue (ft)	179	223	131	142	172	110
95th Queue (ft)	292	335	203	215	272	198
Link Distance (ft)	390	390	199	199		892
Upstream Blk Time (\%)	0	1	1	1		
Queuing Penalty (veh)	0	0	2	3		
Storage Bay Dist (ft)					300	
Storage Blk Time (\%)					1	
Queuing Penalty (veh)					2	

Intersection: 8: Riverwalk Drive/12th Street \& US 101 NB Ramp

Movement	WB	WB	NB	NB	NB	SB	SB
Directions Served	LTR	R	L	T	T	T	R
Maximum Queue (ft)	135	172	235	551	550	345	189
Average Queue (ft)	50	78	94	131	203	181	101
95th Queue (ft)	106	147	182	418	478	336	184
Link Distance (ft)	163	163		892	892	349	349
Upstream Blk Time (\%)	1	1				0	
Queuing Penalty (veh)	0	0				2	
Storage Bay Dist (ft)			150				
Storage Blk Time (\%)			1	1			
Queuing Penalty (veh)			6	2			

Intersection: 10: 12th Street \& Newburg Road

Movement	WB	WB	WB	NB	NB	SB	SB	SB
Directions Served	L	L	R	T	R	L	L	T
Maximum Queue (ft)	268	275	205	364	403	283	330	355
Average Queue (ft)	126	125	54	191	320	188	240	127
95th Queue (ft)	216	212	139	314	429	291	338	296
Link Distance (ft)		820		349	349			530
Upstream Blk Time (\%)				0	8			0
Queuing Penalty (veh)				2	49			0
Storage Bay Dist (ft)	225		225			250	250	
Storage Blk Time (\%)	1	0	0			0	9	

Zone Summary
Zone wide Queuing Penalty: 180

Cumulative Roundabout Alternative

LEVEL OF SERVICE

Site: Riverwalk Drive/Driveway AM

12th Street Interchange Roundabout Concept - Option 1
Cumulative AM
Roundabout

All Movement Classes

	South	North	West	Intersection
LOS	A	A	A	A

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

LANE SUMMARY

Site: Riverwalk Drive/Driveway AM

12th Street Interchange Roundabout Concept - Option 1
Cumulative AM
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \text { Bac } \\ \text { Veh } \end{gathered}$	$\begin{gathered} \text { ueue } \\ \text { Dist } \\ \text { ft } \end{gathered}$	Lane Config	Lane Length	Cap. Adj. \%	Prob. Block. \%
South: Riverwalk Drive													
Lane $1^{\text {d }}$	333	3.0	1368	0.243	100	4.3	LOS A	1.5	37.3	Full	1600	0.0	0.0
Approach	333	3.0		0.243		4.3	LOS A	1.5	37.3				
North: Riverwalk Drive													
Lane $1^{\text {d }}$	314	3.0	1376	0.228	100	4.2	LOS A	1.2	30.7	Full	1600	0.0	0.0
Approach	314	3.0		0.228		4.2	LOS A	1.2	30.7				
West: Driveway													
Lane $1^{\text {d }}$	8	4.7	1074	0.007	100	10.0	LOS A	0.0	0.8	Full	1600	0.0	0.0
Approach	8	4.7		0.007		10.0	LOS A	0.0	0.8				
Intersection	655	3.0		0.243		4.3	LOS A	1.5	37.3				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:20:09 PM
Project: O:\PRJ\2132\T2132\Sidra\12th St Cumulative.sip6

LEVEL OF SERVICE

Site: Riverwalk Drive/Driveway PM

12th Street Interchange Roundabout Concept - Option 1
Cumulative PM
Roundabout

All Movement Classes

	South	North	West	Intersection
LOS	A	A	A	A

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

LANE SUMMARY

Site: Riverwalk Drive/Driveway PM

12th Street Interchange Roundabout Concept - Option 1
Cumulative PM
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	Average Delay sec	Level of Service	$\begin{gathered} \text { 95\% Bacl } \\ \text { Veh } \end{gathered}$	$\begin{aligned} & \text { ueue } \\ & \text { Dist } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block \%
South: Riverwalk Drive													
Lane $1^{\text {d }}$	484	3.0	1376	0.352	100	4.2	LOS A	2.5	63.4	Full	1600	0.0	0.0
Approach	484	3.0		0.352		4.2	LOS A	2.5	63.4				
North: Riverwalk Drive													
Lane $1^{\text {d }}$	409	3.0	1376	0.298	100	4.2	LOS A	1.7	42.9	Full	1600	0.0	0.0
Approach	409	3.0		0.298		4.2	LOS A	1.7	42.9				
West: Driveway													
Lane $1^{\text {d }}$	7	3.3	1016	0.007	100	6.6	LOS A	0.0	0.8	Full	1600	0.0	0.0
Approach	7	3.3		0.007		6.6	LOS A	0.0	0.8				
Intersection	901	3.0		0.352		4.3	LOS A	2.5	63.4				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		「		4	\uparrow	
Traffic Vol, veh/h	0	25	0	237	302	25
Future Vol, veh/h	0	25	0	237	302	25
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	6	6	6	6	6	6
Mvmt Flow	0	28	0	269	343	28

Intersection						
Int Delay，s／veh	1.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		「		4	个	
Traffic Vol，veh／h	0	122	0	521	316	47
Future Vol，veh／h	0	122	0	521	316	47
Conflicting Peds，\＃／hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	促	None	－	None	－	None
Storage Length	－	0	－	－	－	－
Veh in Median Storage，\＃	0	－	－	0	0	－
Grade，\％	0	－	－	0	0	－
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles，\％	2	2	2	2	2	2
Mvmt Flow	0	128	0	548	333	49

LEVEL OF SERVICE

Site: Riverwalk Drive/SB Ramps AM

12th Street Interchange Roundabout Concept - Option 1 \& 2
Cumulative AM
Roundabout

All Movement Classes

	South	North	West	Intersection
LOS	A	A	A	A

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

LANE SUMMARY

Site: Riverwalk Drive/SB Ramps AM

12th Street Interchange Roundabout Concept - Option 1 \& 2
Cumulative AM
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{array}{r} \text { Flows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Back Veh	ueue Dist ft	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: Riverwalk Drive													
Lane $1^{\text {d }}$	292	3.0	1120	0.261	100	10.0	LOS A	1.5	38.7	Full	1600	0.0	0.0
Approach	292	3.0		0.261		10.0	LOS A	1.5	38.7				
North: 101 SB Off-Ramp													
Lane 1	175	3.0	1051	0.167	100	5.7	LOS A	0.9	22.8	Full	1600	0.0	0.0
Lane $2^{\text {d }}$	331	3.0	1323	0.250	100	5.5	LOS A	1.5	38.6	Short	200	0.0	NA
Approach	506	3.0		0.250		5.5	LOS A	1.5	38.6				
West: 12th Street													
Lane $1^{\text {d }}$	384	3.0	1172	0.328	100	5.3	LOS A	2.1	52.7	Full	1600	0.0	0.0
Approach	384	3.0		0.328		5.3	LOS A	2.1	52.7				
Intersection	1182	3.0		0.328		6.6	LOS A	2.1	52.7				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:21:58 PM
Project: O:\PRJ\2132\T2132\Sidra\12th St Cumulative.sip6

LEVEL OF SERVICE

Site: Riverwalk Drive/SB Ramps PM

12th Street Interchange Roundabout Concept - Option 1 \& 2
Cumulative PM
Roundabout

All Movement Classes

	South	North	West	Intersection
LOS	B	B	A	B

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

LANE SUMMARY

Site: Riverwalk Drive/SB Ramps PM

12th Street Interchange Roundabout Concept - Option 1 \& 2
Cumulative PM
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \\ & \hline \end{aligned}$	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \text { Bac } \\ \text { Veh } \end{gathered}$	$\begin{array}{r} \text { Queue } \\ \text { Dist } \\ \mathrm{ft} \end{array}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
South: Riverwalk Drive													
Lane ${ }^{\text {d }}$	726	3.0	1126	0.645	100	11.2	LOS B	6.1	157.4	Full	1600	0.0	0.0
Approach	726	3.0		0.645		11.2	LOS B	6.1	157.4				
North: 101 SB Off-Ramp													
Lane 1	242	3.0	647	0.374	100	9.2	LOS A	2.5	64.3	Full	1600	0.0	0.0
Lane $2^{\text {d }}$	685	3.0	909	0.754	100	14.7	LOS B	10.9	278.0	Short	200	0.0	NA
Approach	927	3.0		0.754		13.2	LOS B	10.9	278.0				
West: 12th Street													
Lane $1^{\text {d }}$	544	3.0	1083	0.503	100	5.9	LOS A	4.0	102.0	Full	1600	0.0	0.0
Approach	544	3.0		0.503		5.9	LOS A	4.0	102.0				
Intersection	2198	3.0		0.754		10.7	LOS B	10.9	278.0				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:22:58 PM
Project: O:\PRJ\2132\T2132\Sidra\12th St Cumulative.sip6

LEVEL OF SERVICE

Site: 12th Street/NB Ramps/Newburg Road AM

12th Street Interchange Roundabout Concept
Cumulative AM
Roundabout

All Movement Classes

	South	Southeast	East	North	Intersection
LOS	A	A	A	B	A

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

LANE SUMMARY

Site: 12th Street/NB Ramps/Newburg Road AM

12th Street Interchange Roundabout Concept
 Cumulative AM
 Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { ows } \\ & \text { HV } \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \text { Bac } \\ \text { Veh } \end{gathered}$	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \\ & \mathrm{ft} \end{aligned}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
South: 12th Street													
Lane $1^{\text {d }}$	348	3.0	1416	0.246	100	6.8	LOS A	1.7	42.6	Full	1600	0.0	0.0
Lane 2	253	3.0	1141	0.222	100	5.3	LOS A	1.4	35.4	Full	1600	0.0	0.0
Approach	601	3.0		0.246		6.2	LOS A	1.7	42.6				
SouthEast: NB Off-Ramp													
Lane $1^{\text {d }}$	273	3.0	971	0.281	100	6.1	LOS A	1.3	32.4	Full	1600	0.0	0.0
Lane 2	143	3.0	742	0.193	100	7.1	LOS A	0.8	19.8	Full	1600	0.0	0.0
Approach	416	3.0		0.281		6.5	LOS A	1.3	32.4				
East: Newburg Road Realignment													
Lane $1^{\text {d }}$	553	3.0	1174	0.472	100	9.2	LOS A	3.7	93.9	Full	1600	0.0	0.0
Lane 2	535	3.0	893	0.599	100	10.5	LOS B	5.7	147.0	Short	200	0.0	NA
Approach	1089	3.0		0.599		9.9	LOS A	5.7	147.0				
North: 12th Street													
Lane 1	261	3.0	732	0.357	100	14.3	LOS B	2.5	63.4	Full	1600	0.0	0.0
Lane $2^{\text {d }}$	280	3.0	936	0.299	100	7.7	LOS A	2.2	57.3	Full	1600	0.0	0.0
Approach	541	3.0		0.357		10.9	LOS B	2.5	63.4				
Intersection	2647	3.0		0.599		8.7	LOS A	5.7	147.0				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:24:32 PM
Project: O:\PRJ\2132\T2132\Sidra\12th St Cumulative.sip6

LEVEL OF SERVICE

Site: 12th Street/NB Ramps/Newburg Road PM

12th Street Interchange Roundabout Concept
Cumulative PM
Roundabout

All Movement Classes

	South	Southeast	East	North	Intersection
LOS	B	B	B	D	B

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

LANE SUMMARY

Site: 12th Street/NB Ramps/Newburg Road PM

12th Street Interchange Roundabout Concept
 Cumulative PM
 Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	$\begin{array}{r} \text { Lane } \\ \text { Util. } \\ \% \\ \hline \end{array}$	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \mathrm{Ba} \\ \text { Veh } \end{gathered}$	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \\ & \text { ft } \end{aligned}$	Lane Config	Lane Length	Cap. Adj. \%	Prob. Block. \%
South: 12th Street													
Lane 1	566	3.0	823	0.688	100	14.3	LOS B	8.1	206.2	Full	1600	0.0	0.0
Lane $2^{\text {d }}$	795	3.0	1078	0.737	100	10.6	LOS B	10.5	269.9	Short	200	0.0	NA
Approach	1361	3.0		0.737		12.1	LOS B	10.5	269.9				
SouthEast: NB Off-Ramp													
Lane 1	106	3.0	270	0.394	100	20.4	LOS C	2.3	57.7	Full	1600	0.0	0.0
Lane $2^{\text {d }}$	137	3.0	388	0.353	100	14.8	LOS B	2.3	59.0	Full	1600	0.0	0.0
Approach	243	3.0		0.394		17.3	LOS B	2.3	59.0				
East: Newburg Road Realignment													
Lane $1^{\text {d }}$	691	3.0	984	0.702	100	13.9	LOS B	9.5	242.5	Full	1600	0.0	0.0
Lane 2	400	3.0	731	0.547	100	10.3	LOS B	5.0	128.6	Short	200	0.0	NA
Approach	1091	3.0		0.702		12.6	LOS B	9.5	242.5				
North: 12th Street													
Lane $1^{\text {d }}$	552	3.0	611	0.902	100	48.5	LOS D	19.8	507.6	Full	1600	0.0	0.0
Lane 2	337	3.0	445	0.756	100	30.2	LOS C	9.4	240.1	Full	1600	0.0	0.0
Approach	888	3.0		0.902		41.6	LOS D	19.8	507.6				
Intersection	3583	3.0		0.902		19.9	LOS B	19.8	507.6				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:25:29 PM
Project: O:\PRJ\2132\T2132\Sidra\12th St Cumulative.sip6

Attachment C - Review of Geometric Design Standards

Memorandum

June 22, 2016

Project: Fortuna Highway 101/Riverwalk Connectivity Study

Subject:	Review of Safety and Design Standards		
Client:	Humboldt County Association of Governments	Job no.: 11109149	
Prepared by:	David Caisse, P.E and Josh Wolf, P.E.	Tel:	(707) 443-8326

Introduction / Objective

This memo is intended to provide a brief summary of the existing conditions and identify potential nonstandard features for the Highway 101 interchanges at $12^{\text {th }}$ Street and Kenmar Road. Existing facilities were compared against the applicable standards and guidelines for the roadway being analyzed. For example, standards for the Highway 101 on and off ramps and other State owned facilities are based on the Caltrans Highway Design Manual. Local facilities are based on the local agency or Federal guidance or standards (generally whichever are more stringent). Local facilities located within the State right-of-way crossing over or under a freeway or expressway and connecting to the state facility are based on the State's design standards. Below is a list of public standards which are commonly used.

Common Public Design Standards and Guidelines

State of California

Caltrans Highway Design Manual - This manual was developed by the California Department of Transportation (Caltrans) to establish uniform policies and procedures to carry out the State highway design functions of the department. Design standards include items such as roadway geometry, pavement engineering, drainage, bicycle transportation and other miscellaneous design standards.

California Manual on Uniform Traffic Control Devices (CA MUTCD) - This manual provides uniform standards and specifications for all official traffic control devices in California. Design standards include items such as signs, markings, signal and temporary traffic control for vehicular, rail and bicycle facilities. The CA MUTCD is based on Federal Highway Administrations (FHWA) 2009 National Manual on Uniform Traffic Control Devices with California revisions and amendments.

Federal

AASHTO Geometric Design of Highways and Streets - Similar to the Highway Design Manual, these guidelines are intended to provide roadway design standards with operational efficiency, comfort, safety and convenience of the motorist in mind. Design standards include items such as highway function, design controls and elements of design for various functional classifications of roadways (freeways, arterials, collectors, local roads, etc.).

US Department of Justice's ADA Standards for Accessible Design - These standards are based on the Americans with Disabilities Act of 1990 (ADA) and provide standards to prohibit discrimination and ensure equal opportunity for persons with disabilities. Design elements include standards for accessible routes, general site and building elements (residential and commercial) and recreational facilities.

AASHTO Guide for the Development of Bicycle Facilities - This manual was developed to provide an overview of planning and design considerations, as well as recommendations for operation and maintenance of various types of bicycle facilities.

NACTO Urban Bikeway Design Guide - Similar to the AASHTO Guide for the Development of Bicycle Facilities, this manual was developed to provide guidance for the planning and design of bicycle facilities. This manual however, was developed by cities for cities based on the experience of the best cycling cities in the world.

As discussed later in this memo, there are currently no pedestrian or bicycle facilities in the immediate vicinity of the interchanges, therefore the later three of the manuals identified above were not used when evaluating the existing conditions.

Condition Assessment

A reconnaissance level condition assessment was performed and used to identify fundamental deficiencies as compared to the current design standards. The results presented below are based on a preliminary level characterization to provide background information and guidance for evaluating the existing conditions. For example, the characterization is based on notable qualitative characteristics visually observed and/or measured during a site walk, rather than a detailed investigation or survey of the existing conditions.

The characteristics noted are based on observable features that are relevant to the evaluation of the current layout. The characterization is intended to serve as a planning tool to provide additional information to be considered when recommending improvement alternatives. The primary factors being investigated are items such as horizontal alignment, geometric cross section, design vehicles, clearances, and sight distance.

Results

The results of the condition assessment for each segment of roadway can be found on the following pages.

12th Street and US Highway 101 Interchange

$12^{\text {th }}$ Street/Riverwalk Drive

1 Design Standard applies to connections to freeways or expressways
${ }^{2}$ The roadway geometry could probably accommodate the minimum Decision Sight Distance, but some trees might need trimming or be removed.
${ }^{3}$ This location is an overcrossing so the vertical clearance shown here is for US Hwy 101.
${ }^{4}$ A Cal Legal - 50 Truck could probably navigate the turns, but may be required to travel outside the lane slightly and use the gore area or adjacent shoulder.

- Posted Speed/Design Speed - When feasible, the design speed of local facilities connecting to a freeway or expressway should be 45 mph , but shall be a minimum of 35 mph .
- Overcrossing Width - The adjacent sections of roadway approaching the overcrossing are urban in nature and contain 12 ' travel lanes with 8 ' shoulders. At the overcrossing, the section narrows to 12 ' travel lanes, 2' paved shoulders and a concrete curb/vehicular railing which begins at the edge of the shoulder.
- Right Shoulder Width - The shoulder width decreases to only 2' within the overcrossing area and again on the Strongs Creek Bridge (which is located at the southern extents of this segment). All other portions of this segment have shoulders which meet the minimum design standard of 4 ' wide. The widths vary, but are generally around 8 ' in width.
- Intersection Spacing -
o At the southern extent of this segment, Dinsmore Road intersects Riverwalk Drive immediately adjacent to the SB ramps. Due to its proximity and configuration, Dinsmore Road appears more like a $5^{\text {th }}$ leg of the Riverwalk Drive and SB ramp intersection rather than its own. Drivers appear to be confused and have been observed traveling directly from Dinsmore Drive to the SB ramp or northward towards the downtown area.
o At the northern extent of the segment, the NB on and off ramps are located approximately 300^{\prime} south of the Newburg Road and $12^{\text {th }}$ Street intersection. The preferred distance between intersections (from curb return to curb return) is 500^{\prime}, but shall be a minimum of 400^{\prime}.
- Curve Radii - $12^{\text {th }}$ Street is a relatively straight section of road, but contains a few curves near the interchange. The first curve heading south towards Highway 101 is slightly smaller than recommended based on the speed of the roadway through that section.
- Decision Sight Distance - Near the overcrossing, there are a number of large conifers that restrict visibility. The sight distance could be improved and would likely meet the standards if the trees were trimmed or removed.
- Vertical Clearance - Since this is an overcrossing, the vertical clearance described here is for the vehicles on Highway 101.
- Design Vehicle - In all cases, it appears as though a Cal Legal-50 truck could navigate the turns and stay within the paved roadway area; however, due to the tight radii entering and exiting the ramps and turning on and off the side streets (Dinsmore Drive and Newburg Road), large trucks would need to encroach slightly into the oncoming travel lane and or gore area.

Newburg Road

${ }^{1}$ A Cal Legal - 50 Truck could probably navigate the turns, but would be required travel outside its lane.

- Angle of Intersection - Newberg Intersects $12^{\text {th }}$ Street at a 45 degree angle. Provided there are no physical constraints, the interior angle should be 90 degrees or as close to 90 degrees as practical, but should not be less than 75 degrees.
- Horizontal Clearance - The southern half of the roadway contains a number of utility poles that are very close to the edge of the travel lane.
- Design Vehicle - Newberg Road intersects $12^{\text {th }}$ Street at an acute angle. Due to the angle and tight radii, large trucks need to encroach into oncoming travel lane to navigate the turns and stay within the existing pavement.

Dinsmore Drive

Roadway Segment: Dinsmore Dr				
	Existing Roadway Characteristics			
Facility Type	Local Facility			
Functional Classification	Local Road			
No. of Lanes	2			linfure
Rural/Urban	Rural	Design Standards	Meets Standards $(\sqrt{ }=\text { yes })$	Reference to Standard
Bike Facilities (Y/N)	N			
Pedestrian Facilities (Y/N)	N			
Posted Speed/Design Speed (mph)	25/30	25	\checkmark	AASHTO
Lane Width (ft)	12	12	\checkmark	HDM Index 301.1 / AASHTO
Right Shoulder Width (ft)	2	2	\checkmark	HDM Index 302.1 \& 308.1 AASHTO
Curve Radii (ft)	$300+$	300	\checkmark	HDM Index 203.2
Decision Sight Distance (ft)	450+	450	\checkmark	HDM Index 201.7
Horizontal Clearance (ft)	$4^{\prime}+/{ }^{1}$	4^{\prime}	\checkmark	HDM Index 309.1
Stopping Sight Distance (ft)	200+	200	\checkmark	HDM Index 201.1
Design Vehicle	Cal Legal - $50{ }^{2}$	Cal Legal - 50		HDM Index 404.4

${ }^{1}$ Power poles are very close to the edge of the pavement.
${ }^{2}$ A Cal Legal - 50 Truck could probably navigate the turns, but would be required travel outside its lane.

- Design Vehicle - Dinsmore Drive intersects $12^{\text {th }}$ Street as one of the five legs of this intersection. As a result, the intersection is tight and confusing. Due to the tight radius and close proximity of the bridge to the intersection, large trucks heading or coming from the south leg of the intersection are required to swing wide and encroach into oncoming travel lanes.

US Highway 101 Northbound Ramp

Roadway Segment: US Hwy 101 Northbound (On and off ramps)				
	Existing Roadway Characteristics			
Facility Type	Freeway / Expressway			
Functional Classification	Freeway / Expressway			
No. of Lanes	1			ant
Rural/Urban	Rural	Design Standards	MeetsStandards$(\sqrt{2}=$ yes $)$	Reference to Standard
Bike Facilities (Y/N)	N			
Pedestrian Facilities (Y/N)	N			
Posted Speed/Design Speed (mph)	35/40	25/50 ${ }^{1}$		HDM Index 504.3
Lane Width (ft)	12	12	\checkmark	HDM Index 301.1
Right Shoulder Width (ft)	8	8	\checkmark	HDM Index 302.1 \& 308.1 AASHTO
Curve Radii (ft)	400/600	550		HDM Index 203.2
Decision Sight Distance (ft)	425+/-	600		HDM Index 201.7
Horizontal Clearance (ft)	$\begin{aligned} & 4^{\prime}+\left(\text { w/out curb) \& } 1.5^{\prime}+\right. \\ & (\mathrm{w} / \text { curb }) \end{aligned}$	$\begin{gathered} \hline 4^{\prime} \text { (w/out curb) \& } \\ 1.5^{\prime} \text { (w/ curb) } \\ \hline \end{gathered}$	\checkmark	HDM Index 309.1
Stopping Sight Distance (ft)	300+	300	\checkmark	HDM Index 201.1
Design Vehicle	STAA ${ }^{2}$	STAA		HDM Index 404.4

${ }^{1}$ Design speed should be 25 mph when traffic is expected to make a turning movement at the terminus and 50 mph when entering, exiting a ramp or when a "through" movement is provided at the terminus.
${ }^{2}$ An STAA truck could probably navigate the turns, but would be required travel outside its lane.

- Posted Speed/Design Speed - The design speed of ramp can vary depending on the alignment and controls at each end. An acceptable approach is to set 25 mph and 50 mph design speeds for the ramp terminus and exit nose, respectively. The NB off ramp terminates at an intersection where traffic is expected to make a turning movement; therefore, the design speed should be 25 mph nearing this portion of the ramp.
- Curve Radii - The design standard for the minimum curve radius of the northbound on and off ramps are based on the posted speed limit entering the on ramp from Highway 101. The curve radius identified below as not meeting the standard are is located on the northbound on ramp just before entering Highway 101. This particular section of road has no posted speed limit, but traffic entering Highway 101 at this location is accelerating and approaching speeds in excess of 40 mph . If considerations are made for improvements to this interchange, this radius should be increased to meet the current design standards.
- Decision Sight Distance - Similar to the $12^{\text {th }}$ Street overcrossing, there are a number of large
conifers (Redwoods) along the right side of the off ramp that restrict visibility. The sight distance could be improved and would likely meet the standards if the trees were trimmed or removed.
- Design Vehicle - In all cases, it appears as though an STAA truck could navigate the turns and stay within the pavement; however, due to the tight radii entering and exiting the ramps and turning on and off $12^{\text {th }}$ Street, large trucks would need to encroach slightly into the oncoming travel lane or gore area.

US Highway 101 Southbound Ramp

${ }^{1}$ Design speed should be 25 mph when traffic is expected to make a turning movement at the terminus and 50 mph when entering, exiting a ramp or when a
"through" movement is provided at the terminus.
${ }^{2}$ An STAA truck could probably navigate the turns, but would be required travel outside its lane.

- Posted Speed/Design Speed - The design speed of ramp can vary depending on the alignment and controls at each end. An acceptable approach is to set 25 mph and 50 mph design speeds for the ramp terminus and exit nose, respectively. The SB off ramp terminates at an intersection where traffic is expected to make a turning movement; therefore, the design speed should be 25 mph nearing this portion of the ramp.
- Design Vehicle - In all cases, it appears as though an STAA truck could navigate the turns and stay within the pavement; however, due to the tight radii entering and exiting the ramps and turning on and off $12^{\text {th }}$ Street or Dinsmore Drive, large trucks would need to encroach slightly into the oncoming travel lanes or gore area.

${ }^{1}$ Design Standard applies to connections to freeways or expressways
${ }^{2}$ This location is an undercrossing so the vertical clearance shown pere is for Kenmar Rd.
${ }^{3}$ A Cal Legal - 50 Truck could probably navigate the turns, bu /would be required travel outside its lane.
-- Posted Speed/Design-Speed-When feasible, the design speed of Iffal facilities connecting to afreeway or expressway should be 45 mph , but shall be a minimum of 35 mph .
-- Gurve-Radii-Mogt of Kenmar is relatively straight, but near the southern portion of theinterchange there is a tight radius. The curve radius here is significantly smalter than recommended based on the speed of the roadway through that section.
-- Decision sight Distance - As a result of the tight radius identified above and dense vegetation growing outside of the right of way, visibility is obstructed.
- Vertical Clearance-Kenmar Road is an undercrossing at this location so the vertical clearancedescribed here is for the vehieles on Kenmar Road.

Stopping Sight Distance-Similar to-Decision Sight Distance, the tight radius and donsevegetation obstructs visibility reducing the available stopping sight distance.

- Design Vehicle - In all cases, it appears as though a-Cal Legal-50 truck could navigate the turns and stay within the paved roadway area; however, due to the tight radii- entering and exiting the ramps and small curve radius identified above, large trucks would need to make wide turns and encroach slightly inte the oncoming travel lane-or gore area.

- Gurve Radii-Most of Eol River Drive is relatively straight, but near ins intersection with Kenmar Road there is a tight radius. The curve radius here is significantly smatier than recommendedbased on the speed of the roadway through that section; however, at thispoint the road is approaching the STOP sign so speods would be lower. If considerations are made for improvements to this interchange, the curve radius or approach angle should be evaluated.
- Inforsection Spacing - Tho SB on and off ramps aro located approximately 150 south of the Eel River Drive and Kenmar Read intersection. The preferred distance between intersections (fromcurb return to curb return) is 500^{\prime}, but shall be a minimum of 400^{\prime}.
- Design Vohicle - Eol River Drive intersects Konmar Road at an acuto angle. Due to the angleand tight radii, large trucks need to encroach into the oncoming travel lane to navigate the turnsand stay within the existing paved roadway.

US Highway 101 Northbound Ramp-

${ }^{1}$ Design speed should be 25 mph when traffic j expected to make a turning movement at the terminus and 50 mph yhen entering, exiting a ramp or when a "through" movement is provided at the terminus.
${ }^{2}$ An STAA truck could probably navigzle the turns, but would be required travel outside its lane.

- Posted Spped/Design Speod - The dosign speod of ramp can vary dopending on the alignment and controls at each end. An acceptable approach is to set 25 mph and 50 mph design speedsfor the ramp terminus and exit nose, respectively. The NB off ramp terminates at an intersection whele traffic is expected to make a turning movement; therefore, the design speed should be 25 mph nearing this portion of the ramp-

Design Vohicle - In all cases, it appears as though an STAA truck could navigate the turns andstay within the pavement; however, due to the tight radii entering and exiting the ramps andturning on and off Kenmar Road, large trucks would need to eneroach slightly into the encoming travellane or gore area.

${ }^{1}$ The southbound on ramp didn't have a speed limit sign, but was assumed to be 35 mph based on the northbound on ramp snd ramp geometry.
${ }^{2}$ Design speed should be 25 mph when traffic is expected to make a turning movement at the terminus and 50 mph when entering exiting a ramp or when a "through" movement is provided at the terminus.
${ }^{3}$ An STAA truck could probably navigate the turns, but would be required travel outside its lane

- Posted Speed/Design Speed - The design speed of ramp can vary depending on the alignment and controfs at each end. An aceeptable approach is to set 25 mph and 50 mph decign-speeds for the yamp terminus and exit nose, respectively. The SB off ramp terminates at an intersection where traffic is expected to make a turning movement; therefore, the design speedshould be 25 mgh nearing this portion of the ramp.

Design Vehicle - In all cases, it appears as though an STAA truck could navigate the turns and stay within the pavemont; however, due to the tight radii entering and oxiting the ramps and turning on and off Konmar Road, large trucks would noed to oncroach into the oncoming trave lane or gore area.

Attachment D - Conceptual Design Drawings

12th Street INTERCHANGE TRAFFIC SIGNAL CONCEPT

[^1]Fortuna, California

12th St. NORTH INTERCHANGE ROUNDABOUT CONCEPT

US 101IRIVERWALK AREA GONNEGTVITY PROJEGT Figur 7 .n
Fortuna, California

12th St. SOUTH INTERCHANGE ROUNDABOUT CONCEPT-Option 1

12th St. SOUTH INTERCHANGE ROUNDABOUT CONCEPT - Option 2a

US 101IRIVZRUVALK AREA GONNEGTVITY PROJEGT Figure 7
Fortuna, California

12th St. SOUTH INTERCHANGE ROUNDABOUT CONCEPT - Option 2b

US 101IRIVGRUVALK AREA GONNIEGTVITY PROJEGT Figure 9
Fortuna, California

12th St. SOUTH INTERCHANGE ROUNDABOUT CONCEPT - Option 2c

Fortuna, California

Attachment E - Truck Turning Analysis

12th Street STAA (THROUGH MOVEMENT ONLY)

US 101IRIVERWALK AREA GONNEGTVITY PROJEGT Figue 822
Fortuna, California

12th Street STAA (LEFT-TURN MOVEMENT ONLY)

US 10TIRVVARWALK AREA CONNGGTVVYY PROJEGT Figure ${ }^{223}$
Fortuna, California

12th Street STAA (RIGHT-TURN MOVEMENT ONLY)

US 101IRIVERWILK ARIEA CONNEGTVITY PROJEGT Figur e24
Fortuna, California

12th Street CA LEGAL (LEFT-TURN MOVEMENT ONLY)

US 10TIRVERWALK AREA GONNGGTVVY PROJEGY Figure 225
Fortuna, California

12th Street CA LEGAL (RIGHT-TURN MOVEMENT ONLY)

US 10TIRVERWALK AREA GONNJGTVVY PROJEGY Figure 226
Fortuna, California

12th St. SOUTH Opt. 1 STAA (THROUGH MOVEMENT ONLY)

US 101IRIVZRWVALK AREA GONN/EGTVITY PROJEGT Figure 227
Fortuna, California

12th St. SOUTH Opt. 1 STAA (LEFT-TURN MOVEMENT ONLY)

US 10TRNVERWVALK AREA GONN/GGIVITY PROJEGT Figure 228
Fortuna, California

12th St. SOUTH Opt. 1 STAA (RIGHT-TURN MOVEMENT ONLY)

US 101IRIVERWTALK AREA CONN/EGTVITY PROJEGT Figure 229
Fortuna, California

12th St. SOUTH Opt. 1 CA LEGAL (THROUGH MOVEMENT ONLY)

US 10TIRTVERWALK ARJA GONNKGTVVYY PROJEGY Figure в30
Fortuna, California

12th St. SOUTH Opt. 1 CA LEGAL (LEFT-TURN MOVEMENT ONLY)

US 10 IRRN/ERW/ALK AREA GONN/GGTVVTY PROJEG' Figure B31
Fortuna, California

12th St. SOUTH Opt. 1 CA LEGAL (RIGHT-TURN MOVEMENT ONLY)

US 10TIRV/ERWZALK AREA GONN/EGTVITY PROJEGT Figure B32
Fortuna, California

12th St. SOUTH Opt. 2 STAA (THROUGH MOVEMENT ONLY)

US 10 TIRNVERV/ALK AREA GONN/EGTMVTY PROJEGT Figure B33
Fortuna, California

12th St. SOUTH Opt. 2 STAA (LEFT-TURN MOVEMENT ONLY)

US 10 TRNV/ERW/ALK AREA GONN/EGTMVYY PROJEGT Figure B34
Fortuna, California

12th St. SOUTH Opt. 2 STAA (RIGHT-TURN MOVEMENT ONLY)

US 10 IRRNVRWVAK AREA GONN/GGTVVY PROJEG' Figure B35
Fortuna, California

12th St. SOUTH Opt. 2 CA LEGAL (THROUGH MOVEMENT ONLY)

US 10TRIVERWTALK AREA CONN/EGTVITY PROJEGT Figure вз6
Fortuna, California

12th St. SOUTH Opt. 2 CA LEGAL (LEFT-TURN MOVEMENT ONLY)

Fortuna, California

12th St. SOUTH Opt. 2 CA LEGAL (RIGHT-TURN MOVEMENT ONLY)

US 10TRIVZFRTALK AREA CONN/EGTVITY PROJEGT Figure вз8
Fortuna, California

12th St. NORTH STAA (THROUGH MOVEMENT ONLY)

US 10 TIRNVERWKLK AREA GONN/GGMVIV PROJEG' Figure B39
Fortuna, California

12th St. NORTH STAA (LEFT-TURN MOVEMENT ONLY)

US 101IRNVERWIALK AREA CONN/EGTVITY PROJEGT Figure в40
Fortuna, California

12th St. NORTH STAA (RIGHT-TURN MOVEMENT ONLY)

US 101IRIVERWVAK AREA CONNEGTVITY PROJEGT Fgure eq1
Fortuna, California

Attachment F - Fast Path Exhibits

12th Street SOUTH Opt. 1 FASTEST PATH

> NOTES:
> 1. EXITING SPEEDS ARE DIRECTLY CORRELATED TO CIRCULATING SPEEDS AND DERIVED AS FOLLOWS:
> R3 SPEED $=($ R2 SPEED $)+($ ACCELERATION RATE X DISTANCE TO EXIT LEG CROSSWALK)

2. N/A=FASTEST PATH SPEED DOES NOT EXIST FOR THIS APPROACH
3. 2% CROSS SLOPE ASSUMED FOR DETERMINING FASTEST PATH

FASTEST PATH RADIUS (FT)

MOVEMENT	Northbound RIVERWALK DRIVE (N\#)	SOUTHBOUND RIVERWALK DRIVE (S\#)	EASTBOUND DRIVEWAY (E\#)	WESTBOUND N/A (W\#)
ENTERING (R1)	166.1	160.2	169.0	
CIRCULATING (R2	52.0	44.9		
EXTING (R3)	226.9	223.7		
LEFT TURN (R4)	45.0		45.0	
RIGHT TURN (R5)		44.6	129.8	

FASTEST PATH SPEED (MPH) Northbound Southbound Eastbound Westbound movement Northboun
RIVERWALK D

MOVEMENT	RIVERWALK DRIVE (N\#)	RIVERWALK DRIVE (S\#)	DRIVEWAY (E\#)	$\begin{aligned} & \text { N/A } \\ & \text { (W\#) } \end{aligned}$
ENTERING (V1)	24.8	24.4	24.9	
CIRCULATING ${ }^{\text {V2 }}$	14.8	14.0		
EXTING (V3)	27.9	27.8		
LEFT TURN (V4)	14.0		14.0	
RIGHT TURN (V5)		14.9	22.5	

FASTEST PATH RADIUS (FT)

MOVEMENT	Northbound RIVERWALK DRIVE (N\#)	SOUTHBOUND SB OFFRAMP (S\#)	EASTBOUND 12 TH STREET (E\#)	WESTBOUND SB ON-RAMP (W\#) (W\#)
ENTERING (R1)	132.7	139.9	160.2	
CIRCULATING (R2)		49.2	86.9	
EXTING (R3)		274.8	76.4	
LEFT TURN (R4)	45.0	45.0		
RIGHT TURN (R5)	63.0	56.2	100.8	

FASTEST PATH SPEED (MPH)

movement	Northbound RIVERWALK DRIVE (N\#)	$\begin{aligned} & \text { Southbound } \\ & \text { SB OFF-RAMP } \end{aligned}$ (S\#)	$\begin{gathered} \text { Eastbound } \\ \text { 12TH STREET } \\ \text { (E\#) } \end{gathered}$	$\begin{aligned} & \text { We stbound } \\ & \text { SB ON-RAMP } \end{aligned}$ (W\#)
ENTERING (V1)	22.7	23.2	24.4	
CIRCULATING ${ }^{\text {N2 }}$		14.5	17.8	
EXTING (3 3)		29.1	18.4	
LEFT TURN (4 4)	14.0	14.0		
RIGHT TURN (V5)	17.0	16.3	20.4	

12th Street SOUTH Opt. 2 FASTEST PATH

US 10TIRNVERNALK AREA CONNEGTVITY PROJEGT Figure c5
Fortuna, California

12th Street NORTH FASTEST PATH

US 10TIRNVERWALK AREA GONNEGTVITY PROJEGT Figure c6
Fortuna, California

Attachment G - Preliminary Structures Analysis

Morrison Structures

1890 Park Marina Drive, Ste 104
Redding, CA 96001

Structure Memorandum

From: Bob Morrison, Jr., S.E., Morrison Structures, Redding, California
To: Josh Wolf, P.E, GHD, Eureka, California
Date: September 15, 2016
Re: Highway 101 Fortuna Downtown and Riverwalk Area Complete Streets and Connectivity Planning Study
U.S. 101/12 ${ }^{\text {th }}$ Street Interchange - Signal Concept

HUM-101-60.49

General

The purpose of this memorandum is to provide structure information for the proposed alternatives for the Signal Concept for Fortuna- $12^{\text {th }}$ Street Overcrossing Interchange Improvements. The level of study we have conducted is a Project Study Report-Project Development Support (PSR-PDS) Cost Estimate. The purpose of our study was to determine preliminary scope, feasibility, rough cost range, and a list of potential project risks for the proposed structures work.

The proposed Signal Concept improvement intends to add traffic signals and improve $12^{\text {th }}$ Street in the City of Fortuna by re-aligning and widening $12^{\text {th }}$ Street, removing the existing and constructing a new $12^{\text {th }}$ Street Overcrossing (Br. No. 04-0130) and widening or replacing Strongs Creek Bridge (Br. No. 04C0085) on Riverwalk Drive west of the interchange. Also necessary would be realignment of Dinsmore Drive northwest of the interchange; construction of a new Strongs Creek Bridge on the realignment of Dinsmore Drive; widening of the northbound U.S. 101 on-ramp and widening the Rohner Creek Bridge (Br. No. 04-0108) on U.S. 101 to accommodate the northbound on-ramp widening.

The new $12^{\text {th }}$ Street roadway alignment and $12^{\text {th }}$ Street Overcrossing will be located south of the existing Overcrossing and will be on tangent alignment connecting to Riverwalk Drive west of Strongs Creek. Traffic signals will be located at a new interchange intersection east of Strongs Creek, and at a new intersection of Dinsmore Drive with Riverwalk Drive west of Strongs Creek. The new Overcrossing on $12^{\text {th }}$ Street will accommodate four 12 -foot traffic-lanes, with 5 -foot shoulders and 8 -foot sidewalk barriers on each side for an overall width of approximately 74 feet including the sidewalk barriers. The proposed alignment is skewed approximately 35 degrees to Highway 101.

New 12 ${ }^{\text {th }}$ Street Overcrossing Br. No. 04-0130 at US 101/12 ${ }^{\text {th }}$ Street OC Interchange

Based on the conditions at the site and the interchange geometrics, the new $12^{\text {th }}$ Street Overcrossing will be approximately 200 feet in length. The most economical structure type will likely be a 4 -span, precast, prestressed, concrete girder structure with a 4.3 foot structure depth. Approximate span configuration will be 58 feet, 82 feet, 82 feet, and 58 feet. End supports will be short-seat concrete abutments and interior supports will be 5 -column bents. All supports will be pile supported. Clear roadway width will be 58 feet between 8 -foot-wide Type 732 SW barriers. Chain link railing will be mounted on the barrier walls above the interior spans and tubular handrailing will be mounted to the barrier wall above the end spans. Falsework is not necessary to erect this type of girder structure. Girders would be set in place from U.S. 101 using traffic closures.

The anticipated structure cost is $\$ 4,500,000$, not including costs for mobilization or contingencies. Bridge removal costs to remove the existing $12^{\text {th }}$ Street Overcrossing represent $\$ 170,000$ of this figure.

Strongs Creek Bridge (Br. No. 04C-0085) on Riverwalk Drive

The existing Strongs Creek Bridge on Riverwalk Drive (Br. No. 04C-0085) is a County-owned, 99 -footlong, continuous 3 -span, concrete flat slab structure constructed in 1962 with a clear roadway width of 28 feet. The roadway is classified as an urban collector and current average daily traffic (ADT) is approximately 2300 vehicles per day. The structure is in fair condition with a health index of 100 , but the sufficiency rating (SR) is 72.4 because of the bridge's narrow width and ADT. When originally built, the ADT was much lower and the 28 feet width was adequate.
The Highway Bridge Program funding from Federal Highways may be available to assist in the costs of widening or replacing the bridge. Structures with sufficiency ratings below 80 are eligible for rehabilitation and widening. However, the necessary bridge width is 74 feet to accommodate the improvements, which is 46 feet wider than the existing structure. Because the necessary bridge widening is 46 feet and amounts to 62% of the required overall proposed bridge width (74 feet), it will be most economical to replace the entire structure rather than to widen it.

Based on the conditions at the site and the proposed roadway geometrics, the new bridge will be approximately 99 feet in length. The most economical structure type will likely be a continuous 3 -span, concrete flat slab structure with a 1.5 foot structure depth. Approximate span configuration will be 33.5 feet, 32 feet, and 33.5 feet. End supports will be concrete diaphragm abutments supported on concrete piles and interior supports will be concrete pile bents. Clear roadway width will be 58 feet between 8 -foot-wide Type 732SW barriers. Tubular handrailing will be mounted to the barrier walls. Falsework is necessary to erect this type of slab structure.

The anticipated structure cost is $\$ 1,500,000$ not including costs for mobilization or contingencies. Bridge removal costs to remove the existing Strongs Creek Bridge represent $\$ 50,000$ of this figure.
The estimate assumes that Riverwalk Drive can be closed to traffic during construction.

Strongs Creek Bridge (New Bridge) on Dinsmore Drive

Based on the conditions at the site and the proposed roadway geometrics, the new Strongs Creek Bridge on Dinsmore Drive will be approximately 157 feet in length and 38 -feet-wide. The most economical structure type will likely be a continuous 5 -span, concrete flat slab structure with a 1.5 foot structure depth. Approximate span configuration will be 27.5 feet, 34 feet, 34 feet, 34 feet, and 27.5 feet. End supports will be concrete diaphragm abutments supported on concrete piles and interior supports will be concrete pile bents. Supports will be parallel to the channel and skewed approximately 60 degrees from normal to the roadway. Clear roadway width will be 24 feet between 7 -foot-wide Type 732SW barriers. Tubular handrailing will be mounted to the barrier walls. Falsework is necessary to erect this type of slab structure.

The anticipated structure cost is $\$ 1,200,000$ not including costs for mobilization or contingencies.

Rohner Creek Bridge (Br. No. 04-0108) on U.S. Highway 101

The existing Rohner Creek Bridge on U.S. 101 (Br. No. 04-0108) is a pile supported, 87-foot-long, 74-feet-wide, continuous 3 -span, concrete flat slab structure constructed in 1962. The structure is in good condition with a sufficiency rating (SR) of 95.9.

Based on the conditions at the site and the proposed roadway geometrics, the existing bridge will need to be widened on its right edge (east edge) approximately 16 feet to accommodate the proposed $12^{\text {th }}$

Street/U.S. 101 IC northbound on-ramp widening. The widening will match the existing bridge type and will be a continuous 3 -span, concrete flat slab structure with a 1.33 foot structure depth. Approximate span configuration will be 29.5 feet, 28 feet, and 29.5 feet. End supports will be concrete diaphragm abutments supported on concrete piles and interior supports will be concrete pile bents. Supports will be parallel to the channel and skewed approximately 20 degrees from normal to the roadway. A Type 742 concrete barrier will be mounted along the new right edge of deck. Falsework is necessary to erect this type of slab structure.
The anticipated structure cost is $\$ 550,000$ not including costs for mobilization or contingencies.

MORRISON STRUCTURES, INC.
1890 Park Marina Drive, Suite 104
Redding, CA 96001
BRIDGE GENERAL PLAN ESTIMATE \square OR PLANNING ESTIMATE $[\mathbf{x}]$

CONTRACT ITEMS	UNIT	QUANTITY	PRICE		AMOUNT	
1 STRUCTURE EXCAVATION (BRIDGE)	CY	430	\$	157.50	\$	67,725.00
2 STRUCTURE BACKFILL (BRIDGE)	CY	320	\$	112.50	\$	36,000.00
3 FURNISH CLASS 90 PILING ALT "V"	LF	3832	\$	46.00	\$	176,272.00
4 DRIVE CLASS 90 PILING ALT "V"	EA	32	\$	1,625.00	\$	52,000.00
5 STRUCTURAL CONCRETE, BRIDGE	CY	800	\$	1,050.00	\$	840,000.00
6 JOINT SEAL (MR=1 ${ }^{\text {") }}$	LF	148	\$	70.00	\$	10,360.00
7 BAR REINFORCING STEEL (BRIDGE)	LB	123000	\$	1.40	\$	172,200.00
8 CONCRETE BARRIER (TYPE 732 SW)	LF	280	\$	280.00	\$	78,400.00
9 TUBULAR HANDRAILING	LF	280	\$	70.00	\$	19,600.00
			\$	-	\$	-
			\$	-	\$	
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	
			\$	-	\$	
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
	SUBTO				\$	1,452,557.00
COMMENTS:	MOBILIZA	N	10	\%)	\$	161,395.22
	SUBTOTAL	TRUCTURE ITEM			\$	1,613,952.22
	CONTING	IIES	25	\%)	\$	403,488.06
COSTS ESTIM FOR 2016 CONSTRUCTION	BRIDGE T	AL	\$ 275	/ SF	\$	2,017,440.28
	BRIDGE R	OVAL (CONTIN	CIES INCL		\$	50,000.00
	WORK BY	ILROAD OR UT	FORCES		\$	-
	GRAND	AL			\$	2,067,440.28
	FOR BUD	ET PURPOSES			\$	2,068,000.00
	COM	ENTS:				

MORRISON STRUCTURES, INC.
1890 Park Marina Drive, Suite 104
Redding, CA 96001

Morrison Structures

1890 Park Marina Drive, Ste 104
Redding, CA 96001

Structure Memorandum

From: Bob Morrison, Jr., S.E., Morrison Structures, Redding, California
To: Josh Wolf, P.E, GHD, Eureka, California
Date: September 15, 2016
Re: Highway 101 Fortuna Downtown and Riverwalk Area Complete Streets and Connectivity Planning Study
U.S. $101 / 12^{\text {th }}$ Street Interchange - Roundabout Concept 2c

HUM-101-60.49

General

The purpose of this memorandum is to provide structure information for the proposed alternatives for the Roundabout Concept 2c for Fortuna-12 ${ }^{\text {th }}$ Street Overcrossing Interchange Improvements. The level of study we have conducted is a Project Study Report-Project Development Support (PSR-PDS) Cost Estimate. The purpose of our study was to determine preliminary scope, feasibility, rough cost range, and a list of potential project risks for the proposed structures work.
The proposed Roundabout Concept 2c improvement intends to improve $12^{\text {th }}$ Street and the $12^{\text {th }}$ Street/U.S. 101 interchange in the City of Fortuna by widening $12^{\text {th }}$ Street, widening or replacing the existing $12^{\text {th }}$ Street Overcrossing (Br. No. 04-0130), adding a roundabout at the south interchange and widening or replacing Strongs Creek Bridge (Br. No. 04C-0085) on Riverwalk Drive west of the interchange. Also necessary would be realignment of Dinsmore Drive northwest of the interchange and the construction of a new Strongs Creek Bridge on the realignment of Dinsmore Drive.
The existing $12^{\text {th }}$ Street roadway alignment east of U.S. 101 and $12^{\text {th }}$ Street Overcrossing will be widened to accommodate a new 10 -foot-wide pedestrian/bicycle trail along the north side of the roadway. The existing $12^{\text {th }}$ Street Overcrossing bridge will be widened to accommodate the new 10 -foot-wide pedestrian/bicycle facility, separated from the two-way vehicle traffic. West of the overcrossing a roundabout will be constructed at the intersection of Riverwalk Drive, $12^{\text {th }}$ Street, and U.S. 101 southbound on and off ramps. The realignment of Dinsmore Drive will cross Strongs Creek northwest from the interchange and intersect with Riverwalk Drive further west from Strongs Creek.

$12^{\text {th }}$ Street Overcrossing Br. No. 04-0130 at US 101/12 ${ }^{\text {th }}$ Street OC Interchange

The $12^{\text {th }}$ Street Overcrossing Bridge (Br. No. 04-0130) spans over Route U.S. 101 at the interchange. The bridge is on curved alignment with supports skewed and parallel to Highway 101. The structure is a 34-foot-wide, 4 -span, 197-foot-long, concrete tee-beam structure, with a span arrangement of $44,65,53$, and 35 feet. The structure was constructed in 1962. End supports are short seat abutments on concrete pile foundations, and intermediate supports are 2-column bents on concrete pile foundations. Highway 101 currently passes under the spans 2 and 3 with a 15 -foot 5 -inch vertical clearance over northbound lanes and 15 -foot 6 -inch vertical clearance over southbound lanes. The 34 -foot-width currently carries two 12foot travel lanes, two 2 -foot shoulders, and two 3 -foot-wide Type 2 Barrier railings. The clear width between barrier railings is 28 feet.

$\mathbf{1 2}^{\text {th }}$ Street Overcrossing - Looking East

The Overcrossing is State-owned, on the National Highway System, and rated adequate for permit loads. The structure is in good condition with a health index of 100 , but the sufficiency rating (SR) is 80.1 because of the bridge's narrow width and ADT. When originally built, the ADT was much lower and the 28 feet width was adequate. Based on our discussions with Caltrans, this structure is not eligible for funding under the Federal Highways Bridge Program. Structures with sufficiency ratings below 80 are eligible for rehabilitation and must have a structurally deficient status. This structure does not have any structural deficient status and the sufficiency rating is above 80. However, funds from the U.S. Department of Transportation surface transportation funding programs may be available to assist with costs of widening depending on program and eligibility requirements. Two alternatives to provide for the pedestrian/bicycle facility at 12 Street Overcrossing are to widen the existing bridge or to construct a new independent pedestrian/bicycle overcrossing close to the existing bridge along the north side.

Bridge Widening Alternative

The proposed bridge widening consists of constructing a 197 -foot-long, 9.7 -foot-wide, 4 -span, precast, prestressed concrete girder addition along the north side of the existing Overcrossing. The widening will provide a clear width of $10^{\prime}-0^{\prime \prime}$ between barriers and match the existing bridge structure depth, structure type, profile, and pile foundation supports. Both the east and west approaches to the bridge would be on widened fill embankment closely matching existing conditions. Vertical clearance from the soffit of the widened bridge to the surface of U.S. 101 below will not be affected.

The existing barrier and deck slab along the north side of the Overcrossing will need to be removed and replaced. Traffic control and temporary barriers along the $12^{\text {th }}$ Street roadway will be required to construct the widening. Additionally, traffic control systems will be required on U.S. 101 to construct pile foundations and widen the existing column bents. Falsework is not necessary to erect this type of girder structure. Girders would be set in place from U.S. 101 using traffic closures.

Overall width of the widened structure will be 43 -feet 8 -inches. Clear vehicular roadway width will be 28 feet between the existing Type 3 concrete barrier along the south edge of the existing bridge and a new Type ST-30 bridge rail located to separate the 10 -foot-wide pedestrian/bicycle facility from the vehicular traffic. A Type 732SW (modified) barrier with chain link railing mounted on the barrier wall will bound the pedestrian/bicycle facility along the north edge of the widened structure.

The anticipated structure cost is $\$ 950,000$. This cost does not include mobilization or any contingencies.

Construct New Pedestrian/Bicycle Overcrossing

The proposed new pedestrian/bicycle overcrossing consists of constructing a 203-foot-long, 12 -foot-wide, 4 -span, precast, prestressed concrete girder structure along the north side and close to the existing

Overcrossing. The new structure will provide a clear width of $10^{\prime}-0$ " between barriers and match the existing bridge structure depth, structure type, profile, and pile foundation supports. Both the east and west approaches to the bridge would be on widened fill embankment closely matching existing conditions. Vertical clearance from the soffit of the new bridge to the surface of U.S. 101 below should maintain approximately 16 feet.
The existing barrier and deck slab along the north side of the Overcrossing will need to be removed and replaced. Traffic control and temporary barriers along the $12^{\text {th }}$ Street roadway will be required to construct the new structure. Additionally, traffic control systems will be required on U.S. 101 to construct pile foundations and column bents. Falsework is not necessary to erect this type of girder structure. Girders would be set in place from U.S. 101 using traffic closures.
Type 732SW (modified) barriers with chain link railing mounted on the barrier wall will bound the pedestrian/bicycle facility along both edges of the new structure.
The anticipated structure cost is also $\$ 950,000$. This cost does not include mobilization or any contingencies.

Strongs Creek Bridge (Br. No. 04C-0085) on Riverwalk Drive

The existing Strongs Creek Bridge on Riverwalk Drive (Br. No. 04C-0085) is a County-owned, 99 -footlong, continuous 3 -span, concrete flat slab structure constructed in 1962 with a clear roadway width of 28 feet. The roadway is classified as an urban collector and current average daily traffic (ADT) is approximately 2300 vehicles per day. Two steel pipelines are carried on the bridge, one on each edge. The structure is in fair condition with a health index of 100 , but the sufficiency rating (SR) is 72.4 because of the bridge's narrow width and ADT. When originally built, the ADT was much lower and the 28 feet width was adequate.

Strongs Creek Bridge on Riverwalk Drive - Looking East
Based on our discussions with Caltrans, the Highway Bridge Program funding from Federal Highways may be available to assist in the costs of widening or replacing the bridge. Structures with sufficiency ratings below 80 are eligible for rehabilitation and widening. Additionally, the U.S. Department of Transportaion has programs that can assist with costs of widening as discussed above. If cost of total bridge replacement is expected to be less than 50 percent of cost associated with widening, then total replacement of the bridge is usually the preferred option.

Based on the conditions at the site and the proposed roadway geometrics, the bridge width required at Strongs Creek on Riverwalk Drive will need to vary from about 58 feet at the west abutment (west creek bank) to about 76 feet at the east abutment (east creek bank). The existing 99 -foot-long bridge length is adequate. Because proposed bridge width is more than twice the existing 28 feet, it will be most economical to replace the entire structure rather than to widen it.

The most economical replacement structure type will likely be a continuous 3 -span, concrete flat slab structure with a 1.5 foot structure depth. Approximate span configuration will be 33.5 feet, 32 feet, and 33.5 feet. End supports will be concrete diaphragm abutments supported on concrete piles and interior supports will be concrete pile bents. Bridge width varies, (58 feet at the west abutment to 76 feet at the east abutment) and the bridge carries Type 732SW (modified) barriers, a 10 -foot-wide pedestrian/bicycle facility, and 12 -foot eastbound and westbound travel lanes, shoulders, and edge and road medians of varying widths. Tubular handrailing will be mounted to the barrier walls. Falsework is necessary to erect this type of slab structure. The pipeline utilities will be have to be relocated and supported on the new bridge or buried in the stream bottom.
The anticipated structure cost is $\$ 1,375,000$ excluding costs for mobilization and contingencies. Bridge removal costs to remove the existing Strongs Creek Bridge represent $\$ 50,000$ of this figure.
The estimate assumes that Riverwalk Drive can be closed to traffic during construction.

Strongs Creek Bridge (New Bridge) on Dinsmore Drive

Based on the conditions at the site and the proposed roadway geometrics, the new Strongs Creek Bridge on Dinsmore Drive will be approximately 157 feet in length and 38 -feet-wide. The most economical structure type will likely be a continuous 5 -span, concrete flat slab structure with a 1.5 foot structure depth. Approximate span configuration will be 27.5 feet, 34 feet, 34 feet, 34 feet, and 27.5 feet. End supports will be concrete diaphragm abutments supported on concrete piles and interior supports will be concrete pile bents. Supports will be parallel to the channel and skewed approximately 60 degrees from normal to the roadway. Clear roadway width will be 24 feet between 7 -foot-wide Type 732SW barriers. Tubular handrailing will be mounted to the barrier walls. Falsework is necessary to erect this type of slab structure.
The anticipated structure cost, excluding mobilization and contingencies, is $\$ 1,200,000$.

MORRISON STRUCTURES, INC.

1890 Park Marina Drive, Suite 104
Redding, CA 96001

MORRISON STRUCTURES, INC.
1890 Park Marina Drive, Suite 104
Redding, CA 96001

Attachment H - Landscaping/Gateway Concepts

12th Street Interchange Traffic Signal Concept - Landscaping Options

12th Street Interchange North Roundabout Concept - Landscaping Options

12th Street Interchange South Roundabout Concept 1 - Landscaping Options

Preliminary Opinion of Costs (Capital \& Support)

City	Street Interchange Signal Concept of Fortuna struction Costs					$\begin{array}{r} 9 / 14 / 2021 \\ 25-3247-03 / 2132 \end{array}$
No.	Item Description	Units	Quantity	Unit Cost		Total
1	Traffic Control	LS	1	\$672,000.00		\$672,000.00
2	Remove Roadside Sign	EA	35	\$102.00		\$3,570.00
3	Remove Concrete Sidewalk	SQFT	1970	\$4.50		\$8,865.00
4	Remove Concrete (Curb \& Gutter)	LF	4500	\$10.00		\$45,000.00
5	Roadway Excavation	CY	13950	\$67.00		\$934,650.00
6	Embankment	CY	9334	\$25.00		\$233,350.00
7	Class 2 Aggregate Base	CY	22250	\$70.00		\$1,557,500.00
8	Hot Mix Asphalt (Type A)	TON	13190	\$140.00		\$1,846,600.00
9	Bridge (12th Street Over US 101)	LS	1	\$4,500,000.00		\$4,500,000.00
10	Bridge (Riverwalk Drive Over Strong's Creek)	LS	1	\$1,500,000.00		\$1,500,000.00
11	Bridge (Dinsmore Drive Realignment Over Strong's Creeh	LS	1	\$1,200,000.00		\$1,200,000.00
12	Bridge (US 101 NB On-Ramp Over Rohner Creek)	LS	1	\$550,000.00		\$550,000.00
13	Detectable Warning Surface	SQFT	192	\$35.00		\$6,720.00
14	Minor Concrete (Curb and Gutter)	CY	265	\$806.00		\$213,590.00
15	Minor Concrete (Sidewalk)	CY	403	\$680.00		\$274,040.00
16	Storm Drain System	LS	1	\$180,000.00		\$180,000.00
17	Midwest Guard Rail System (Wood Post)	LF	350	\$80.00		\$28,000.00
18	Thermoplastic Traffic Stripe	LF	27620	\$1.25		\$34,525.00
19	Thermoplastic Pavement Marking	SQFT	4101	\$6.00		\$24,606.00
20	Signs	EA	40	\$350.00		\$14,000.00
21	Signal \& Lighting	LS	4	\$225,000.00		\$900,000.00
22	Lighting and Sign Illumination	LS	1	\$450,000.00		\$450,000.00
23	Planting and Irrigation	SQFT	147000	\$5.00		\$735,000.00
24	Mobilization	LS	1	\$1,524,100.00		\$1,524,100.00
25	Minor/ Supplemental Items	\%	25\%	\$15,240,016.00		\$3,810,004.00
	Subtotal (Construction Costs)				\$	21,246,120.00
	Construction Contingency			25\%	\$	5,311,530.00
	Total Construction Costs				\$	26,557,650.00
	Total Construction Budget (Rounded)				\$	26,557,700.00
Right of Way (Capital) and Utility Relocation Costs:						
1	Right Of Way	SQFT	215900	\$20.00		\$4,318,000.00
2	Utility Relocation	ALLOW	1	\$200,000.00		\$200,000.00
Total Right of Way (Capital) and Utility Relocation Costs					\$	4,518,000.00
	Total Project Capital Cost				\$	31,075,700.00
Project Support Costs						
1	PA\&ED		Capital Costs	11\%	\$	3,418,400.00
2	PS\&E		Capital Costs	14\%	\$	4,350,600.00
3	Right of Way Engineering \& Acquisition		11-Parcels	\$25k/EA	\$	275,000.00
4	Construction Support and Management		Con. Costs	15\%	\$	3,983,700.00
	Total Project Support Costs				\$	12,027,700.00
	Total Estimated Project Costs				\$	43,103,400.00
	Rounded				\$	43,110,000.00

Assuptions

1. All new paving.
2. Only R/W costs are for private properties (not County, City, or State).
3. Bridge removal is included in the cost for each bridge.

Preliminary Opinion of Costs (Capital \& Support)

12th Street Interchange Roundabout Concept - North
 City of Fortuna
 Construction Costs

Assuptions

1. All new paving.
2. Only R/W costs are for private properties (not County, City, or State).
3. Removing railroad tracks and equipment not included.

Preliminary Opinion of Costs (Capital \& Support)
12th Street Interchange Roundabout Concept - South 1
City of Fortuna
9/14/2021
25-3247-03/2132
Construction Costs

No.	Item Description	Units	Quantity	Unit Cost		Total
1	Traffic Control	LS	1	\$300,000.00		\$300,000.00
2	Remove Metal Beam Guard Railing	LF	298	\$16.00		\$4,768.00
3	Remove Roadside Sign	EA	14	\$102.00		\$1,428.00
4	Remove Asphalt Concrete Dike	LF	255	\$4.00		\$1,020.00
5	Remove Concrete (Curb \& Gutter)	LF	941	\$10.00		\$9,410.00
6	Bridge Removal	LS	1	\$140,000.00		\$140,000.00
7	Remove Tree	EA	3	\$1,400.00		\$4,200.00
8	Roadway Excavation	CY	3860	\$67.00		\$258,620.00
9	Class 2 Aggregate Base	CY	5450	\$70.00		\$381,500.00
10	Hot Mix Asphalt (Type A)	TON	3050	\$140.00		\$427,000.00
11	Structural Concrete, Bridge	LS	1	\$2,140,000.00		\$2,140,000.00
13	Detectable Warning Surface	SQFT	360	\$35.00		\$12,600.00
14	Minor Concrete (Curb)	CY	50	\$1,320.00		\$66,000.00
15	Minor Concrete (Curb - Truck Apron)	CY	28	\$1,160.00		\$32,480.00
16	Minor Concrete (Curb and Gutter)	CY	106	\$806.00		\$85,436.00
17	Minor Concrete (Stamped Concrete)	CY	9	\$820.00		\$7,380.00
18	Minor Concrete (Stamped Concrete - Truck Apron)	CY	180	\$615.00		\$110,700.00
19	Minor Concrete (Sidewalk)	CY	172	\$680.00		\$116,960.00
20	Storm Drain System	LS	1	\$100,000.00		\$100,000.00
21	Midwest Guard Rail System (Wood Post)	LF	300	\$80.00		\$24,000.00
22	Thermoplastic Traffic Stripe	LF	5070	\$1.25		\$6,337.50
23	Thermoplastic Pavement Marking	SQFT	926	\$6.00		\$5,556.00
24	Signs	EA	50	\$350.00		\$17,500.00
25	Lighting \& Electrical	LS	1	\$260,000.00		\$260,000.00
26	Planting and Irrigation	SQFT	12500	\$5.00		\$62,500.00
27	Mobilization	LS	1	\$438,100.00		\$438,100.00
28	Minor/ Supplemental Items	\%	25\%	\$5,013,495.50		\$1,253,373.88
	Subtotal (Construction Costs)					\$6,266,869.38
	Construction Contingency			25\%	\$	1,566,717.34
	Total Construction Costs					\$7,833,586.72
	Total Construction Budget (Rounded)					\$7,833,600.00
Right of Way (Capital) and Utility Relocation Costs:						
1	Right Of Way	SQFT	5100	\$20.00		\$102,000.00
2	Utility Relocation	ALLOW	1	\$200,000.00		\$200,000.00
	Total Right of Way (Capital) and Utility Relocation Costs					\$302,000.00
	Total Project Capital Cost					\$8,135,600.00
Project Support Costs						
1	PA\&ED		Capital Costs	11\%	\$	895,000.00
2	PS\&E		Capital Costs	14\%	\$	1,139,000.00
3	Right of Way Engineering \& Acquisition		2-Parcels	\$25k/EA	\$	50,000.00
4	Construction Support and Management		Con. Costs	15\%	\$	1,175,100.00
	Total Project Support Costs				\$	3,259,100.00
	Total Estimated Project Costs				\$	11,394,700.00
	Rounded				\$	11,400,000.00

Assuptions

1. All new paving.
2. Only R/W costs are for private properties (not County, City, or State).
3. Removing railroad tracks and equipment not included.

Preliminary Opinion of Costs (Capital \& Support)
12th Street Interchange Roundabout Concept - South 2a
City of Fortuna
9/14/2021 25-3247-03/2132
Construction Costs

Assuptions

1. All new paving.
2. Only R/W costs are for private properties (not County, City, or State).
3. Removing railroad tracks and equipment not included.

Preliminary Opinion of Costs (Capital Only)

Dinsmore Drive Realignment Alt 2a for 12th Street Interchange Roundabout Concept - SB Option 2a City of Fortuna 9/13/2021 Construction costs:					
No.	Item Description	Units	Quantity	Unit Cost	Total
1	Traffic Control	LS	1	\$14,000.00	\$14,000.00
2	Remove Tree	EA	8	\$1,400.00	\$11,200.00
3	Roadway Excavation	CY	1430	\$67.00	\$95,810.00
4	Class 2 Aggregate Base	CY	3840	\$70.00	\$268,800.00
5	Hot Mix Asphalt (Type A)	TON	2310	\$140.00	\$323,400.00
6	Bridge (Dinsmore Drive Realignment Over Strong's Cr	LS	1	\$1,200,000.00	\$1,200,000.00
7	Minor Concrete (Curb and Gutter)	CY	34	\$806.00	\$27,404.00
8	Minor Concrete (Sidewalk)	CY	42	\$680.00	\$28,560.00
9	Storm Drain System	LS	1	\$50,000.00	\$50,000.00
10	Thermoplastic Traffic Stripe	LF	4740	\$1.25	\$5,925.00
11	Thermoplastic Pavement Marking	SQFT	44	\$6.00	\$264.00
12	Signs	EA	8	\$350.00	\$2,800.00
13	Lighting \& Electrical	LS	1	\$50,000.00	\$50,000.00
14	Planting and Irrigation	SQFT	1450	\$5.00	\$7,250.00
15					
	Subtotal (Construction Costs)				\$2,085,413.00

Preliminary Opinion of Costs (Capital \& Support)
12th Street Interchange Roundabout Concept - South 2b
City of Fortuna
9/14/2021 25-3247-03/2132
Construction Costs

Assuptions

1. All new paving.
2. Only R/W costs are for private properties (not County, City, or State).
3. Removing railroad tracks and equipment not included.

Preliminary Opinion of Costs (Capital Only)

Dinsmore Drive Realignment Alt 2b for 12th Street Interchange Roundabout Concept - SB Option 2b

City of Fortuna					9/13/2021
					25-3247-03/2132
Construction Costs:					
No.	Item Description	Units	Quantity	Unit Cost	Total
1	Traffic Control	LS	,	\$14,000.00	\$14,000.00
2	Remove Tree	EA	5	\$1,400.00	\$7,000.00
3	Roadway Excavation	CY	1350	\$67.00	\$90,450.00
4	Class 2 Aggregate Base	CY	1980	\$70.00	\$138,600.00
5	Hot Mix Asphalt (Type A)	TON	950	\$140.00	\$133,000.00
6	Minor Concrete (Curb and Gutter)	CY	20	\$806.00	\$16,120.00
7	Minor Concrete (Sidewalk)	CY	285	\$680.00	\$193,800.00
8	Storm Drain System	LS	1	\$20,000.00	\$20,000.00
9	Thermoplastic Traffic Stripe	LF	1400	\$1.25	\$1,750.00
10	Thermoplastic Pavement Marking	SQFT	22	\$6.00	\$132.00
11	Signs	EA	3	\$350.00	\$1,050.00
12	Lighting \& Electrical	LS	1	\$20,000.00	\$20,000.00
13	Planting and Irrigation	SQFT	1400	\$5.00	\$7,000.00
-					
	Subtotal (Construction Costs)				\$642,902.00

Preliminary Opinion of Costs (Capital \& Support)
12th Street Interchange Roundabout Concept - South 2c
City of Fortuna
9/14/2021
25-3247-03/2132
Construction Costs

Assuptions

1. All new paving.
2. Only R/W costs are for private properties (not County, City, or State).
3. Removing railroad tracks and equipment not included.

Preliminary Opinion of Costs (Capital Only)

Dinsmore Drive Realignment 2c Alt for 12th Street Interchange Roundabout Concept - SB Option 2c City of Fortuna

Cons	uction Costs:				
No.	Item Description	Units	Quantity	Unit Cost	Total
1	Traffic Control	LS	1	\$14,000.00	\$14,000.00
2	Remove Tree	EA	4	\$1,400.00	\$5,600.00
3	Roadway Excavation	CY	490	\$67.00	\$32,830.00
4	Class 2 Aggregate Base	CY	860	\$70.00	\$60,200.00
5	Hot Mix Asphalt (Type A)	TON	490	\$140.00	\$68,600.00
6	Minor Concrete (Curb and Gutter)	CY	15	\$806.00	\$12,090.00
7	Minor Concrete (Sidewalk)	CY	36	\$680.00	\$24,480.00
8	Storm Drain System	LS	1	\$20,000.00	\$20,000.00
9	Thermoplastic Traffic Stripe	LF	450	\$1.25	\$562.50
10	Thermoplastic Pavement Marking	SQFT	22	\$6.00	\$132.00
11	Signs	EA	3	\$350.00	\$1,050.00
12	Lighting \& Electrical	LS	1	\$20,000.00	\$20,000.00
13	Planting and Irrigation	SQFT	1210	\$5.00	\$6,050.00
	Subtotal (Construction Costs)				\$265,594.50

Attachment J - Right-of-Way and Property Ownership

Ontiveros \& Associates
INC
CONSULTING ENGINEERS AND SURVEYORS

RIGHT OF WAY MEMORANDUM

May 25, 2016

Base Mapping

The base map consists of the Caltrans highway map 1 HUM-1-F coordinated on the California Coordinate System, Zone 1. This developed the centerline of Hwy 101 and the right of way lines through the project area. Parcels relinquished by Caltrans as part of the Hwy 101 Project are also shown on this map. The eastern Caltrans right of way line is the western line of the railroad right of way through most of this area.

$12^{\text {th }}$ Street Interchange

Newburg Road - Book P of Deeds, Page 428 HCR describes the width of Newburg as 50 feet wide. Multiple tract maps were prepared on the North side of Newburg, however, no map references Book P of deeds or any other documentation for Newburg Road is listed on the maps. The Beacom subdivision map, recorded in Book 12 of Maps, page 138, lists the width for Newburg as 40 feet. The south side of Newburg in this area is all under one ownership by the Town of Scotia. Ground shots of existing improvements (back of walk to fence) indicate a width of 50 feet.

12th Street south of railroad crossing and north of the overpass - the area south of the railroad right of way is owned by Caltrans, and has a width of 75 feet based on the Caltrans mapping. The Caltrans map shows the railroad crossing being relinquished to the County of Humboldt in 1978 per 1487 OR 184. The Caltrans map 1-HUM-1-F does not clearly delineate the transition from Caltrans to City of Fortuna ownership immediately south of the rail road crossing. This was at one time Sandy Prairie Road so the right of way was already existing before the Hwy 101 project. The County of Humboldt has a pavement maintenance agreement with Caltrans for the County roads carried over, under, or to the connecting freeway dated April $15^{\text {th }} 1963$. The exhibit attached to this agreement shows the County area of responsibility to be from a line approximately 50 feet south of the rail road tracks across the overpass to Dinsmore Drive on the south side of the overpass. Clendenen is the owner of the parcel to the west of $12{ }^{\text {th }}$ St., and Sequia Gas/ McWhorter owns the multiple parcels to the east of $12^{\text {th }}$ St., including the abandoned Pond street.

12th Street north of the railroad right of way, Parcel Map 1828 Book 16, page 28 shows a half width of 12th street as 30 feet, and Parcel Map 2817 Book 25, page 103 shows a full width of 12th street as 60 feet.

Dinsmore Drive/North end Riverwalk Drive - Caltrans relinquished this road to Humboldt County in 1963 per Book 760 Deeds, Page 517. The configuration shown is based on the Caltrans right of way map 1-HUM-1-F. In a letter dated January 10, 2005 between the City of Fortuna and the County of Humboldt, discusses the annexation \& maintenance of Strongs Creek Road (Dinsmore Drive) by the City of Fortuna. The letter does not specifically describe the limits of maintenance. The bridge located on the north end of Riverwalk drive (over Strong's Creek) is shown to be in this Caltrans relinquishment area, however, the bridge itself does not appear to be listed in the County bridge maintenance logs. The specific location of the City/County change of ownership will need to be determined.

Kenmar Road Interchange-

Kenmar Read east of the Freeway No documentation could be found for this portion of Kenmar Road. The south right of way line shown is based upon the survey for the park and ride(see key note 6), and the County's Eel River Drive overlay project \#213500. The north line is based upon field ties to features and said County overlay project. The State Park and Ridelocation is based on a survey for Caltrans. However, the survey has no recorder stamp, and thebook and page referenced do not refer to this survey at the recorder's office. This map was provided by Caltrans.

In general this area has a complex right of way situation due to the multiple highways and roads that were here at one time. Additional research and surveying will be needed to determine theright of way location. The County of Humboldt has a pavement maintenance agreement with Galtrans for the County roads carried over, under, or to the connecting freeway dated April $15^{\text {th }}$ 1963. The exhibit attached to this agreement shows the County area of responsibility to befrom the west line of the railroad tracks to west line of Hwy 101 at the intersection with Riverwalk Drive.-

Eel River Drive-The east line of Eel River Drive was mapped to some extent by the County during the overlay survey, however, the County surveyor's office also discusses the complexity of the right of way in the area, and the need for more surveying to determine the true location.

Riverwalk Drive - Riverwalk Drive west of Hwy 101 was relinquished to the County in 1963 per 760 - R 517. The east side of the right of way has been delineated in a survey from 1992 recorded in Book 53 surveys, page 34. There have not been any surveys filed on the west sideof Riverwalk drive at this logation. Ground shots indicate a distance of 50^{\prime} between back of walk on the east side and top of slope on the west side.

Book P of Deeds, Page 428 New berg Road

"Then IUnetentere, iluade the Sfithday

 the secound puant. Witriesseth, that the sacel parsty of the fo

 in hianed piasit fy the 'werit piantion if the seerndpurets)

 that istunt and lexads from Pofmernitle to the City ff Bumades to puartiss of the secornal frast stimall te fitly fiel in wovidut - wonif fothow the senory and noule of sard road hereototine

 und manat sighte amplos zwith the rood that sroms between
 awith the news fonces if partly of fritt part millosing the polatoefirld thente ascerring to the afonectarid.

 porglele lionery.

Su lione woit Io ficid, ell and simqueluethe
 the apumblewereet whe the waid farlies of the sevond

One womest whervop. the said party of The firit part has lienwnin tit how howed asod seal the day and year find above nirillen.
Siqnidefiailid amelfidivemel
 Ghate of (ouigomica ss.

 bumeled lioe wime

 "huar paillou
Y(). fimorndt
Mladory J'whtien
WO

y Nof Juc b́nncer peadn

\therefore Return to: C. ok of the Board BOARD OF SUPENASORS, COUNTY OF HUMBOLD, STATE OF CALIFORNIA 121 : Certified copy of portion of proceedings, Meeting of June 21, 1983 Clerk of the Board vol 1705 artificial po 484
RESOLUTION NO. $\frac{83-86}{}$
VACATING A PORTION OF POND STREET
(FORTUNA AREA; COUNTY ROAD NO. 3G335) Jun 22.907 AM '83

WHEREAS, a freeholders petition was filed with the Department of Public Works requesting the vacation of a portion of Pond Street in the Fortuna area; and

WHEREAS, pursuant to such filing the matter was set for a public hearing to be held on Tuesday, June 7, 1983, at the hour of l:45 p.m. in the Supervisors' Chambers, Humboldt County Courthouse, Eureka, California; and

WHEREAS, notice of said hearing was duly published and posted as required by law; and

WHEREAS, said hearing was duly held at the time and place specified in said notice, and evidence was taken at said hearing that the portion to be vacated is not necessary for present or prospective public use;

NOW, THEREFORE, BE IT RESOLVED as follows:

1. This Board of Supervisors finds that all of the recitations made hereinabove are true and correct.
2. The portion of Pond Street proposed to be vacated is not needed for present or prospective public use.
3. This Board of Supervisors finds that the right-of-way proposed to be abandoned hereby is not useful as a non-motorized transportation facility, as defined in Section 156 of the Streets and Highways Code.

BOARD OF SUPERVISORS, COUNTY OF HUMBOLDT, STATE OF CALIFORNLA

Certified copy of portion of proceedings, Meeting of June 21, 1983

4. That portion of Pond Street described in Exhibit A, which is attached hereto and made a part hereof by this reference, be and the same hereby is ordered vacated.
5. The Clerk of the Board of Supervisors is directed to record a certified copy of this resolution in the office of the County Recorder.

Adopted on motion by Supervisor Pritchard , seconded by Supervisor Chesbro and the following vote:
AYES: Supervisors- Renner, Pritchard, Chesbro, Walsh, Sparks
NOES: Supervisors- INone
ABSENT: Supervisors- None
ABSTAIN: Supervisors- None
$\left.\begin{array}{l}\text { STATE OF CALIFORNIA } \\ \text { County of Humboldt }\end{array}\right\}$ ss

I, ROBERT E. HANLEY, Clerk of the Board of Supervisors, County of Humboldtristate of California, do hereby certify the foregoing to be a full, true and correct copy of the origirar made in the above entitled matter by gaid Board of Supervisors at a meeting held in Bureka, Califormia as thersame now appears of record in my office.

IN WITNESS WHAERHONG have hereunto set my hand and affixed the Seal of satid Boprd of Supervisors

ROBEAT-E HANLEY JMne 21, 1983
CJeris of the Boarbof Supervisors of the County of Humboldt, State of Cabrornid

"Exhibit A^{π}

LEGAL DESCRIPTION

All that portion of Ponci Sereet (CoRdNo 3G335) in the northwest quarter of Section 2, Township 2 North, Range 1 West, Humboldt Base and Meridian, which lies within the following described boundaries:

Commencing at a point from which the southeast corner of said Section 2 bears S. $44^{\circ} 07^{\prime} 45^{\prime \prime}$ E., 5,636.55 feet and from which point Engineer's Station "F" $323+25.76$ P.O.T. of the State of California Department of Public Works' survey from Alton Grade Crossing to 0.2 mile west of West City Limits of Fortuna (State Highway I-Hum-1-F, Fta, G) bears S. 55° 13' W., 348.41 feet; thence, S. $34^{\circ} 10^{\prime} 55^{\prime \prime}$ E., 19.06 feet to the TRUE POINT OF BEGINNING; thence, S. $1^{\circ} 45^{\prime} 08^{\prime \prime}$ W., 55 feet to an intersection with course (4) described in deed to the State of California recorded May 10, 1960, in Book 586 of Official Records, page 291, Humboldt County Records, as having a bearing and length of N. $89^{\circ} 52^{\prime} 52^{\prime \prime}$ W., 187.37 feet; thence, S. $89^{\circ} 52^{\prime \prime} 52^{\prime \prime}$ E., along said course, 109.64 feet to an intersection with course (I) described in Parcel 2 in deed to the State of California, recorded April 8, 1957 in Book 439 of Official Records, page 51, Humboldt County Records as "thence, from a tangent that bears N. $1^{\circ} 01$ ' W., along a curve to the left with a radius of 280 feet, through an angle of $5^{\circ} 46^{\prime}$

15", a distance of 28.20 feet to the northerly line of said parcel of land"; thence, southerly, along said curve, 28.20 feet to the southerly terminus thereof; thence, S. $1^{\circ} 01^{\prime}$ E., 388.55 feet; thence, along a curve to the left, tangent to the last preceding course, with a radius of 70 feet, through an angle of $53^{\circ} 29^{\prime}$ 29", a distance of 65.35 feet to the southerly line of the parcel of land described in the Agreement of Sale between the Department of Veterans Affairs of the State of California and Henry Vernon Belisle, recorded March 3, 1950 in Book 123 of Official Records, page 123, Humboldt County Records; thence, N. 80 25° 53" E. . along said southerly line, 80 feet to the westerly line of the parcel of land described as Parcel 2 in deed to Ben A. Mchorter, recorded in Book 278 of Official Records, page 296, Humboldt County Records; thence, northerly, along said westerly line, 20 feet to the southeasterly terminus of the course described in Director's Deed to Ben A. Mothorter, recorded July 9, 1957 in Book 451 of Official Records, page 277, Humboldt County Records, as having a bearing and length of S. $70^{\circ} 30^{\circ}$ E., 68.00 feet; thence, N. $70^{\circ} 30^{\prime} \mathrm{W}$. , along said course, 68.00 feet to the westerly terminus thereof; thence, N. $1^{\circ} 01$ ' W., 416.67 feet to an intersection with course (4) described in deed to the state of California recorded May 10 , 1960 in Book 586 of Official Records, page 291, Humboldt County Records, as having a bearing and length of N. 89 $52^{\prime \prime} 52^{\prime \prime} \%$. 187.37 feet; thence, S. $89^{\circ} 52^{\prime} 52^{\prime \prime}$ E., along said course, 19.67
feet to the westerly right of way line of the Northwestern Pacific Railroad; thence northerly, along said westerly line, 50.96 feet to a point that bears $S .86^{\circ} 42^{\prime} 22^{\prime \prime}$ E. from the TRUE POINT OF BEGINNING; thence, N. $86^{\circ} 42^{\prime} 22 " ' ~ W, ~_{147.80}$ feet to the TRUE POINT OF BEGINNING.

Reserving and excepting a permanent easement and right of way to Pacific Gas and Electric Company, a California corporation, for structures and facilities enumerated in Section 959.1 of the Streets and Highways Code of the State of California.

DRAINAGE EASEMENT The undersigned being the owner of the lands
Vying North of the Beacom Subdivison os show hereon oo hereby grant to the Count of Humbold a drainage easemmenth it whers flowing
my land's and into Rohner Creek.
signed froek in fortenant
COUNTY SURVEYORS CERTIFICATE I. C. A. Giacomini County Surveyor for the
County of Aumboldt Stafe of California, herebb Certify that have examined the ottoched map, that
the subdivision is substantially the some os it apperad on the Tentoritice Map ond any appproved Teration thereto: that all provisions of part 2 ,
Division $1 V$ of the Business and Professions. Code and any local ordinances app and cable oft the time of
poproval of the Tentative Map have been complied
 technically correc
Snwitness whereof I have
Hand and affixed my seal.
signed Gamen M. Vo Mace

COUNTV CLERKS CERTIFICATE OF ACCEPTANCE ITRED N MOORE WR, County Clerk and F_{x} offich Alumboldt, State of Colifornia, hereby certify that
the Board of Supervisors, at a meeting held on
 was present apporoved ond accepted on behalf
of the peblic the porcels of fortered for
dedication for the uses set forth on the dedication for the uses set forth on the
ottached map in con formity with the terms attached map in con
of the dedicakion:
signed See Ora-rstanncult

COUNTY CLERK'S CERTIFICATE I hereby certify that a bond in the amount fixed by the
Board of Superv sors of Humboldt County, Stote of

 guaranteeing the payment of all texes not yet payable
which ore a lien of the time of filing of this map whic ore a Mencon SubDivision, in Humboldt County
dearinated BEACin
California, against the lands shown thereon.

Dated ilune 4.1953 by order of 5.25 .53 Signed Nte of fincoove therd of

ENGINEER'S CERTIFICATE
I hereby certify that this mop designoted Beacom
Subivision intumboldt Cunty

 960 "ot the locations shown from which tre survey can be retraced. (Pamp M. Athmork
poip M. Sohmook, Registered Civilingineer No. 960

PLANNING COMMISSION'S APPROVAL T. Wealey D. Aill Secretary of the Planning Commission
oftumboldt County State of Colifornia heregy certity tha the said Commis sion, at a meeting held on me may al 195 recommended approval and acceptance of
map.
Dated May
255
signed weelep D akill
Secretary of the , Phning Commission of the County
Secretary of the phinning Commission
of Humboldt, State of California.

OWNER'S CONSENT

signed Dames A. Beacom

stare of California

 Said Count
 nown to me to be the persons whose nomes are süb
scribed to the foregoing O unpers Consent tond ocknowledge to me that Whayexecuted the same,
Witnesg my hond and Offcial Seol this 30 do doy of Will पlen Corruy TRUSTEE'S AND BENEFICIARY'S CONSENT
 Cing the Trustee ond Beneficiaries, respectively named in
thot certain Deed of Trust made Aprif
I953 recorded in Book $\frac{247}{}$ Poge $Z 75$ of the official records of Humboldt Cauntr o hereby consent to the making ond filing
of this mop ond to the ded ication or the rod os shown thereon oa this mop ond tothe detication or the roon os shas.
Signed ot dellelel
By Dp buleher president

 President.
topeored the with instrument and acknow
orontion that executed the

andyegr in this certiticare first of

State of Califionia
county of 7 temers

MAP OF
BEACOM SUBDIVISION
IN SECTION 2 I WES
HIM NORTH RANGE I
ONE SHEET.
owner's statement
KNOW ALL MEN BY THESE PRESENTS: The undersigned, being a municipal corporation vested under the laws of the State of California and the sole part
holding any record title interest to the land shown within this Subdivision, does hereby consent to the preparation and recordation of this map and offer f edication and do hereby dedicate for public use the rights of way and public tilities as shown on this map.
Signed: Dated \qquad
Signed: \qquad Dated: \qquad

NOTARY CERTIFICATE
State of California
County of Humboldt

\qquad
personally known to me / proven.to me on the basis of satisfactory evidence / to
 acknowledged to me that hesthet they executed the same in his heer their authorized capacityt(fies), and that by his/hertherin signaturef(s) on the Instrument, the person(f), or the entity upon half of which the person(s) acted, executed the witness

tax COLLECTOR'S CERTIFICATE

, Stephen A. Strawn, Tax Collector of Humboldt County, California, hereby lenty due against the land within this Subdivision or Parcel Map described Assessor's sarcel No. 200-353-22.23 for unpaid State, County, Municipa Local Taxes or Special Assessments collected as property taxes, except taxe or special assessments not yet due and payable.
If further certify that taxes or assessments which are a lien, but not yet payab) have been estimated at $\$$ none and a tax bond in this amount has be
collected and deposited with this office on behalf of the Board of Supervisors.

$$
10-1-9
$$

Dated:-
$10-1.910$ \qquad
$991-22.701-2$
County recorders statement

$$
\text { Filed this Ine day of Octuber } 1996 \text { at } 9: 32 \text { Pht }
$$

Cardyn crnich © Dulia $\frac{16 u}{\text { Deputy }}$
Fee: \qquad
dedication notes
The portions of the following described Parcel lying within the boundaries of this Subdivision are hereby
dedicated as shown hereon, for the uses and purroses as sel forth herein: pretais
PARCEL A is dediciated to the City of Fortuna as a Public Uilitities Easement along Strongs Creek and Rohner
Creek appurtenant to Parcels 2 and 3 , and for all puposes incidenal thert PARCEL B is dedicated across Parcel 2 to the owner of Parcel 1 for ingress and egress, public utilities and PARCEL C is dedicated across Parcel 3 to the owner of Parcels 2 for ingress and egress, public utilities and PARCEL C is deicicated across Parca

Ity Planner's statement
I. Liss Shikny Meyers, City Planner for the City of Fortuna, Humbold County
California hereby state that the tentative map for this Subdivision was approved Califormia hereby state that the tenative map for iis subdivision was approved by the City of Fortuna and that this Parcel Map is substantially the same as the
approved tentative map and any approved alterations thereof and that this Parcel approved entative map and any approved aliterations thereof and har his Parce
Map complies with the Conditions of Approval for the tenative map pursuant Resolution 96 -

$$
\text { Signed: } \frac{\text { Lis S. Shikany Meyers, City Planner }}{\text { Les }}
$$ Dated: LD CITY ENGINEER'S STATEMENT

I, Michael W. Satale, City Enyineer for the City of Fortuna, Humboldt County for conformance with the requirements of Section 66410 of the State Governm Code I I hereby state that all provisions of the Subdivision Map Act and al
applicable local ordinances have been met and the accompanying map il tigned: Michaich W. Satel, © ity Engineer R.C E 30.850 , Expires $3 / 31 / 2000$
city clerk's statemen
I, Dale W. Neiman, City Clerk and Ex Officio Clerk of the City of Fortona Humboldt County, State of Calififriai, hereby y cecept this map on behalf of the
City of Fortuna, including the rights of way easements and City of Fortuna, including the rights of way, eesements and parcels of land
offered for dedication for the uses as sel forth herein, and consent to the offered for dedication for the uses as set forth herein, and consen
adjustment of hhe property lines described herein, in conformity with
Resolution P96-
Signed: $\frac{I,}{\text { Dale W. Neiman, City Clerk }}$
Dale W. Neiman,
City of Fortuna
SURVEYOR'S STATEMEN
This map was prepared by me or under my direction and is based ypon a field survey in conformance with the requirements of the Subdivision Map Act and
 Thare.

Men Michac W. Satel Dated: 10/18196 RC E 30.850 Eppired $3 / 31 / 2000$

PARCEL MAP NO. $3: 2$

CITY OF FORTUNA
IN THE NW $1 / 4$ OF SECTION 2
T2N, R1W, HUMBOLDT MERIDIAN
HUMBOLDT COUNTY, STATE OF CALIFORNIA SCALE $1^{\prime \prime}=100^{\prime}$ OCTOBER 1996

SHEET 1 OF 2

ACCEPTANCE
 arcepton behalf of the publice the dedication of the
 Oarl O.Brown

 Colitornio, ond are within the limits of the incorporated lity of
Foftamo that there ore no liens tor inpoid toxes levied by soid City
of Font

 Dofed this 2oth day of September_1954.
Attest: \quad Iay p ball $\frac{\text { leama }}{\text { Cierkosthe }}$ City Council
 Tay p lallarmay
iftifot ofthe City of fortuno
state of colifon

OWNER'S CONSENT AND DEDICATION
We, Willur T. Greer and Amy L. Ereer, hosband ond wifte, declare that we ore the sole owners, orthe land subdivided an this mop consisting of
one sheett the there is no person ofther than ourselves oxcept

$$
\begin{aligned}
& \text { Wiehen I fuei } \\
& \text { tmy } 1 \text { BHen. }
\end{aligned}
$$

State of Californialss

On this 20倠 day of September 1954, before me. Guguv B. Lucu a Notar public in ono for the Amy Er Greer, husband ond witet persond the pown to me to be dedication, nnic aknowledged to me that they execuled the some
Invitness whereof Inove hereunto subscribed my name and $\frac{\text { Gugue } 0 \text {. Fucas }}{}$ Notareqgive o. fuces
My Commission expires Apuil 31906

TAX AND ASSESSMENT CERTIFICATE

NEAL M NiCh
I estimate that the taxes now a lien but not yet poyable will
netomaich
93nt (Q) Sendy

AMENDED MAP OF
Sandy Prairie Subdivision IN THE
CITY OF FORTUNA
HUMBOLDT COUNTY, CALIFORNIA

January 10, 2005

Duane Rage, City Manager

City of Fortuna
MOB 545
Fortuna CA 95540

RE: ANNEXATION BY THE CITY OF FORTUNA OF COUNTY ROADS ADJACENT TO THE CITY OF FORTUNA

Allen Campbell, Director, Humboldt County Department of Public Works, has requested that I provide you some information. It is in response to a request by you associated with roads proposed for annexation that were discussed in our previous letters. The previous letters discussed the annexation of Strongs Creek Road (known by the City as Dinsmore Drive), Twelfth Street, a portion of Rohnerville Road, a portion of Eel River Drive, and Drake Hill Road.

The information requested was regarding the County's cost of maintenance of the roads over the last five years and what it would cost if the County was to perform the desired future maintenance of the surface of the roads. The following is a description of the road, the County's past cost of the maintenance of the road, and an estimate of the cost to maintain the roads to the desired standard. The desired standard of maintenance consists of sealing the roads at a 12 to 14 year period and resurfacing the roads every 25 years. The County cost for sealing a road is estimated to be $\$ 0.12$ per square foot and a $\$ 1.30$ per square foot for resurfacing a road. These are the prices used currently by the County in the estimation of costs for maintenance of new subdivision roads.

STRONG CREEK ROAD

This portion of road lies south of the city limits of Fortuna to the intersection of Riverwalk Drive. The County has not spent any funds on this road for the last 5 years or longer. When the City annexed the portion of land at the end of the road, the then city manager of Fortuna provided a letter to LAFCO and the County indicating that they would maintain this portion of Strongs Creek Road for the County as consideration of approval of the annexation.

The portion of Strongs Creek Road in the County is approximately 640 feet in length and has an average width of 26 feet. The cost of sealing the road would be estimated at $\$ 2,000$ and $\$ 21,632$ for resurfacing the road at today's cost.

TWELFTH STREET

This portion of road lies within the limits of the CalTrans right of way for State Highway 101. It lies between the railroad tracks, over the overpass, to the intersection of Strongs Creek Road and Riverwalk Drive. The County entered into an agreement with CalTrans to be responsible for the surface of the road. CalTrans is responsible for the overpass structure.

The County has spent $\$ 37$ over the last five years on this portion of road. The length of road is approximately 1,530 feet and has an average width of 30 feet. The cost of resealing the road is estimated at $\$ 5,500$ and $\$ 69,670$ for resurfacing the road.

ROHNERVILLE ROAD

This portion of road lies north of Loop Road to the south line of the park. The road has been presumed by the City to be located in the City. The Campton Heights and Fortuna High School annexations by the City appear to have not included this portion of road. The County has not been providing maintenance of the road. The road was presumed by the City to be within the city limits of Fortuna and has been maintained by the City for a number of years.

EEL RIVER DRIVE

This portion of road lies between Drake Hill Road and Kenmar Road. It does not front any developable property located in the County. CalTrans and NWP Railroad front the west side of the road. The entire east side of the road serves lands located in the City. It is approximately 0.93 mile in length and has an average width of 24 feet. The County has spent approximately $\$ 26,000$ on this road in the last 5 years. The majority of the cost was associated with clean up of the movement of earth off of property owned by the City. The slide occurred in 2002.

The cost of resealing the road is estimated to be approximately $\$ 14,142$ and $\$ 153,205$ for resurfacing the road.

DRAKE HILL ROAD

This portion of road is located between Rohnerville Road and Eel River Drive. The City is located along the entire north side of the road. The north side of the road is zoned and planned for residential development. The south side of the road located in the County is mainly zoned and planned for agricultural use. The road is 1.25 miles in length and is approximately 22 feet in width. The County has spent approximately $\$ 79,000$ in maintenance of this road in the last 5 years. Approximately $\$ 67,000$ of the maintenance cost was associated with resurfacing Drake Hill Road between Thelma Drive and Rohnerville Road in 2002. This stretch of road is where the heaviest density of residential property is located within the City.

The cost of resealing the road is estimated to be approximately $\$ 17,424$ and $\$ 188,760$ is estimated for resurfacing the road.

If you have any additional questions regarding the roads or this letter, please don't hesitate to contact this office.

Sincerely,

Harless McKinley Land Use Division 445-7205

Aerial.dgn 1/23/2007 11:30:53 AM

FREEWAY MAINTENANCE AQREEMENT

THIS AGREEMENT, made and entered into, in duplicate, this 15th day of April , 1963, by and between the State of California, acting by and through the Department of Public Works, Division of Highways, hereinafter for convenience referred to as "the State", and the County of Humboldt, hereinafter for convenience referred to as "the County", witnesseth:

WHEREAS, on November 6, 1958, a Freeway Agreement was executed between the County and the State relating to the development of that portion of State Highway Route 1 in the County of Humboldt between 0.6 mile north of Route 35 and 0.3 mile north of Fortuna as a freeway, and

WHEREAS, under the provisions of said Freeway Agreement, the County agreed to certain adjustments in the County road system, and for the carrying of certain County roads over or under or to a connection with the freeway, and

WHEREAS, said freeway has now been completed or is nearing completion, and the parties mutually desire to clarify the division of maintenance responsibility as to separation structures, and County roads or portions thereof, within the freeway limits.

NOW, THEREFORE, IT IS AGREED:

1. ROADWAY SECTIONS

The County will maintain, at County expense, all portions of County roads and appurtenant structures and bordering areas, colored in yellow on the attached map marked Exhibit "A" and made a part hereof by this reference.

2. VEHICULAR OVERCROSSINGS

The State will maintain, at State expense, the entire structure below the top of the concrete deck surface, exclusive of any bituminous surface treatment thereof. The County will maintain, at County expense, the top of the concrete deck surface, together with any bituminous surface treatment thereon, and all portions of the structure above the concrete deck surface, and shall perform such other work as may be necessary to insure an impervious and otherwise suitable surface. The County will also maintain all traffic service facilities provided for the benefit or control of County road traffic.

3. VEHICULAR UNDERCROSSINGS

The State will maintain the structure proper. The roadway section, including the traveled way, shoulders, curbs, sidewalks, walls, drainage installations and traffic service facilities, will be maintained by the County.
4. EFFECTIVE DATE

This agreement shall be effective upon the date of its execution by the state; it being understood and agreed, however, that the execution of this agreement shall not affect any pre-existing obligations of the County to maintain designated areas pursuant to prior written notice from the State that work in such areas, which the County has agreed to maintain pursuant to the terms of the Freeway Agreement, has been completed.

STATE OF CALIFORNIA DEPARTMENT OF PUBLIC WORKS DIVISION OF HIGHWAYS
J. C. WOMACK

STATE HIGHWAY ENGINEER

Approval Recommended

SAM HELWER
District Engineer
By CHAS. E. WAITE
Deputy State Highway Engineer

EDWARD L. TINNEY

Maintenance Engineer

Approved as to form:
RICHARD C. EAST
Attorney for Department

APR 151963
COUNTY OF HUMBOLDT

By NORMAN R. ROBERTSON
Chairman, Board of Supervisors
\Rightarrow FRED J. MOORE, Jr. (SEAL) County Clerk

By W. E. SCHUSSMAN

\&

 between 0.4 nuile noryh of Houbluldt County 35 and 0.3 nife north of Fortuna

0
4
4
0
0
0
0

1020

Surveyorśs Certificate

 Nat Noul M. Bhmok

CITYCLERAS CERTIFICATE

Acceptance

 Carle Brown
City Comicill ARE, Deppert.....
of the
Cil of Fortune
Hystoctat Gount
encroonunzred trieq

AHest: FAY P. CALLARMAN
 of the coty of Iortana, acifornia

ACKNOWLEDGEMENT

State of Culitomina $\}$ SS

 ticate pint

Boturear
Notanger oroic in and for the

TAX AND ASSESSMENT CERTIFICATE I HEREGY CERTIFY THAT THE LANDS SUBDiviofd
 ReF HUMBOLDT COUNTY, CRLIFORNI, AND
AREF WIHIN THE LMIITS ON THE NCOROORATED
CITY
 THE CANDS THEREON SUGDIVDED. TM TME
I FURYHER CERTIEY THST IA OFDICER in CMPRGE of spechal AS5ESS in sato county and that the lands SUBDIVIED UPON THIS NSO NEE NOT
SUBUFCT TO AN SDECNL SUBUECT TO ANY SDECIAL ASSESSMEN
WHIICH HDVE NOT BEEN PAID IN EULL.
I ESTIMATE THAT THE TOXES NOW A
$\angle I E N$ BUT NOT YEG, PQYALE WILL

A CERTIEIED CHECM IN THE AMOUNT

 1953^{84}.

$$
\begin{aligned}
& \text { sots, HunBoDT Courty, } \\
& \text { splate of CALIFORNIA. }
\end{aligned}
$$

WE HERESY CERTIKY THAT THE LANDNO
SUBDIVIDED UDNN MMIS SECNO ADENOED Map of Savay penipie SubDivision in
Tive Gity of fortund gee in fimoun
Cunty

 THIS MAP THE LONDS SUBDVIDED UPON
THOE NOT SUBECT TO SNY SPECNA

$$
\text { Qy DEPUTY } \frac{\text { Pat Machaolo }}{\text { CITY CLERK of THE CITY of }}
$$

By Depury Ciry Tpx Collector of twe

OWNER'S CONSENT AND DEDICATION
 L. SHOLES, HUSBIND DND WIFE SNO NMES
R. STEWART SNO BETYY L. STEWART RUSBANA SND WIEE DECCAREWART, ARE THE OWNERS OF THELANO SUBDIVIDED THAT THERE TS NO DERSON ONE SHEET, OURSELVES EXCEDT THE HOLDER OR THE OUTSTPNDING DEED af TRUST wWOSE CONSENTIIS NECESS ARY TO PASS A
CLEAR TITLE TO THE SNBD SHOWN UPON TH/G SNBDINIDED LANDS
CONSENT TO THAD WE
 PUBLIC
HEREON.

Findw. Schales	
Fromes A plax art	
Wetty \% Stement	
¢ 5 Sen	

$\left.\begin{array}{l}\text { STATE of Cotieorway } \\ \text { County of fumbolor }\end{array}\right\}$ ss ON THI 2Yth DiY OE RUQunt 1955, Nojpey PuBLIC in ano cor Twe n80VE COUNTY AND STATE, PERSONPLLY APGreEse, MUSGND AND WIEL, HRED W. SCHOLES AND CLEO LINEHROES, MUSBPND
AND WIEE SND SAES R. STEWIART aND BETYY L. STEWART, HUSQAND AND THE PERSONS WHOSE N TO ME 70 BE
 DEDCATION BND BCKNOW LEDGED TO
ME THA THEY EXECUTED. THE SAME SN WITNESS WHEREOET HAVE WERE-
UNTO SUBSCRBES MY NME AND AE-

$$
\frac{\text { Fengun Qdecen }}{\text { Notary pralic in ano ror }}
$$

$$
13778
$$

$$
\frac{\text { Sinneo }}{\frac{\text { Evina Cor alule }}{\text { County Recordure, Cou }}}
$$

Second Amended Map of

 Lots 182SANDY PRAIRIE SUBDIVISION
in the CITY OF FORTUNA
HUMBOLDT COUNTY, CALIFORNIA

AFTER RECORDING RETURN TO: DEPARTMENT OF PUBLIC WORKS 3033 H STREET
EUREKA CA 95501

1999-8138-4
Recorded - Official Records Humboldt County, California

Carolyn Crnich, Recorder Recorded by HUMBOLDT CNTY Exempt from payment of fees
Clerk: MM Total: 0.00 Mar 16, 1999 at 13:01

RE: NEWBURG ROAD, CO. RD. 3H115
APN 200-411-43

EASEMENT DEED

DONALD R. SCHOENHOFER and STACEY S. SCHOENHOFER, husband and wife, convey to the COUNTY OF HIUMBOLDT, a political subdivision of the State of California, an easement for public highway purposes and incidents thereto over the following described land in the unincorporated area of the County of Humboldt, State of California, described as:
(SEE ATTACHED EXHIBIT "A")
Dated this Ssh day of February 1999.
OWNERS:

NOTARY ACKNOWLEDGMENT

STATE OF California
)
COUNTY OF Humboldt ;
Capacity claimed by signer:
\square Individual; \square Trustee (s); \square Attorney-in-Fact; \square Guardian/Conservator;
\square Corporate Officer (s) Title (s);
\square Partners) -- \square Limited, \square General
\square Other
On february 5,1999 before me, S. Holcomb , a Notary Public in and for said State, personally appeared Donald R. Schoenhoter and Stacey S. Senoenhofer \square personally known to me --or-- \square proved to me on the basis of satisfactory evidence to be the persons) whose name (s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity(ies), and that by his/her/their signatures) on the instrument the persons), or the entity upon behalf of which the persons) acted, executed the instrument.
WITNESS my hand and official seal.

simp

(Signature of Notary)
County of Humboldt
My commission expires \qquad

EXHIBIT A

That real property situated in the County Of Humboldt, State of California, described as follows:

That portion of the Southeast Quarter of Section 36, Township 3 North, Range 1 West, Humboldt Meridian, more particularly described as follows:

Beginning on the South Line of the Southeast Quarter of said Section 36 at a point thereon South 89 Degrees 52 minutes, 36 seconds East, 1543.99 Feet from the Southwest corner of said Southeast Quarter.

Thence North 25 Degrees, 27 minutes, West, 1861.03 Feet;
Thence North 19 Degrees, 52 minutes, West, 50.93 Feet;
Thence North 33 Degrees, 52 minutes, 21 seconds, West, 77.67 Feet;
Thence North 36 Degrees, 26 minutes, West, 41.50 Feet
Thence North 26 Degrees, 50 minutes, 12 seconds, West, 30.0 Feet
Thence North 36 Degrees, 26 minutes, West, 137.34 Feet to the Southerly line of the county road known as Newburg Road and the True Point Of Beginning.

Thence North 36 Degrees, 31 minutes, 11 seconds, West, 23.52 Feet;
Thence North 53 Degrees, 48 minutes, 46 seconds, East, 179.73 Feet;
Thence South 36 Degrees, 31 minutes, 58 seconds, East, 25.00 Feet;
Thence South 53 Degrees, 48 minutes, 46 seconds, West, 179.73 Feet;
Thence North 36 Degrees, 31 minutes, 11 seconds, West, 1.48 Feet to the True Point Of Beginning.

Basis Of Bearing From
Book 58 Of Surveys, Page 93, Humboldt County Records

1999-8138-4

This is to certify that the interest in real property conveyed by the EASEMENT DEED dated February 5, 1999, from DONALD R. SCHOENHOFER and STACEY S. SCHOENHOFER, husband and wife, to the COUNTY OF HUMBOLDT, a political subdivision of the State of California, is hereby accepted by the Grantee. The Grantee consents to recordation thereof. Such acceptance and consent to recordation are made pursuant to Resolution No. 99-1, dated January 5, 1999, and Board Order No. C-15, dated March 9, 1999.

STAN DIXON, Chair of the Humboldt
County Board of Supervisors

ATTEST:

LORA CANZONERI
Clerk of the Board of
Supervisors

0

T． 2 N．，R．I W．，H．B．\＆M． section 2
（352）
（353）

（32）
（359）

－－－
（3⿰氵殳⿱一𫝀口㐄

LOCAL COOROINATE SYSTEM
$\odot=$ C...C. Survey Monument in Place
$\odot=$ C.H.C. $2 / W$ Monument in Place - Found Survey Point

BOARD OF SUPERVISOrS, COUNTY OF HUMBOLDT, S.ATE OF CALIFORNIA
Certified copy of portion of proceedings, Meetings of thea 18 .

NOES: Supervisors- tedem
ABSENT: Supervisors - Weat

$\left.\begin{array}{l}\text { STATE OF CALIFORNIA, } \\ \text { County of Humboldt }\end{array}\right\}$ ss.

I, FRED J. MOORE, JR., County Clerk of the County of Humboldt, State of California, and exofficio Clerk of the Board of Supervisors of the County of Humboldt, do hereby certify the foregoing to be full, true and correct copies of the original orders made in the above entitled matters by said
 and as the same now appears of record in my office.
IN WITNESS WHEREOF, I have hereunto set my hand and
affixed the Seal of said Board of Supervisors this
day of

THIS INDENTURE, made this \qquad day of
by and between NORTHWESTERN PAUIFIC RAILROAD COMPANY, a corporation of the State of California, herein termed "Railroad", and COUNTY OF HUMBULDT, a political subdivision of the State of California, herein termed "Grantee".

WITNESSETH:

1. Railroad, for and in consideration of the faithful performance by Gr ntee of all the terms, covenants and caditions herein contained, hereby grants to grantee the right to construct, reconstruct, maintain and operat $\geqslant 42$-inch reinforced cuncrete drainaze pipe, hereinafter sermed "struct re" beneath the property of tailroad, at or near Fortina, in the County of Humboldt, State of California, in the location shown enclosed within red iines upon the print of Kailroad's San Rafael Jrawing $X-6778$, revised October 2s, 1y59, hereto attached and made a part heroof.

This indenture wil: be sipplemented to inclute a leal desaription of the property if requested by either party in writing.
.....atb +15"u anu Ubligation of Mellroad, ita successors and assigns, to use all the property descrav herein in the performance of its duty an a common carrier, and, for that purpose, there is reserved unto Railroad, its successors and assigns, the right (consistent with the rights herein granted) to construct, reconstruct, maintain and use existing and future railroad tracks, facilities and appurtenances and existing and future tranaportation, communication and pipe line facilities and appurtenances in, upon, over, under, acmon and al ang sati property.
3. This granc is grade zujject to ail ilcenses, leases, easements, restrictions, conditions, covenants, encumbrances, liens and clalms of title which may affect said property and the word GRANT as used herein

4. The rignte neresn gxanceu us urantae ensil lapse and become vold if the construction of sald structure upon said property is not commenced within one (1) year from the date first herein written.
5. Grantee shall bear the thitire cost unt expense of constructing, reconstructing and maintaining said structure upon said property. Grantee agrees that all work upon or in connection with said structure shall be, done at such times and in such manner as not to interfers in any way whatsoever with the operations of Rallroad. The plans for and the construction of said structure shall be subject to the approval of Railroad.

Grantee agrees to reimburse hailioad for the cost and expense to Railroad of furnishing any materials or performing any labor in connection with the construction, reconstruction, maintenance and removal of said structure, including, but not limited to, the installation and removal of such falsework and other protection beneath or along Railroad's tracks, and the furnishing of such watchmen, flagmen and inspectors as Railroad deems necessary.

7. Grantee, its agencs and सaployees, shaic, have the privilege of ntry on sald property for the purpose of constructing, reconstructing, maintaining and making necessary repairs to said structure. Grantes agreen ? keep said property in a good and safe condition free from waste, so far is affected by rrantee's operations, to the satisfaction of Railroad. If irantee fails to keep said property in a good and safe condition free from taste, then Ratlroad may ferform the necessary work at the expense of irantee, which expense Grantee afrees to pay to Railroad upon demand.
8. In the event any work upon or in connection with said structure or its appurtenances, to be done upon or aljucent to the tracks and proporty of Raliroad, should be let, in a contrect.it by Grantee, axch work shal lot be begun until such contract r .
 actory to zaid company and inf.... and aralinst all

Such contractor shas Luizi, at wos virn of ant without ca-
 atisfactory to sald company. Burant...
$a 11$ the terms, covenants and conditions contained in said agreement, and a certified copy of a policy of Public Liability and Property Damage Insurance, within limits specified by, and in a form satisfactory to, said company, covering the contractual liability assumed by contractor in said agreement to be entemo' 'ntce wtth satid company by such contractio.
Y. bhould Grantee, its auccessors or assigas, at any tima abandon the use of said property or any part thereof, or fail at any time to use the same for the purpose contemplated herein for a continuous period of one (1) year, the right hereby given shall cease to the extent of the use so abandoned or discontinued, and Railroad shall at once have the right, in addition to but not in qualification of the rights hereinabove reserved, to resume exclusive possession of said property or the part thersof the use of which is so discontinued or abandoned.

Upon termination of the rights and privileges hereby granted, Grantee, at its own cost and expense, agrees to remove said structure from ald property and restore said property as nearly as practicable to the same state and condition in which it existed prior to the construction of said structure. Should Grantee in such event fail, neglect or refuse to remove said structure and restore said property, such removal and restoration may be performed by Railroad at the expense of Grantee, which expense Grantee agrees to pay to Rallroad upon demand
10. This indenture shall inure to the beneitit of and be binding upon the successors and assigns of the parties hereto.
11. For the rights herein given, Grantee shall pay to Railroad the sula of Fifty (50) Dollars.

IN WITNESS WHEREOF, the parties hereto have caused these presents to be executed as of the day and year first herein written. (In duplicate)

NORTHNESTERN PACIPIC RAILROAD COMPANY

COUNTY OF HUPGOLDT

K, St

SURVEYOR'S NOTES

 * = Establisheo by digital levels in january 2004

5. GPS AND CONVENTIONAL CONTROL MONUMENTS WERE SET IN NOVEMBER 2003.

* denotes settlement (elevation established by this survey)

7. Couvenional

BASIS OF BEARINGS

RECORD OF SURVEY CONTROL MONUMENTATION MAP

LOCATED WITHIN
SECTIONS 29 \& 32, T4N, R1W, SECTIONS $5,8,17,20,28 \& 29$, T3N, R1W, SECTIONS $2 \& 11$, T2N, R1W, HUMBOLDT MERIDIAN, HUMBOLDT COUNTY, CALIFORNIA

SURVEYOR'S STATEMENT THIS MAP CORRECTLY REPRESENTS A SURVEY MADE BY ME
OR UNOE MY DIRECTON IN CONFORMANCE WITH THE
 OF TRANSPORTATION (CALTRANS) IN AUGUST 2007.

COUNTY SURVEYOR'S STATEMENT
 THIS /V DAY OF OCTEPER , 2010 .
DÁIID J. RYAN ES 62 It

RECORDER'S STATEMENT FILED THIS $1^{\text {st }}$ DAY of October \qquad , 2010

${ }^{\text {BY: }}$: CAROLYN CRNICH, HUMBOLDT COUNTY RECORDER
FILE \#-2010-21578-4
BY: DEPUTY COUNT REClerx
no fee reauired per government cooe 6103

BOOK 68 OF SURVEYS, PAGE 25

LOCATED WITHIN
SECTIONS 29 \& 32, T4N, R1W,

SECTIONS 5,8,17,20, 28 \& 29, T3N, R1W,

SECTIONS 2 \& 11, T2N, R1W,
HUMBOLDT MERIDIAN,
HUMBOLDT COUNTY, CALIFORNIA
AUGUST 2007

CONVENTIONAL CONTROL ccs83(1991.35), ZONE 1, NAVD8B, METRIC				
tion	Noritinc	Eastinc	Eievation	
	ceinico. 198	- 18188215.300	16.628	
	639095	1818808	${ }_{16.578}^{16.654}$	
14 PS	19482.	18104	16.247	
	${ }^{6409788.536}$	${ }^{18188331.999}$	5.365	,
¢9946Ps	-640764.125	${ }^{18179790}$	(14.391	foun
6064	641732	1817459	14.680	
6325		1814456.488	29.500	Found \%" rear with 1.5" Aluminm cap stamped "HuM $10163.25{ }^{\text {che }}$
86Ps	${ }^{644695.261}$	18141461.770 1813916.854	(36.998	
${ }_{6} 833$	649976.944	${ }^{1813669.003}$		
6401	645207.057	${ }_{1}^{1813473.861}$	29.385	
6428	645356.8	${ }^{1813057.663}$	23.6	
${ }_{6}^{649}$	4524.22	-1812834.897		
${ }_{6488}$	${ }_{646605.862}^{6454.96}$	1812496	${ }_{6}^{52.605}$	
650	646	181260	${ }_{\text {cinc }}^{63.27}$	
${ }_{6564}^{6531}$	64673	18812795,	¢9.384	
6564	647206.140 6473456525		${ }_{\text {che }}^{\substack{66.099}}$	SOUNO $3.25^{\prime \prime}$ ALUMINUM SURVEY DISK ON ALUMINUM ALLOY ROD ENCASED IN PVC IN CONCRETE STAMPED "CA HPGN DENSIFICATION STA OI PB 1993"
6593	647616.208			
${ }^{6610}$		${ }^{181313039.998}$	${ }^{76.609}$	
6642685	648397.4	1813080.555	${ }^{80.127}$	
	${ }_{\text {che }}^{648959}$	${ }_{\substack{181297 \\ 181303}}^{1}$	${ }_{82.15}^{88.45}$	
6601	${ }_{699212.8}^{64}$	1813255.520	${ }_{83.535}^{93.120}$	SET \%/" Reara mith 1.5" Alumimum Cap Stamped "67.01 2003"
-6728				
${ }^{6772}$	65012	${ }_{\text {liblinli.012 }}$	33.9	
${ }_{681} 6$ c79P9	${ }_{6}^{650551 .}$		${ }_{\substack{8.606 \\ 6.095}}$	
${ }_{6}^{6835}$	651229 651576			Ster
${ }_{6886}$		1813974	¢	
9976Ps	${ }_{6}^{6521}$	+181410.979	¢	
6937	$\xrightarrow{652829.477}$	${ }_{1}^{1813887.032}$	2.043	
	653200.778 653562945	${ }^{\substack{1813869.650 \\ 188382.785}}$	+1.995	
			${ }_{3.348}$	
$\begin{aligned} & \text { c99905 } \\ & 7007 \end{aligned}$	653777.294	1814042.416 813744.9	4.149	SET 1" GIP WITH 2.25" BRASS DISK WITH CONCRETE COILAR STAMPED "HUM 10169.94 GPS"

RECORD OF SURVEY
 CONTROL MONUMENTATION AND

SURVEYOR'S STATEMENT
THIS MAP CORRECTLY REPREEENTS A SURVEY MADE BY ME OR UNOER MY DIRECTION IN
 IN JANUARY 2008. STATE HIGHWAY 101

IN SECTION 2,TOWNSHIP 2 NORTH,RANGE 1 WEST, AND SECTIONS 28, 29, 33, $\mathbf{3} 4$ \& $\mathbf{3 5}$, TOWNSHIP 3 NORTH, RANGE 1 WESTI, HUMBOLDT MERIDIAN
CITY OF FORTUNA COUNTY OF HUMBOLDT, STATE OF CALIFORNIA

OCTOBER 1999

```
BASIS OF BEARINGS
M,
```

PURPOSE OF SURVEY

SURVEYOR'S NOTES

HUM $10160.492103813 .948 \quad 5963867.629 \quad 47.21 \quad 11 / 2^{\prime \prime}$ ALUM CAP ON $3 / 4$ " rebar stamped "hum $10160.49^{\prime \prime}$
hum $10163.48 \quad 2115137.840 \quad 5951962.519 \quad 121.34 \quad 11 / 2^{\prime \prime}$ AlUM CAP on $3 / 4$ " REbar stamped "HUM 10163.48 "
HUM 101 63.66 $2115733.846 \quad 5951158.983 \quad 117.35 \quad 11 / 2^{\prime \prime}$ alum cap on 3_{4} " rebar stamped "hum $10163.66^{\prime \prime}$
2. comeined grid factor for this project is 0.9999030 at "hum $10161.68^{\prime \prime}$ with a convergence ancle of - $01^{\circ} 25^{\circ} 06$
3. CONTROL MONUMENTS WERE SET IN DECEMBER, 1999.

5. least souares adjustment was performed using caltrans post processing software (ctdad release a)
6. all elevations were established using trigononetric procedures.

 NORESE REPPIRATION DATE: 3 -31-2010
Hof ICE OF SURVEYYRS

COUNTY SURVEYOR'S STATEMENT

License expiration date: march 31, 2010

RECORDER'S STATEMENT
FILED THIS 2 no JAY OF Novem BER , 2009 AT $\frac{2}{2}: 50$ P.M
IN BOOK 67 OF SURVEYS AT PAGES $56-64$, AT THE REOUEST of calt tans.
$\frac{\text { CAROLYN CRNICH }}{\text { HUMEOLOT COUNTY RECOROER }}$
FIIE $\# 2009-24342-9$
Br: 2 Holm
DEPUTY COUNTY RECORDER $\underline{\text { LOCATION MAP }}$

No fee reauired per covernment code 6103
 NoRTH REGION
OFICE OF SUREYORS

$$
\begin{aligned}
& \text { RECORD OF SURVEY } \\
& \text { ROL MONUMENTATION }
\end{aligned}
$$ CONTROL MONUMENTATION AN MONUMENT PERPETUATION MAP IN THE CITY OF FORTUNA HUMBBOLDT COUNTY

RECORD OF SURVEY

CONTROL MONUMENTATION AND

 MONUMENT PERPETUATION MAP STATE HIGHWAY 101IN SECTION 2,TOWNSHIP 2 NORTH, RANGE 1 WEST, AND SECTIONS 28, 29, 33,34 \& 35, TOWNSHIP 3 NORTH, RANGE 1 WEST,

HUMBOLDT MERIDIAN
city of fortuna, county of humboldt, state of california

OCTOBER 1999

$$
\begin{aligned}
& \text { FOUND GPS PROJECT CONTROL CCS83 (1991.35), ZONE 1, NAVD88 (SEE BOOK } 64 \text { OF SURVEYS, PAGES } 146 \text { \& 147) } \\
& \text { PROJECT CONTROL ESTABLISHED BY THIS SURVEY }
\end{aligned}
$$

RECORD OF SURVEY
 CONTROL MONUMENTATION AND MONUMENT PERPETUATION MAP

 STATE HIGHWAY 101IN SECTION 2,TOWNSHIP 2 NORTH, RANGE 1 WEST, AND SECTIONS 28, 29, $3 ⿹ 勹 2 \pi$ \& 35 , TOWNSHIP 7 NORTH, RANGE 1 WEST,

HUMBOLDT MERIDIAN
CITY OF FORTUNA, COUNTY OF HUMBOLDT, STATE OF CALIFORNIA
OCTOBER 1999
LEGEND
FOUND MONUMENT AS DESCRIBED
C. SET mONument as described

- Found centerline monument as described
(82) AS BUILT PLANS FOR CONTRACT 59-1TC7 IN
(R3) AS BUILT PLANS FOR CONTRACT 61-1T13C16F IN
DRAWER $10-32-03$ CALTRANS DISTRICT 1 OFFICE.

SCALE $1^{\prime \prime}=100^{\prime}$

CONVERGENCE ANGLE
AT HUM 10161.68
NOTE: ROTATE GRID BEARINGS

OBTAIN GEODETIC (TRUE) BEARINGS

Centerline stationing from as-built plans for CONTRACTS 59-1TC7 (R2) \& 1T13C16F (R3)

PROJECT CONTROL ESTABLISHED BY THIS SURVEY (CCS83 (1991.35), ZONE 1, NAVD 88, US SURVEY FEET)				
STATION	NORTHING	EASTING	Elevation	DESCRIPTION
HUM 10162.31	2111345.370	5956687.887	70.55	SET 1 1/2" aluminum disk on 3/4" rebar Stamped "hum 10162.31 "
HUM 10162.51	2111764.989	5955529.749	82.11	SET 1 1/2" aluminum disk on 3/4" Rebar Stamped "hum 10162.51 "
HUM 10162.79	2112636.283	5954516.260	74.65	SET 1 1/2" aluminum disk on 3/4" Rebar Stamped "Hum 101 62.79"
HUM 10163.01	2113518.768	5953845.025	69.06	SET 1 1/2" aluminum disk on 3/4" rebar Stamped "Hum 101 63.01"
CENTERLINE MONUMENTS FOUND BY THIS SURVEY				
STATION	NORTHING	EASTING	Elevation	DESCRIPTION
\#63	2111600.396	5955970.260	76.64	FOUND $21 / 4 "$ brass disk in CONCRETE CENTERLINE STATION 45+19.47 (R2), DESTROYED 2002
\#64	2111952.620	5955339.963	78.04	FOUND $21 / 4 "$ BRASS DISK IN CONCRETE CENTERLINE STATION 57+00 (R2), DESTROYED 2002
\#65	2112310.008	5954913.655	73.01	FOUND $21 / 4 "$ BRASS DISK IN CONCRETE CENTERLINE STATION 62+57.04 EC (R2), DESTROYED 2002
\#66	2112712.474	5954506.523	74.30	FOUND $21 / 4 / 4$ BRasS disk in CONCRETE CENTERLINE STATION 68+29.78 BC (R2), DESTROYED 2002

 RECORD OF SURVEY CONTROL MONUMENTATION AND MONUMENT PERPETUATION MAP IN THE CITY OF FORTUNA, HUMBOLDT COUNTY STATE HIGHWAY 101

RECORD OF SURVEY

ONTROL MONUMENTATION AND

 MONUMENT PERPETUATION MAP STATE HIGHWAY 101$$
\begin{gathered}
\text { SECTION } 35 \\
\text { OWNSHIP } 3 \text { NORT }
\end{gathered}
$$

IN SECTION 2,TOWNSHIP 2 NORTH, RANGE 1 WEST, AND SECTIONS 28, 29, $35,34 \& 35, T O W N S H I P ~ 3 ~ N O R T H, ~ R A N G E ~ 1 ~ W E S T, ~$

HUMBOLDT MERIDIAN CITY OF FORTUNA, COUNTY OF HUMBOLDT, STATE OF CALIFORNIA

Centerline stationing from as-built plans for CONTRACTS 59-1TC7 (R2) \& 1T13C16F (R3)

Hu

$$
\text { RANGE } 1 \text { WEST }
$$

SECTION
OWNSHIP 2 NORTH
RANGE 1 WEST

HMM 101 O- O-

$$
\begin{aligned}
& 5^{\circ} 49^{\prime} 56^{\prime \prime} \mathrm{E} \\
& \hline 10154^{\prime}
\end{aligned}
$$

$\frac{\text { GGEDDETIC }}{\text { GRID }}$

SCALE 1" = 100^{\prime} 0

CONVERGENCE ANGL
$-1^{\circ} 25^{\prime} 06^{\prime}$
AT HUM 10161.68

Note: ROTATE GRID BEARING $1^{\circ} 25^{\prime} 06^{\prime \prime}$ COUNTER CLOCKWISE TO
OBTAIN GEODETIC (TRUE) BEARINGS.

BUSINESS. TRASASORTATIO AND HAUSIMG AGENCY
DEPARTMENT OF TRANSPORTATON (CALTRANS) NORTH REGION
OFFICE OF SURVEYORS

RECORD OF SURVEY ONTROL MONUMENTATION AND MONUMENT PERPETUATION MAP N THE CITY OF FORTUNA HUMBOLDT COUNTY
STATE HIGHWAY 101

RECORD OF SURVEY

CONTROL MONUMENTATION AND MONUMENT PERPETUATION MAP MONUMENT PERPETUATION MAP

STATE HIGHWAY 101

$$
\begin{aligned}
& \text { SECTION } 2 \\
& \text { WNSHIP } 2 \text { NOF }
\end{aligned}
$$

TOWNSHIP 2 NORTH
IN SECTION 2, TOWNSHIP 2 NORTH, RANGE 1 WEST, AND SECTIONS 28, 29, $3 ⿹ 勹 24$ \& 35, TOWNSHIP 3 NORTH, RANGE 1 WEST,

HUMBOLDT MERIDIAN CITY OF FORTUNA, COUNTY OF HUMBOLDT, STATE OF CALIFORNIA

January 10, 2005

Duane Rage, City Manager

City of Fortuna
MOB 545
Fortuna CA 95540

RE: ANNEXATION BY THE CITY OF FORTUNA OF COUNTY ROADS ADJACENT TO THE CITY OF FORTUNA

Allen Campbell, Director, Humboldt County Department of Public Works, has requested that I provide you some information. It is in response to a request by you associated with roads proposed for annexation that were discussed in our previous letters. The previous letters discussed the annexation of Strongs Creek Road (known by the City as Dinsmore Drive), Twelfth Street, a portion of Rohnerville Road, a portion of Eel River Drive, and Drake Hill Road.

The information requested was regarding the County's cost of maintenance of the roads over the last five years and what it would cost if the County was to perform the desired future maintenance of the surface of the roads. The following is a description of the road, the County's past cost of the maintenance of the road, and an estimate of the cost to maintain the roads to the desired standard. The desired standard of maintenance consists of sealing the roads at a 12 to 14 year period and resurfacing the roads every 25 years. The County cost for sealing a road is estimated to be $\$ 0.12$ per square foot and a $\$ 1.30$ per square foot for resurfacing a road. These are the prices used currently by the County in the estimation of costs for maintenance of new subdivision roads.

STRONG CREEK ROAD

This portion of road lies south of the city limits of Fortuna to the intersection of Riverwalk Drive. The County has not spent any funds on this road for the last 5 years or longer. When the City annexed the portion of land at the end of the road, the then city manager of Fortuna provided a letter to LAFCO and the County indicating that they would maintain this portion of Strongs Creek Road for the County as consideration of approval of the annexation.

The portion of Strongs Creek Road in the County is approximately 640 feet in length and has an average width of 26 feet. The cost of sealing the road would be estimated at $\$ 2,000$ and $\$ 21,632$ for resurfacing the road at today's cost.

TWELFTH STREET

This portion of road lies within the limits of the CalTrans right of way for State Highway 101. It lies between the railroad tracks, over the overpass, to the intersection of Strongs Creek Road and Riverwalk Drive. The County entered into an agreement with CalTrans to be responsible for the surface of the road. CalTrans is responsible for the overpass structure.

The County has spent $\$ 37$ over the last five years on this portion of road. The length of road is approximately 1,530 feet and has an average width of 30 feet. The cost of resealing the road is estimated at $\$ 5,500$ and $\$ 69,670$ for resurfacing the road.

ROHNERVILLE ROAD

This portion of road lies north of Loop Road to the south line of the park. The road has been presumed by the City to be located in the City. The Campton Heights and Fortuna High School annexations by the City appear to have not included this portion of road. The County has not been providing maintenance of the road. The road was presumed by the City to be within the city limits of Fortuna and has been maintained by the City for a number of years.

EEL RIVER DRIVE

This portion of road lies between Drake Hill Road and Kenmar Road. It does not front any developable property located in the County. CalTrans and NWP Railroad front the west side of the road. The entire east side of the road serves lands located in the City. It is approximately 0.93 mile in length and has an average width of 24 feet. The County has spent approximately $\$ 26,000$ on this road in the last 5 years. The majority of the cost was associated with clean up of the movement of earth off of property owned by the City. The slide occurred in 2002.

The cost of resealing the road is estimated to be approximately $\$ 14,142$ and $\$ 153,205$ for resurfacing the road.

DRAKE HILL ROAD

This portion of road is located between Rohnerville Road and Eel River Drive. The City is located along the entire north side of the road. The north side of the road is zoned and planned for residential development. The south side of the road located in the County is mainly zoned and planned for agricultural use. The road is 1.25 miles in length and is approximately 22 feet in width. The County has spent approximately $\$ 79,000$ in maintenance of this road in the last 5 years. Approximately $\$ 67,000$ of the maintenance cost was associated with resurfacing Drake Hill Road between Thelma Drive and Rohnerville Road in 2002. This stretch of road is where the heaviest density of residential property is located within the City.

The cost of resealing the road is estimated to be approximately $\$ 17,424$ and $\$ 188,760$ is estimated for resurfacing the road.

If you have any additional questions regarding the roads or this letter, please don't hesitate to contact this office.

Sincerely,

Harless McKinley Land Use Division 445-7205

Aerial.dgn 1/23/2007 11:30:53 AM

FREEWAY MAINTENANCE AQREEMENT

THIS AGREEMENT, made and entered into, in duplicate, this 15th day of April , 1963, by and between the State of California, acting by and through the Department of Public Works, Division of Highways, hereinafter for convenience referred to as "the State", and the County of Humboldt, hereinafter for convenience referred to as "the County", witnesseth:

WHEREAS, on November 6, 1958, a Freeway Agreement was executed between the County and the State relating to the development of that portion of State Highway Route 1 in the County of Humboldt between 0.6 mile north of Route 35 and 0.3 mile north of Fortuna as a freeway, and

WHEREAS, under the provisions of said Freeway Agreement, the County agreed to certain adjustments in the County road system, and for the carrying of certain County roads over or under or to a connection with the freeway, and

WHEREAS, said freeway has now been completed or is nearing completion, and the parties mutually desire to clarify the division of maintenance responsibility as to separation structures, and County roads or portions thereof, within the freeway limits.

NOW, THEREFORE, IT IS AGREED:

1. ROADWAY SECTIONS

The County will maintain, at County expense, all portions of County roads and appurtenant structures and bordering areas, colored in yellow on the attached map marked Exhibit "A" and made a part hereof by this reference.

2. VEHICULAR OVERCROSSINGS

The State will maintain, at State expense, the entire structure below the top of the concrete deck surface, exclusive of any bituminous surface treatment thereof. The County will maintain, at County expense, the top of the concrete deck surface, together with any bituminous surface treatment thereon, and all portions of the structure above the concrete deck surface, and shall perform such other work as may be necessary to insure an impervious and otherwise suitable surface. The County will also maintain all traffic service facilities provided for the benefit or control of County road traffic.

3. VEHICULAR UNDERCROSSINGS

The State will maintain the structure proper. The roadway section, including the traveled way, shoulders, curbs, sidewalks, walls, drainage installations and traffic service facilities, will be maintained by the County.
4. EFFECTIVE DATE

This agreement shall be effective upon the date of its execution by the state; it being understood and agreed, however, that the execution of this agreement shall not affect any pre-existing obligations of the County to maintain designated areas pursuant to prior written notice from the State that work in such areas, which the County has agreed to maintain pursuant to the terms of the Freeway Agreement, has been completed.

STATE OF CALIFORNIA DEPARTMENT OF PUBLIC WORKS DIVISION OF HIGHWAYS
J. C. WOMACK

STATE HIGHWAY ENGINEER

Approval Recommended

SAM HELWER
District Engineer
By CHAS. E. WAITE
Deputy State Highway Engineer

EDWARD L. TINNEY

Maintenance Engineer

Approved as to form:
RICHARD C. EAST
Attorney for Department

APR 151963
COUNTY OF HUMBOLDT

By NORMAN R. ROBERTSON
Chairman, Board of Supervisors
\Rightarrow FRED J. MOORE, Jr. (SEAL) County Clerk

By W. E. SCHUSSMAN

\&

 between 0.4 nuile noryh of Houbluldt County 35 and 0.3 nife north of Fortuna
0
4
4
0
0
0
0

1020

Attachment K - Environmental Constraints Analysis

Environmental Constraints Analysis

Fortuna Highway 101/Riverwalk Area Connectivity Project

May 2016

Table of Contents

1. Introduction 1
1.1 Project Summary 1
1.2 Purpose of the Report 1
1.3 Location 1
1.4 Overview of Study Area 4
2. Methods 5
2.1 Research Methods 5
2.2 Environmental Reconnaissance Survey Methods 5
3. Results 6
3.1 Special Status Plants, Animals, \& Habitats Literature Results 6
4. Environmental Permits and Processes Discussion 9
4.1 California Environmental Quality Act 9
4.2 Other CEQA/NEPA Considerations: 9
4.3 Permits 10
5. Conclusions 13
5.1 Potential Permits and Environmental Constraints 13
6. References 14

Table Index

Table 1 Listed/Proposed Rare, Threatened and Endangered Species
Table 2 Potential Rare Plants Occurance and Bloom Periods

Figure Index

Figure 1 Vicinity Map
Figure 2 Reconnaisssance Level Biological Investigation

Appendices

Appendix A (USFWS Listed/Proposed Threatened and Endangered Species for the Fortuna Quad)

Appendix B (CNDDB Occurrence Report)
Appendix C (Site Photographs)

1. Introduction

1.1 Project Summary

The Fortuna Highway 101/Riverwalk Connectivity Planning Study focuses on the $12^{\text {th }}$ Street and Kenmar Road crossings of Highway 101, and includes an evaluation of the existing conditions, identification of deficiencies from Caltrans standards, and the development of conceptual alternatives intended to provide multi-modal mobility and accessibility for all users through both interchanges, with the goal of improving safety and ensuring the continued commercial viability of the Riverwalk Area. The results of the study will provide the foundation for future project development phases with the goal of implementation of improvement projects at the $12^{\text {th }}$ Street and Kenmar Interchanges.

The overall objectives of the project are to:

- Provide improved accessibility and connectivity between the Downtown and the Riverwalk Area for all users
- Support growth of business in the Riverwalk and Downtown areas by increasing the capacity of the $12^{\text {th }}$ Street and Kenmar Interchanges while considering planned commercial growth
- Support economic growth by developing strategies to improve access to the Riverwalk and Downtown areas
- Improve the safety at the Kenmar and $12^{\text {th }}$ Street Interchanges

1.2 Purpose of the Report

This Environmental Constraints Analysis is intended to document the biological conditions/constraints within the Study Area. A reconnaissance-level site investigation of existing conditions was conducted throughout the study area in February 2016, to identify the presence or potential presence of biological resources listed under the Federal Endangered Species Act (ESA), the presence of wetlands and Waters of the US as regulated by the US Army Corps of Engineers (USACE), the presence or potential presence of species listed as endangered or threatened under the California Endangered Species Act (CESA) or considered a species of special concern (SSC) by the California Department of Fish and Wildlife (CDFW), or the potential for special-status plant species having a rare plant ranking as determined by the California Native Plant Society (CNPS) rare plant inventory, and to present the potential of sensitive habitats as listed by the CDFW. This report also discusses the necessary steps required for the project to comply with federal, state, and local regulatory environmental compliance requirements and provides basic permit information. No permits or environmental compliance documents were collected, initiated, or completed for this effort, nor were regulatory agencies contacted for additional information.

1.3 Location

This Environmental Constraints Analysis is being undertaken in Fortuna, Humboldt County, California. Fortuna is approximately 14 miles south of Eureka and can be accessed from Highway 101. A vicinity map is included as Figure 1.

The project study boundary (PSB) covers approximately 35 acres around the Kenmar Road and $12^{\text {th }}$ Street interchanges for Highway 101. The PSB is depicted in Figures $2 a$ and $2 b$ and 3, and these areas were analyzed to evaluate the likeliness of environmental features and potential project constraints or likelihood of permitting requirements.

「ーー－I Project Areas

[^2]

드 Study Boundary

Potential Wetland
$=-3$ Riparian
$=-=$ Strongs Creek

\otimes	FH Valves	玉	Drain Inlet; Curb Inle
\bullet	Water Valves	\square	Headwall
=	Hydrant	\square	Storm Water Mains

SS Cleanout

- Hydrant
Storm Water Mains
SS Gravity Main
工 SS Pressurized Main

ㄴ․․ Study Boundary
Creak

FH Valves	\square	Drain Inlet; Curb Inlet	SS MH	
Water Valves	\square	Headwall	O	SS Cleanout
Hydrant	-	Storm Water Mains	\square	SS Gravity Main
Water Mains			SS Pressurized Main	

Water Mains

				HCAOG Highway 101, Fortuna Downtown and Riverwalk Area Complete Streets and Connectivity Planning Study Reconnaissance Level Biological Investigation	Job Number a Revision Date Fig	11109149 A 07 Apr 2016 gure $2 b$

G:\111\11109149 HCAOG Hwy 101 Fortuna Downtown-Riverwalk\08-GIS\Maps\Figures\Recon_WetlandsHabitat\F2b_12th_Street_North.mxd
© 2016. While every care has been taken to prepare this map, GHD make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability
 incomplete or unsuitable in any way and for any reason. Data source: City of Fortuna GIS: utiliteis; GHD: wetland/habitat reconnaissance 2-29-2016 Created by:gldavidson

			Drain Inlet; Curb Inlet Headwall Storm Water Mains Potential Wetland Ditch		Study Boundary Potential Wetland Redwoods Riparian			HCAOG Highway 101, Fortuna Downtown and Riverwalk Area Complete Streets and Connectivity Planning Study Reconnaissance Level Biological Investigation	Job Number Revision Date	11109149 A 07 Apr 2016 Figure 3

 Data source: City of Fortuna GIS: Storm Drain, aerial imagery; GHD: welland/habitat reconnaissance $2-29-2016$ Created by:gldavidson

1.4 Overview of Study Area

The Study Areas are located in the western part of Fortuna, a city with a population of 11,926 as of the 2010 census. There are two distinct Study Areas located approximately one mile apart, and these are described in greater detail below.

The $12^{\text {th }}$ Street PSB is an elongated irregularly shaped area oriented along the north-south centerline of $12^{\text {th }}$ Street and Riverwalk Drive, and bisected by Highway 101 (Figure 2a and 2b). The area north of Highway 101 consists of paved roads and maintained grassy right of way with a few scattered ornamental trees, and is bordered by residential and commercial development. There are few natural feastures remaining in this section. South of Highway 101, Strong's Creek and associated riparian habitat makes up the southern end of the PSB, with a narrow area of shrubs and trees just to the north between Dinsmore Drive and $12^{\text {th }}$ Street, and grassy swales with scattered Monterey cypress between the southern arc of $12^{\text {th }}$ Street and Highway 101.

The Kenmar PSB is oriented generally northeast/southwest (Figure 3). The larger portion east of Highway 101 includes a steep slope with non-native eucalyptus at the extreme east end, with a parking lot immediately to the west. Continuing west, an inactive rail line runs through a series of mostly open areas of low herbaceous growth with scattered Monterey cypress. West of Highway 101 and associated ramps is an ephemeral ditch which has developed a riparian-like area dominated by dense shrub and sapling cover, and which includes a few redwoods of moderate size near the intersection of Riverwalk Drive and the Highway 101 ramps. The southwest limit of the PSB coincides with the top of a grade dropping down to the adjacent Eel River floodplain, which is not included in the PSB.

Wetland and riparian habitats are discussed in further detail below.

2. Methods

2.1 Research Methods

The initial analysis consisted of review of existing environmental literature and data results from database queries of potential on-site sensitive species which were evaluated using the Fortuna United States Geoligical Survey (USGS) 7.5 quadrangle. The database queries include the California Natural Diversity Database (CNDDB) [CDFW February 2016]; the California Native Plant Society's (CNPS) Inventory of Rare and Endangered Vascular Plants [CNPS February 2016]; and lists of special-status species and natural communities that may occur in the project area as provided by the U.S. Fish and Wildlife Service (USFWS) [USFWS, 2016].

Additional existing data was reviewed when available, such as soil and ecological maps and descriptions generated by the Natural Resources Conservation Service (NRCS) and wetlands mapping from USFWS National Wetlands Inventory (NWI) [USFWS 1987]. NWI maps are compiled using a variety of remote sensing data sources, including aerial photographs, infrared photography, and soils data. NWI maps do not necessarily represent an accurate extent of jurisdictional wetlands in the Study Area. Finally, the CalFlora database in conjunction with the Jepson Herbarium database was consulted for site specific species cross referencing for potential rare plants in the project vicinity. When available, Geographic Information System (GIS) data was overlaid with the PSB.

2.2 Environmental Reconnaissance Survey Methods

On February 20, 2016, GHD field staff performed a reconnaissance level investigation of environmental and biological resources within the two PSB's. The survey was meant to identify the potential for environmental impacts and to identify potential permits that would result from implementing the project. This field reconnaissance effort, focused on identifying the potential presence of wetland, riparian, and special-status plant species (listed as rare, threatened, endangered, or candidate for rare, threatened, or endangered species listing under the state or federal Endangered Species Acts, CNPS rare plant ranking, or of local importance) or habitats present within the proposed project trail segments. The project area topographic maps, aerial photography maps, the California Department of Fish and Wildlife CNDDB and CNPS Rare Plant Inventory were consulted using the Fortuna quadrangle prior to and during the survey to determine potential sensitive species or habitat occurrence.

Field work was conducted by walking each of the proposed PSB units and visually documenting findings through photographs and notes. Each location with a potential wetland or areas potentially containing special status species and/or habitats, was noted. These areas would then be recommended for further investigations or protocol level surveys in order to fulfill potential permit requirements as described in further detail in Section 3 of this report.

The likelihood of certain permits increases in locations in which the project intersects certain features. For instance, the likelihood of a USACE Clean Water Act 404 and CDFW 1600 permit increases in locations in which the project crosses a blue line stream. Section 4 considers each permit, discusses the nature of the permit, and identifies the threshold triggers for each permit.

3. Results

3.1 Special Status Plants, Animals, \& Habitats Literature Results

A compilation of flora and fauna obtained from the literature search can be found in Table 1 below. The combined list identifies six animal species and three plant species with a moderate or high potential to be present in the PSB. A list of federal endangered, threatened and candidate species for the Fortuna USGS quadrangle was downloaded from the web site of the USFWS Arcata Field Office on March 4, 2016 (Appendix A). The USFWS lists are often of a general nature and do not indicate presence, merely the need for further review. The CNDDB Occurrence Report Rare Find 4 lists species potentially present in the project vicinity, and includes the Fortuna quadrangle (Appendix B). Several of these were subsequently excluded because of an absence of suitable habitat.

Table 1. Listed/Proposed Rare, Threatened and Endangered Species

Scientific Name	Common Name	Status	Habitat	Potential to Occur
Antrozous pallidus	Pallid bat	SSC	Dry rocky woodlands	Low, no suitable habitat
Arborimus pomo	Sonoma tree vole	SSC	Conifer forest	Low, no large stands of suitable habitat
Pekania (Martes) pennanti	Fisher	FC	Mature forest	None; no suitable habitat present
Ardea herodius	Great Blue Heron	None	Colonial nester, tall trees, marshes	Low, several miles to nearest known rookeries
Charadrius alexandrinus nivosus	Western Snowy Plover	FT	Beaches and dunes above high tide line, river gravel bars	None; no suitable habitat present
Coccyzus americanus	Yellow-billed Cuckoo	FT	Dense extensive riparian forest	Low; nearest documented recent records near Cock Robin Island
Brachyramphus marmorata	Marbled Murrelet	FT	Old-growth redwood and Douglas fir forest	None; no suitable habitat present
Riparia riparia	Bank Swallow	ST	Nests in vertical banks/cliffs along rivers	Low for nesting; known from the Eel near Fernbridge so nearby foraging

				is possible
Strix occidentalis caurina	Northern Spotted Owl	FT	Mature forest	None; no suitable habitat present
Emys (Actinymys) marmorata	Western pond turtle	SSC	Ponds, rivers, marshes	Moderate
Rana aurora	Northern Redlegged Frog	SSC	Emergent wetlands and stream margins, and nearby wet meadows and woods	High especially in riparian areas
Rana boylii	Foothill Yellowlegged Frog	SSC, federal proposed	Margins of shallow rocky streams and riffles	High; known to occur in the Eel and tributaries
Oncorhynchus kisutch	S. OR/N. CA Coho Salmon	FT	Rivers and tributaries	Moderate; historic records from Strong's Creek
Oncorhynchus mykiss	N. CA Steelhead	FT	Rivers and tributaries	High; recent records from the lower Strong's Creek watershed
Oncorhynchus tshawytscha	CA Coastal Chinook	FT	Rivers and larger tributaries	Moderate; present in Eel near Fortuna
Spirinchus thalyichthys	Longfin Smelt	FC, ST	Estuaries, may enter freshwater to spawn	Low; present in lower 4.5 miles of Eel, historic (1956) seasonal occurrence up to Van Duzen mouth

Important habitat features include Strong's Creek and an associated riparian corridor in the south and southwest portion of the $12^{\text {th }}$ Street PSB, and several large individual redwoods in the western part of the Kenmar PSB. While these habitat features are not extensive, they could harbor sensitive animals or plants and have habitat and aesthetic value.
A number of plant species identified as rare by the CNPS occur in the Fortuna quadrangle; CEQA requires that these species be considered in the planning process, thus a protocol level study is recommended during the appropriate bloom period (Table 2). Appendix B contains the CNDDB occurance report. If rare species are located mitigation measures may be required. At least one of these species (Siskiyou checkerbloom) sometimes grows within maintained road right-of-way.

Table 2. Potential Rare Plant Occurrence and Bloom Periods

Scientific Name	Common Name	Rare Plant Rank	Bloom Time	Habitat	Liklihood to Occur
Fissidens pauperculus	Minute pocket moss	1B. 2	n/a	Damp soil in dry stream beds and banks	Moderate
Sidalcia malviflora ssp. patula	Siskiyou checkerbloom	1B. 2	MayAugust	Coastal scrub, coastal prairie, road cuts	Moderate
Clarkia amoena ssp. whitneyi	Whitney's farewell-tospring	1B. 1	JuneAugust	Coastal bluff, coastal scrub	Moderate, based on a 1955 record from "west of Fortuna."
Gilia capitata ssp. pacifica	Pacific gilia	1B. 2	April- August	Coastal scrub, coastal prairie	Low

4. Environmental Permits and Processes Discussion

4.1 California Environmental Quality Act

Review under the California Environmental Quality Act (CEQA) is required whenever a state or local government entity initiates a project, funds a project, or issues a permit decision. The CEQA document is prepared or overseen by a designated lead agency. An Initial Study determines the appropriate level of environmental review; for a project such as this one limited to relatively small portions of an urban fringe area but including a salmonid stream and associated riparian areas, there is a possibility that an Environmental Impact Report (EIR) would be required. However, if all identified impacts can be avoided or adequately mitigated, a Mitigated Negative Declaration (MND) may be adequate. The City of Fortuna would most likely be the CEQA lead agency for the project. Other likely agencies include the Humboldt County Association of Governments, Caltransor other non-federal agencies with permitting authority over the project.

Compliance with the National Environmental Policy Act (NEPA) is required whenever there is federal involvement in the project. If the ultimate project includes federal funding, it would trigger NEPA analysis; in addition, federal involvement may also include approval or issuance of permits. If the project does not qualify for a Categorical Exclusion (CE) or Programmatic Categorical Exclusion (PCE), additional environmental documentation under NEPA may be necessary prior to project approval of funding by a federal agency. Caltrans would most likely be the NEPA lead agency for the project.

4.2 Other CEQA/NEPA Considerations:

From a CEQA/NEPA perspective, project segmentation may occur when the project as described and analyzed in a single CEQA or NEPA process does not encompass the entire project. Segmentation can occur when portions of a project that are dependent on other portions of the project to make them functional are evaluated in separate documents. An example would be if each interchange were analyzed in separate CEQA documents but then constructed simultaneously. In this example, the "entire project" would consist of both interchanges, even though the project was analyzed in two separate documents and therefore "segmented." However, if the components could not function without the other, then these projects must be analyzed in the same document. Alternatively, if the projects are analyzed in separate documents, they must be analyzed in the cumulative impacts section of the document. Therefore, if the two interchanges are considered a single project, then the document should address all project components.

If a project has reasonably foreseeable additional components, they must be analyzed concurrently as part of a single project. The flaw of segmentation is that it can divide larger projects into smaller components, which, when viewed independently, may not lead to the identification of the full range and intensity of impacts resulting from the entire project when viewed as a whole. Linear infrastructure network projects (e.g. transmission lines, pipe networks, roads, trails) may present a special challenge when considering whether a project is in danger of being segmented, as there may be no clear cut method of determining where an individual project starts and ends - and
whether it should be analyzed as part of a larger project or as an individual action simply occurring on a larger network. Following court decisions, the standard for determining whether a road project is an individual action warranting individual CEQA/NEPA analysis is if it is: of substantial length; and is between logical termini, such as population centers or major crossroads, etc; and has independent utility.

4.2.1 Cultural Resources

Preparation of CEQA/NEPA documents would trigger a need for cultural resources studies in at least some portions of the PSB. Reconnaissance level studies and inclusion of reasonable mitigation measures would likely be suitable for most areas, unless those studies identify concentrations of cultural resources.

4.2.2 Other Special Studies for CEQA/NEPA

CEQA and NEPA require special studies for key resources that may be impacted by the project. For instance, the Protocol level surveys for special-status plants and animals would serve as special studies. Other special studies that could be required include aesthetic studies, air quality studies, geologic studies, hazardous materials studies, noise studies, and traffic studies. At this time, it is unknown if any of these studies would be required. However, it is possible that special studies could be required for parts of the project. For example, geotechnical surveys may be required in the creek crossing locations.

4.3 Permits

4.3.1 U.S. Army Corps of Engineers (USACE) Section 404 Nationwide Permit

The USACE regulates discharges of dredged or fill material into Waters of the United States under Section 404 of the Clean Water Act (CWA). The project may result in unavoidable fill of some jurisdictional wetlands or Waters of the U.S. during project implementation. There are also potential stream crossings, although the project will likely be designed to avoid or minimize impacts to wetlands or waters of the U.S. However, if filling of wetlands or waters of the U.S. are unavoidable, the project will require a USACE Section 404 Permit. The project may qualify for a streamlined USACE Nationwide Permit. Prior to authorizing wetland fill under Section 404, a wetland delineation must be submitted and verified by the USACE. Impacts that cause a loss of jurisdictional wetland will require an approved wetland mitigation and monitoring plan (MMP), accompanied by an adaptive management plan and long term maintenance plan.

A formal wetland delineation is recommended during the planning phase of any segment which crosses a potential wetland identified in this report, and for those areas where ditches (potential Waters of the U.S.) occur adjacent to the roads, in order to verify potential wetlands or Waters of the U.S. and to request a jurisdictional determination. Wherever ground disturbing work would occur below the ordinary high water mark (OHWM) of a stream crossing, a delineation and 404 permit would also be required. Potential wetlands and waters of the U.S. are shown on Figures 2 a and 2 b and 3, and include Strong's Creek, several drainage ditches, and a few small degraded wet depressions and swales.

4.3.2 Regional Water Quality Control Board (RWQCB)

Section 401 Water Quality Certification and National Pollutant Discharge Elimination System (NPDES) Requirements: Pursuant to section 401 of the federal CWA, projects that require a

USACE permit for discharge of dredge or fill material must obtain water quality certification to confirm compliance with state water quality requirements. If the project results in unavoidable fill of wetlands or Waters of the U.S., Section 401 Certification from the RWQCB will be required. The RWQCB may encourage a CRAM evaluation of impacted habitats and mitigation for compensation of impacts.

The CWA requires that any discharge of pollutants to waters of the United States from any point source is unlawful unless the discharge complies with a NPDES permit. These regulations require that discharges of stormwater from construction projects that cause one or more acres of soil disturbance must be in compliance with an NPDES permit. If the project disturbs more than one acre of soil, it must comply with the construction general stormwater permit issued by the State Water Resource Control Board. The construction general permit requires the development and implementation of a Storm Water Pollution Prevention Plan (SWPPP).

Additionally, the RWQCB may take jurisdiction on a variety of drainage ditches and swales identified in the PSB and a formal delineation of the features will be required throughout the PSB.

4.3.3 California Department of Fish \& Wildlife Section 1602

Under Fish and Game Code Section 1602 (Streambed Alteration), the CDFW has jurisdiction over proposed activities that may substantially modify a river, stream, or lake. The PSB includes portions of Strong's Creek and several shallow ditches, and depending on final design direct or indirect impacts could occur in some of these locations. Additionally, CDFW jurisdiction extends at least to the top of bank and may sometimes include adjacent riparian zones. As a result, a 1600 Lake and Streambed Alteration Agreement including special conditions to avoid or minimize impacts is anticipated.

4.3.4 Federal Endangered Species Act Compliance (Protocol Level Surveys and Biological Assessments)

Based on available knowledge at this time, the project is not expected to result in any adverse impacts to federally threatened or endangered species or habitats, and GHD does not anticipate the need for formal Section 7 ESA consultation (this assumes no instream work). However, when a USACE permit is required for impacts to jurisdictional wetlands or other waters and the project has the potential to cause adverse impacts to federally-listed threatened or endangered species, the USACE must initiate consultation with the USFWS and/or the National Marine Fisheries Service (NMFS) pursuant to Section 7 of the ESA. Although unlikely for the proposed project, because no impacts to threatened, or endangered species are currently anticipated, if future studies determine that a listed species is present or if a species is added to the list and is present in the area, and if adverse effects are possible, then informal or formal consultation, including preparation of a Biological Assessment, may be required.

Potential issues include salmonids (steelhead, coho, chinook) which occur in the Eel River and tributaries including Strong's Creek. If project activities require dewatering of any portion of the creek, of if there is a possibility of sediment input to the stream or any other potential instream impact, then Section 7 consultation including preparation of a Biological Assessment may be necessary.

There is no documentation of terrestrial listed species in the project study boundary; however, if they are found to occur near the PSB, a variety of requirements ranging from pre-construction protocol surveys to seasonal noise and visual buffers during construction would be triggered, depending on distance to the nest.

4.3.5 California Endangered Species Act (Protocol Level Surveys and Biological Assessments):

The California Endangered Species Act (CESA) requires consultation with the CDFW when preparing CEQA documents to ensure that the lead agency actions do not jeopardize the existence of listed species.

A number of state listed or state sensitive species could potentially occur close to the PSB including bank swallow, northern red-legged frog, foothill yellow-legged frog, western pond turtle, and others. However no site-specific surveys are available at this time.

By incorporating the development of reasonable avoidance or mitigation measures in the CEQA document, such as seasonal work windows and buffer zones around bird and bat habitats and native migratory bird nests during the nesting season and pre-construction surveys for other species impacts can likely be reduced to less than significant. However, a thorough review is recommended, especially where wetland, stream, drainage ditches, or riparian impacts may occur.

4.3.6 Migratory Bird Treaty Act (Avian Surveys)

The Migratory Bird Treaty Act (MBTA) protects all native species of birds. USFWS has statutory authority to enforce the MBTA. To avoid impacts to nesting birds it is recommended that to the extent practical, construction activity occur outside the nesting season (approximately March 15 to August 15 in Humboldt County). This will be most crucial near riparian areas and large trees. If it is not possible to avoid the nesting season then avian surveys should occur within seven days prior to disturbance, and if active nests are identified then the biologist shall establish appropriate buffers. For common species typical of urban sites these are often very small, although buffers for raptors or special-status birds can be much larger (100 to 500 feet). Additonal protections for birds or requirements for avoidance are found in the Fish and Game Code and are often a part of CEQA compliance and mitigation measures.

4.3.7 California Department of Transportation (Caltrans)

Encroachment Permits (EP) and/or other agreements may be required for use of or alterations to any area within a Caltrans right-of-way.

A Humboldt County EP will be required if any work encroaches into County right-of-way. Additionally, a Humboldt County grading permit will need to be obtained for grading work in the County right-of-way which exceeds the thresholds identified in the County Grading Ordinance.

4.3.8 California State Lands Commission

The State Lands Commission (SLC) has jurisdiction over sovereign public lands, including the beds of California's naturally navigable rivers, lakes and streams, as well as the state's tide and submerged lands along the state's more than 1,100 miles of coastline, extending from the shoreline to three miles offshore. The location and extent of sovereign lands are generally defined by reference to the ordinary high and low water marks of tidal and navigable waterways. Because the boundaries of these lands are often legally based upon the last natural extent and location of the subject water body, they are not necessarily apparent from a present day site inspection, and substantial research is needed to define the extent of the state's ownership interests. Because the project crosses tributaries associated with the Eel River, further inquiry regarding the extent of SLC's jurisdiction should be conducted.

4.3.9 Permit Summary

In summary, a variety of permits and related environmental review would be necessary for project planning and design. In general, agencies are more supportive of projects when they are a part of the early planning and collaboration process. Currently, the proposed project would occur mostly within already disturbed areas, and environmental impacts are most likely if design features cross wetland or riparian areas. Any work within the identified creek crossings or wetlands would also trigger various permit requirements. The present document is intended to identify potential permits and environmental planning considerations at a project-wide scale.

5. Conclusions

5.1 Potential Permits and Environmental Constraints

The project area is shown on Figures 1 through 3. Appendix C contains representative photographs of the different habitats or constraints observed during the field reconnaissance effort.

The project will require a formal wetland delineation following USACE protocol to identify impacts to wetland habitat or waters of the U.S.; particularly in the areas identified as potential wetland, ditch, and stream crossings. Parts of the PSB contains what appear to be drainage ditches that could fall under either the USACE and/or RWQCB jurisdiction. The types of ditches identified in Figures 2a and 2 b and 3 and shown in photographs in Appendix C include drainage ditches with evident flow paths connected by culverts, drainages comprised of hydrophytic vegetation, and swales.

Potential biological surveys required for implementing this proposed project include, at a minimum, a protocol level intensive botanical site inventory of vascular plant species, with emphasis on species identified in the database queries. This survey will need to be conducted at the appropriate season(s) to locate flowering individuals of listed species.

A few state special concern wildlife species have been reported within the general project vicinity, and others could occur although no recent field data is available for the PSB. Federally listed salmonids have been reported in other parts of Strong's Creek in the past and are presumed to be present. The PSB also contains several large redwoods and other large trees and other viable habitat for migratory nesting birds as well as riparian habitat. Therefore, these areas may need to be further assessed with CEQA special studies in order to identify and offset adverse impacts to the potential fauna along these routes. Additional non-biological studies may be required by CEQA/NEPA.

6. References

Baldwin et al. The Jepson Manual Vascular Plants of California, Second Edition. 2012. University of California Press. Berkeley, CA.

California Department of Fish and Wildlife 2013. California Natural Diversity Database (CNDDB). Fortuna USGS 7.5 Minute Quadrangle. California Department of Fish and Wildlife CDFW). Sacramento, California. Accessed March 4, 2016:
https://nrmsecure.dfg.ca.gov/cnddb/view/query.aspx, February 22, 2013 (expires: August 5, 2013).
California Department of Fish and Game. May 2000. Guidelines for Assessing the Effects of Proposed Development on Rare, Threatened, and Endangered Plants and Plant Communities. Sacramento, CA.

California Native Plant Society (CNPS). 2016. Inventory of Rare and Endangered Plants (online edition, v8-01a). California Native Plant Society. Sacramento, CA. Accessed onMarch 4, 2016.

Holland, R. 1986. Preliminary descriptions of the terrestrial natural communities of California. Unpublished document, California Department of Fish and Game, Natural Heritage Division. Sacramento, CA.

USFWS, 2016. IPaC Trust resources Report for Fortuna Quad FWS Arcata Field Office, U. S. Fish and Wildlife Service (USFWS).Accessed: March 4, 2016:
http://www.fws.gov/arcata/specieslist/search.asp
USFWS, 1987. National Wetland Inventory (NWI). U.S. Fish and Wildlife Service (USFWS).
Portland, OR. Accessed: http://www.fws.gov/wetlands.

Prepared By;

Ken Mierzwa, Senior Environmental Scientist, GHD, Eureka, CA

Reviewed BY:

Josh Wolf, Project Manager, GHD, Eureka, CA
Misha Schwarz, Senior Environmental Scientist, GHD, Eureka, CA

Appendices

Appendix A (USFWS Listed/Proposed Threatened and Endangered Species for the Fortuna Quad)

Candidate species included

12th Street Interchange

IPaC Trust Resources Report

Generated March 04, 2016 03:19 PM MST, IPaC v3.0.0

This report is for informational purposes only and should not be used for planning or analyzing project level impacts. For project reviews that require U.S. Fish \& Wildlife Service review or concurrence, please return to the IPaC website and request an official species list from the Regulatory Documents page.

IPaC - Information for Planning and Conservation (http://ecos.fws.gov/ipac/): A project planning tool to help streamline the U.S. Fish \& Wildlife Service environmental review process.

Table of Contents

IPaC Trust Resources Report 1
Project Description 1
Endangered Species 2
Migratory Birds 4
Refuges \& Hatcheries 7
Wetlands 8
U.S. Fish \& Wildlife Service

IPaC Trust Resources Report

NAME

12th Street Interchange LOCATION

Humboldt County, California
IPAC LINK
http://ecos.fws.gov/ipac/project/ 3IDEK-YDXKJ-BBLBW-TO465-QKA2Y4

U.S. Fish \& Wildlife Service Contact Information

Trust resources in this location are managed by:

Arcata Fish And Wildlife Office

1655 Heindon Road
Arcata, CA 95521-4573
(707) 822-7201

Endangered Species

Proposed, candidate, threatened, and endangered species are managed by the Endangered Species Program of the U.S. Fish \& Wildlife Service.

This USFWS trust resource report is for informational purposes only and should not be used for planning or analyzing project level impacts.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list from the Regulatory Documents section.

Section 7 of the Endangered Species Act requires Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency.

A letter from the local office and a species list which fulfills this requirement can only be obtained by requesting an official species list either from the Regulatory Documents section in IPaC or from the local field office directly.

The list of species below are those that may occur or could potentially be affected by activities in this location:

Birds

Marbled Murrelet Brachyramphus marmoratus

Northern Spotted Owl Strix occidentalis caurina Threatened
CRITICAL HABITAT
There is final critical habitat designated for this species.
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B08B
Western Snowy Plover Charadrius alexandrinus nivosus
Threatened
CRITICAL HABITAT
There is final critical habitat designated for this species.
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B07C
Yellow-billed Cuckoo Coccyzus americanus

Flowering Plants

Beach Layia Layia carnosa

Endangered
CRITICAL HABITAT
No critical habitat has been designated for this species.
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=Q34T
Menzies' Wallflower Erysimum menziesii Endangered
CRITICAL HABITAT
No critical habitat has been designated for this species.
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=Q29W
Western Lily Lilium occidentale Endangered
CRITICAL HABITAT
No critical habitat has been designated for this species.
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=Q1Y0

Mammals

Fisher Martes pennanti

CRITICAL HABITAT
No critical habitat has been designated for this species.
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=AOHS

Critical Habitats

This location overlaps all or part of the critical habitat for the following species:
Steelhead Critical Habitat Final designated
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=E08D\#crithab

Migratory Birds

Birds are protected by the Migratory Bird Treaty Act and the Bald and Golden Eagle Protection Act.

Any activity that results in the take of migratory birds or eagles is prohibited unless authorized by the U.S. Fish \& Wildlife Service. ${ }^{[1]}$ There are no provisions for allowing the take of migratory birds that are unintentionally killed or injured.

Any person or organization who plans or conducts activities that may result in the take of migratory birds is responsible for complying with the appropriate regulations and implementing appropriate conservation measures.

1. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/ birds-of-conservation-concern.php
- Conservation measures for birds http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/ conservation-measures.php
- Year-round bird occurrence data http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/ akn-histogram-tools.php

The following species of migratory birds could potentially be affected by activities in this location:

Allen's Hummingbird Selasphorus sasin

Season: Breeding
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=BOLI

Bald Eagle Haliaeetus leucocephalus

Year-round https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B008

Burrowing Owl Athene cunicularia Bird of conservation concern

Year-round https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=BONC

Calliope Hummingbird Stellula calliope
Bird of conservation concern

Season: Breeding
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=BOK3

Fox Sparrow Passerella iliaca
Season: Wintering
Lewis's Woodpecker Melanerpes lewis
Season: Wintering
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=BOHQ

Long-billed Curlew Numenius americanus

Season: Wintering
https://ecos.fws.gov/tess _public/profile/speciesProfile.action?spcode=B06S
Marbled Godwit Limosa fedoa
Season: Wintering
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0JL
Olive-sided Flycatcher Contopus cooperi
Season: Breeding
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0AN
Peregrine Falcon Falco peregrinus
Year-round https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0FU

Purple Finch Carpodacus purpureus

Year-round
Short-billed Dowitcher Limnodromus griseus
Season: Wintering
https://ecos.fws.gov/tess _public/profile/speciesProfile.action?spcode=B0JK
Short-eared Owl Asio flammeus
Season: Wintering
https://ecos.fws.gov/tess public/profile/speciesProfile.action?spcode=BOHD
Snowy Plover Charadrius alexandrinus Bird of conservation concern
Season: Breeding
Western Grebe aechmophorus occidentalis
Season: Wintering
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0EA
Whimbrel Numenius phaeopus
Season: Wintering
https://ecos.fws.gov/tess _public/profile/speciesProfile.action?spcode=B0JN
Willow Flycatcher Empidonax traillii
Season: Breeding
https://ecos.fws.gov/tess _public/profile/speciesProfile.action?spcode=B0F6
Yellow Warbler dendroica petechia ssp. brewsteri
Season: Breeding
https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0EN

Bird of conservation concern

Red Knot Calidris canutus ssp. roselaari

Wildlife refuges and fish hatcheries

There are no refuges or fish hatcheries in this location

Wetlands in the National Wetlands Inventory

Impacts to NWI wetlands and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local U.S. Army Corps of Engineers District.

DATA LIMITATIONS

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

DATA EXCLUSIONS

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

DATA PRECAUTIONS

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

There are no wetlands in this location

Appendix B (CNDDB Occurrence Report)

Fortuna Quad

Selected Elements by Scientific Name
CALIFORNIA
California Department of Fish and Wildlife
California Natural Diversity Database

Query Criteria: \quad Quad is (Fortuna (4012452))

Species	Element Code	Federal Status	State Status	Global Rank	State Rank	Rare Plant Rank/CDFW SSC or FP
Agelaius tricolor tricolored blackbird	ABPBXB0020	None	None	G2G3	S1S2	SSC
Antrozous pallidus pallid bat	AMACC10010	None	None	G5	S3	SSC
Arborimus pomo Sonoma tree vole	AMAFF23030	None	None	G3	S3	SSC
Ardea herodias great blue heron	ABNGA04010	None	None	G5	S4	
Bombus caliginosus obscure bumble bee	IIHYM24380	None	None	G4?	S1S2	
Bombus occidentalis western bumble bee	IIHYM24250	None	None	G2G3	S1	
Clarkia amoena ssp. whitneyi Whitney's farewell-to-spring	PDONA05025	None	None	G5T1	S1	1B. 1
Emys marmorata western pond turtle	ARAAD02030	None	None	G3G4	S3	SSC
Fissidens pauperculus minute pocket moss	NBMUS2W0U0	None	None	G3?	S2	1B. 2
Gilia capitata ssp. pacifica Pacific gilia	PDPLM040B6	None	None	G5T3T4	S2	1B. 2
Lasiurus cinereus hoary bat	AMACC05030	None	None	G5	S4	
Montia howellii Howell's montia	PDPOR05070	None	None	G3G4	S3	2B. 2
Oncorhynchus clarkii clarkii coast cutthroat trout	AFCHA0208A	None	None	G4T4	S3	SSC
Polemonium carneum Oregon polemonium	PDPLM0E050	None	None	G3G4	S2	2B. 2
Rana aurora northern red-legged frog	AAABH01021	None	None	G4	S3	SSC
Rana boylii foothill yellow-legged frog	AAABH01050	None	None	G3	S3	SSC
Riparia riparia bank swallow	ABPAU08010	None	Threatened	G5	S2	
Sidalcea malviflora ssp. patula Siskiyou checkerbloom	PDMAL110F9	None	None	G5T2	S2	1B. 2
Spirinchus thaleichthys longfin smelt	AFCHB03010	Candidate	Threatened	G5	S1	SSC

Record Count: 19

Appendix C (Site Photographs)

Strong's Creek and associated riparian area

Riverwalk Drive bridge, looking east toward Hwy 101

Dinsmore Drive north of bridge, with riparian edge on left

Dinsmore Drive north of Riverwalk Drive, looking north. Riparian on left, willow and Monterey cypress on right

Southbound Hwy 101 exit ramp at $12^{\text {th }}$ Street, looking NE

Potential wetland swale within area shown in photo above, looking NW with $12^{\text {th }}$ Street in background

Eucalyptus on slope east of Kenmar Rd. interchange and parking lot

Parking lot, looking west toward Hwy 101 with inactive rail line in middle ground

Potential wetland south of Kenmar, between rail line and Hwy 101 ramp, looking south

Ditch/potential wetland north of Kenmar and east of Hwy 101, looking north

Ephemeral ditch north of Kenmar and west of Hwy 101, with adjacent riparian area

Degraded riparian habitat north of Kenmar/Riverwalk and west of Hwy 101

Redwood west of Hwy 101 and north of Kenmar/Riverwalk

Ephemeral ditch flowing toward Eel River floodplain, south of Kenmar/Riverwalk and west of Hwy 101. Note redwood in top right.

www.ghd.com

[^0]: Zone wide Queuing Penalty: 1164

[^1]: US 101IRIVFRWVALK AREA CONNEGTIVTY PROJEGT Fguro 72

[^2]: G： C ： $111 \backslash 11109149$ HCAOG Hwy 101 Fortuna Downtown－Riverwalk 0 08－GISIMaps\Figures \backslash Recon＿WetlandsHabitat\F1＿Vicinity．mxd

 incomplete or unsuitable in any way and for any reason．
 Data source：City of Fortuna Aerial，2010；GHD data，2013；USA Topo Maps；Streetmap USA．Created by：gldavidson

