Project Study Report-Project Development Support (PSR-PDS)

To

Request Programming for Capital Support (Project Approval and Environmental Document Phase) in the 2022 STIP

On Route 12th Street

City of Fortuna

Between 1000 Feet South of 12th Street US 101 Overcrossing

And 1000 Feet North of 12th Street US 101 Overcrossing

APPROVED:	Barnel Byrd	9/15/21	
	Brendan E. Byrd City Engineer	Date	_

Vicinity Map

This project study report-project development support has been prepared under the direction of the following registered civil engineer. The registered civil engineer attests to the technical information contained herein and the engineering data upon which recommendations, conclusions, and decisions are based.

REGISTERED CIVIL ENGINEER

9/15/21

DATE

PROFESSIONAL

Table of Contents

1.	INTRODUCTION	1
2.	BACKGROUND	1
3.	PURPOSE AND NEED	3
4.	TRAFFIC ENGINEERING PERFORMANCE ASSESSMENT	4
5.	DEFICIENCIES	9
6.	CORRIDOR AND SYSTEM COORDINATION	11
7.	ALTERNATIVES	13
8.	RIGHT-OF-WAY	18
9.	STAKEHOLDER INVOLVEMENT	20
10.	ENVIRONMENTAL COMPLIANCE	21
11.	FUNDING	23
12.	DELIVERY SCHEDULE	23
13.	RISKS	24
14.	EXTERNAL AGENCY COORDINATION	24
15.	PROJECT REVIEWS	24
16.	PROJECT PERSONNEL	25
17.	ATTACHMENTS	25

Attachments

- A. Location map
- B. Traffic Counts and LOS Analysis
- C. Review of Geometric Design Standards
- D. Conceptual Design Drawings
 E. Truck Turning Analysis
 F. Fast Path Exhibits

- G. Preliminary Structures AnalysisH. Landscaping/Gateway Concepts
- I. Cost EstimatesJ. Right-of-Way and Property Ownership
- K. Environmental Constraints Analysis

1. INTRODUCTION

Project Description:

The project proposes to improve traffic, pedestrian, and bicycle operations at the 12th Street interchange with US 101 in Fortuna in Humboldt County. The existing intersection controls, roadway geometry, and the high volumes of local and regional traffic on 12th Street result in poor traffic operation at and near the interchange. Proposed project components include roundabouts on 12th Street at the two intersections with the US 101 interchange, modifications to the US 101 on- and offramps, the realignment of Newburg Road, and widening the highway overcrossing bridge in order to accommodate non-motorized facilities.

This PSR-PDS was developed in conjunction with the Highway 101, Fortuna Downtown and Riverwalk Area Complete Streets and Connectivity Planning Study (GHD, 2016) which provides a detailed evaluation of interchange alternatives.

Table 1: Project Summary

Project Limits	On 12th Street between 1000 feet south of US 101
110,000 =	Overcrossing and 1000 feet north of US 101
	Overcrossing (BR 04-0130, PM 60.49)
Number of Alternatives	5
Current Capital Outlay Support	North Roundabout: \$1M
Estimate for PA&ED	South Roundabout: \$850K
	North Roundabout: \$1.3M
Current Capital Outlay Support	·
Estimate for PS&E	South Roundabout: \$1.1M
Current Capital Outlay	North Roundabout: \$7.8M
Construction Cost	South Roundabout: \$7.8M
Current Capital Outlay Right-of-	North Roundabout: \$1.1M
Way Cost	South Roundabout: \$100K
Funding Source	RTIP/STIP
Type of Facility	12th Street: Minor Arterial
	Newburg Road: Major Collector
	Riverwalk Drive: Major Collector
	Dinsmore Drive: Local Road
Number of Structures	1 (US 101 12th Street OC)
Anticipated Environmental	CEQA Mitigated Negative Declaration
Determination or Document	NEPA CE
Legal Description	On 12th Street in Humboldt County in Fortuna
	between 1000 feet south of US 101 Overcrossing
	and 1000 feet north of US 101 Overcrossing
Project Development Category	3

2. BACKGROUND

The project need originates from desires expressed in the City's 2010 General Plan, user-based experience and public request for improvements.

In 2016, a planning study was conducted to identify ways to improve access to the Riverwalk area and improve safety for all users (motorized & non-motorized), improve operations, apply Complete Streets concepts to create an entry statement/gateway, and ready the project for next steps in project development. The study was focused on US 101 interchanges at 12th Street and Kenmar Road and was funded by a 2015-2016 Sustainable Communities Planning Grant awarded to the Humboldt County Association of Governments (HCAOG) and the City of Fortuna as a sub-recipient.

The study process included researching and evaluating existing conditions, including right-of-way boundaries and ownership, maintenance responsibilities, identifying potentially sensitive environmental areas and potential permits, and obtaining traffic counts (motorized and non-motorized). Community

meetings and stakeholder outreach were used to understand concerns with the existing facilities, solicit ideas for improvements, and obtain comments on preliminary design concepts. A deficiency analysis was performed to identify existing facilities which do not conform to current design standards or City goals. Traffic modeling showed that many of the intersections were operating below a level of service (LOS) C (Fortuna's standard) for current conditions, with the LOS expected to significantly decline for full buildout over 20-years with no improvements to the intersections.

Improvements to the 12th Street Interchange was also identified as a priority in the City of Fortuna's draft Local Road Safety Plan (August 27, 2021).

Existing Conditions

The 12th Street Interchange study area includes 12th Street from north of Newburg Road to Riverwalk Drive south of the US 101 interchange. 12th Street crosses US 101 via a curving 32-foot wide overcrossing, with two 14-foot lanes and two two-foot wide raised concrete shoulders. The interchange at 12th Street has a significant distance between the southbound (SB) and northbound (NB) ramps intersections. However, the corridor on the north and south side of US 101 has several closely spaced intersections.

On the north side of US 101, there are a series of complex intersections on with 12th Street with an atgrade railroad crossing near Newburg Road. 12th Street branches off to intersect the US 101 NB off-ramp with Pond Street and intersects the US 101 NB on-ramp at a separate intersection approximately 100 feet to the west. There is a short length of Pond Street that connects these two intersections. Newburg Road intersects 12th Street approximately 500 feet to the north. There are no bike or pedestrian facilities in or around these intersections, with the exception of a sidewalk at the northeast corner of 12th Street and Newburg Road. Utility poles and vegetation sporadically reduce the usable area of the sidewalk to approximately three feet in width. From just north of Newburg Road to Main Street, 12th Street is an approximately 48-foot wide two-lane road with on-street parking and five-foot curb and sidewalks.

Riverwalk Drive is a north-south major collector with intersections at private driveways, Dinsmore Drive, and US 101 SB ramps. The close proximity of Dinsmore, 12th Street, the US 101 SB on-ramp, and Strongs Creek create wayfinding confusion. These intersections could be interpreted as one five-leg intersection. There are no bike or pedestrian facilities in or around the intersections along Riverwalk Drive, with the exception of a stretch of sidewalk on the east side south of Strongs Creek. Riverwalk Drive transitions into 12th Street and crosses over US 101. This overcrossing is approximately 28-feet wide with no shoulders or sidewalks.

Riverwalk Drive between the Kenmar and 12th Street interchange is approximately 36 feet wide, consisting of two lanes with 12-foot striped shoulders and parking on the east side, and a 14-foot lane with no striped shoulder on the west. There are intermittent segments of five-foot wide sidewalks. The existing NB off-ramp and on-ramp meet to form a large asphalt triangle with 12th Street. The SB on-ramp and off-ramp at 12th Street both lack directional clarity.

Caltrans's California Road System (CRS) maps show that 12th Street is classified as a minor arterial which connects to Riverwalk Drive, a major collector. 12th Street connects the Riverwalk Area to the City's south, and to downtown, including Main Street area and schools. The 12th Street arterial also connects Riverwalk Drive to residential areas to the north.

Figure 1: Existing Intersection Geometrics and Control

3. PURPOSE AND NEED

Purpose:

- Simplify and improve navigation and traffic operations on 12th Street between Newburg Road and Riverwalk Drive, including the 12th Street/US 101 interchange;
- Improve operations, reduce congestion, minimize conflicts, and improve safety at the 12th Street intersections:
- Improve the local and regional bicycle and pedestrian facilities through the 12th Street/US 101 interchange area; and
- Create a Gateway into central Fortuna that incorporates landscaping and wayfinding.

Need:

- Existing and future poor Level of Service (LOS) at the 12th Street intersections during peak hours as a result of closely spaced, stop-controlled intersections;
- No existing bicycle or pedestrian facilities resulting in a barrier to bicycle and pedestrian circulation and connectivity; and
- Intersections lack directional legibility, making it difficult for visitors to access the City's existing amenities.

Humboldt County's most significant regional thoroughfare for economic, tourist, recreational and commuting activity is US 101. The City of Fortuna is divided by US 101, which parallels the Eel River, and separates the Eel River and the Riverwalk Area from the majority of the City. Safer transportation alternatives, wayfinding signage, and improved traffic operations will support active living, provide better service to users, and support economic development and land use goals of the City.

4. TRAFFIC ENGINEERING PERFORMANCE ASSESSMENT

The information contained in this section is based on the findings from a preliminary traffic assessment conducted for the intersection at the 12th Street/US 101 interchange. The preliminary assessment include an Access Strategy and Configuration Assessment/Screening in accordance to the Intersection Control Evaluation (ICE) process outlined in Caltrans Traffic Operations Policy Directive 13-02. Refer to **Attachment B** for traffic counts and the LOS analysis. A formal Traffic Operations Analysis and ICE will be developed during the PA&ED phase to further define the scope of work, and more accurately analyze and identify the forecasted operational impacts of the proposed improvements.

Existing Conditions

<u>Traffic Counts:</u> The AM and PM peak hour intersection turn movement traffic counts were collected in March 2016. The AM peak hour is defined as one-hour of peak traffic flow counted between 7:00 am and 9:00 AM. The PM peak hour is defined as one-hour of peak traffic flow counted between 4:00 pm and 6:00 PM. The existing peak hour traffic volumes are presented in **Figure 2**.

<u>Bicycle and Pedestrian Counts:</u> HCAOG obtained bicycle and pedestrian counts for the project area in May 2016. The existing bicycle and pedestrian daily counts are presented in **Table 1**.

Table 1: Average Total Dail	y Bicycle and	Pedestrian Counts
-----------------------------	---------------	-------------------

Intersection Name	Average Daily Bicycle Count	Average Daily Pedestrian Count
12th Street/US 101 NB On-Ramp	25	35
Newburg Road/12th Street	27	69

Figure 2: Existing Peak Hour Traffic Counts (2016)

Modeling Tools and Methodologies

Operational deficiencies were estimated using future traffic volumes estimated using the travel demand model (TRAFFIX) prepared for the City's General Plan update. The cumulative condition was established by adding additional trips to the traffic counts obtained in 2016, by assuming full buildout over 20 years in accordance with the City's General Plan (growth rate of 1.6% per year).

The existing, no build, and signal alternatives were analyzed using Synchro/SimTraffic traffic analysis software. Roundabout alternatives were analyzed using Signalized and Unsignalized Intersection Design and Research Aid (SIDRA) analysis software. The LOS for all intersection control types were calculated using the methods documented in the Transportation Research Board Publication Highway Capacity Manual, 2010.

Synchro/SimTraffic was used to provide the queuing analysis. SimTraffic data was seeded into the network for 15 simulated minutes, and then recorded five runs of 60 simulated minutes. The 95th-percentile queue lengths were determined for each lane group based on an average of the five recorded runs. The 95th-percentile queue was defined to be the queue length (in feet) that has a 5-percent probability of being exceeded during the analysis time period. The 95th-percentile queue was utilized to determine the appropriate length of turn pockets.

Summary of Existing Conditions Analysis and Findings

Existing weekday AM and PM peak hour intersection traffic operations were quantified utilizing the exiting traffic volumes and existing intersection lane geometrics and control. **Table 2** provides a summary of the existing vehicular AM and PM peak hour intersection delay and LOS. The 12th Street and Newburg Road intersections was found to currently operate below the LOS C target.

Table	2:	Existing	Levels	of	Service
I abic	4 .		LC4 C13	v	OCI VICC

Intersection	Control Type ^{1,2}	Target LOS	AM Peak Hour		PM Peak Hour	
	i ype∵-	LUS	Delay	LOS	Delay	LOS
Riverwalk Drive and Private Driveway	TWSC	С	10.1	В	9.1	Α
Riverwalk Drive and Dinsmore Drive	TWSC	С	10.4	В	10.3	В
Riverwalk Drive and US 101 SB Ramps	AWSC	С	9.3	Α	10.2	В
Riverwalk Drive/12th Street and US 101 NB On-Ramp/Pond Street	TWSC	С	16.7	С	16.1	С
US 101 NB Off-Ramp/12th Street and Pond Street	TWSC	С	11.8	В	9.8	Α
12th Street and Newburg Road	TWSC	С	106	F	26.6	D

Notes:

- 1. AWSC = All Way Stop Control; TWSC = Two Way Stop Control
- LOS = Delay based on worst minor street approach for TWSC intersections, average of all approaches for AWSC and Signal

Summary of No Build Operation Analysis and Findings

Table 3 provides a summary of the No Build intersection LOS for cumulative conditions. The following intersections are expected to operate below LOS C for the No Build alternative for both AM and PM peak hour conditions:

- Riverwalk Drive and US 101 SB Ramps
- Riverwalk Drive/12th Street and US 101 NB On-Ramp/Pond Street
- 12th Street and Newburg Road

Table 3: No Build Levels of Service

Intersection	Control Type ^{1,2}	Target LOS	AM Peak Hour		PM Peak Hour	
	i ype ^{.,_}	LOS	Delay	LOS	Delay	LOS
Riverwalk Drive and Private Driveway	TWSC	С	13.3	В	10.4	В
Riverwalk Drive and Dinsmore Drive	TWSC	С	14.2	В	18.5	С
Riverwalk Drive and US 101 SB Ramps	AWSC	С	19.0	С	65.1	F
Riverwalk Drive/12th Street and US 101 NB On-Ramp/Pond Street	TWSC	С	35.7	Е	OVR	F
US 101 NB Off-Ramp/12th Street and Pond Street	TWSC	С	12.0	В	10.7	В
12th Street and Newburg Road	TWSC	С	OVR	F	95.3	F

Notes:

- 1. AWSC = All Way Stop Control; TWSC = Two Way Stop Control
- 2. LOS = Delay based on worst minor street approach for TWSC intersections, average of all approaches for AWSC and Signal

Summary of Traffic Signal Operation Analysis and Findings

Table 4 provides a summary of the intersection LOS for the signal intersections. All intersections are projected to operate at or above the threshold LOS for the signal alternative. **Figure 3** presents the cumulative peak hour volumes at the signalized intersections.

Table 4: Signalized Intersection Levels of Service

Intersection	Control	Target LOS	AM Peak Hour		PM Peak Hour	
	Type ¹	LUS	Delay	LOS	Delay	LOS
Riverwalk Drive and Private Driveway	TWSC	С	15.5	С	14.9	В
Riverwalk Drive and Dinsmore Drive	Signal	С	NA	NA	NA	NA
Riverwalk Drive and US 101 SB Ramps	Signal	С	7.7	Α	32.6	С
Riverwalk Drive/12th Street and US 101 NB On-Ramp/Pond Street	Signal	С	19.8	В	21.0	С
US 101 NB Off-Ramp/12th Street and Pond Street	Intersection Eliminated					
12th Street and Newburg Road	Signal	С	17.7	В	26.0	С

Notes:

- 1. TWSC = Two Way Stop Control
- 2. LOS = Delay based on worst minor street approach for TWSC intersections, average of all approaches for AWSC and Signal
- 3. NA=information not available

Figure 3: Cumulative Peak Volumes - Signalized Intersections

Summary of Roundabout Operation Analysis and Findings

Table 5 provides a summary of the intersection LOS for the roundabout intersections. All intersections are projected to operate at or above the threshold LOS for the roundabout alternatives. **Figure 4** presents the cumulative peak hour volumes at the roundabout intersections.

Table 5: Roundabout Intersections Levels of Service

Intersection	Control	Target	AM Peak Hour		PM Peak Hour	
	Type ^{1,2}	LOS	Delay	LOS	Delay	LOS
Riverwalk Drive and Private Driveway	RNDBT	С	4.3	Α	4.3	Α
Riverwalk Drive and US 101 SB Ramps	RNDBT	С	6.6	Α	10.7	В
12th Street and US 101 NB Ramps/Newburg Road	RNDBT	С	8.7	Α	19.9	В

Notes:

- 1. AWSC = All Way Stop Control; TWSC = Two Way Stop Control
- 2. LOS = Delay based on worst minor street approach for TWSC intersections, average of all approaches for AWSC and Signal

Figure 4: Cumulative Peak Volumes - Roundabout Intersections

Scope of Future Traffic Engineering Studies, Activities, & Tasks

The following discussion highlights the scope of traffic engineering studies, activities, and tasks to be completed during the PA&ED phase.

Project Study Limits: The existing interchange study area includes the following intersections:

- 12th Street Road and Newburg Road
- 12th Street and Pond Street
- 12th Street and US 101 Northbound Ramps
- Riverwalk Drive/12th Street and US 101 Southbound Ramps
- Riverwalk Drive/Dinsmore Drive

<u>Traffic Data Collection:</u> The preliminary traffic assessment was prepared using existing AM and PM peak hour intersection traffic counts collected in March 2016 and bicycle/pedestrian counts collected in May 2016 for a preliminary study. Future traffic engineering studies may obtain new vehicle, pedestrian and bicycle traffic counts or may rely on the data already collected. Future traffic data obtained may include origin-destination surveys to gauge the movements and to observe driver behavior upon entry to the intersection.

<u>Traffic Forecasting:</u> In the PA&ED phase, the Project Development Team (PDT) may update the future design year forecasting of traffic volumes and movements for the 12th Street intersections within the project area based on new data or assumptions, if available.

<u>Traffic Operations Analysis Report (TOAR) and Intersection Control Evaluation (ICE)</u>: A TOAR and ICE Engineering Analysis (Step Two) will be prepared which may include intersection traffic control warrant studies, a capacity, operations and safety analysis, design performance checks, an economic analysis, and consultations with the District ICE Coordinator.

<u>Traffic Management Plan:</u> The traffic impacts during construction will be evaluated and mitigation strategy identified. The plan will include an analysis of the number of working days, staging, and detours.

<u>Pedestrian and Bicycles Improvement Analysis:</u> During the PA&ED phase, additional analysis will be prepared to ensure the inclusion of context sensitive bicycle and pedestrian improvements, such as dedicated bike lanes, shared-use paths and crosswalks, some of which are included in the conceptual layouts of the alternatives. Preliminary designs will be analyzed to ensure adequate facilities are included to support bicyclists and pedestrians.

<u>Traffic Index for Pavement Design:</u> The traffic index (TI) required for the pavement design for the new pavement at the roundabout alternatives will be completed during the PA&ED Phase.

5. DEFICIENCIES

US 101 bisects the community cutting off the Riverwalk area from other areas of the City. The existing 12th Street interchange creates a significant barrier to bicycle and pedestrian movement, does not conform to current design standards, and will not accommodate future projected traffic volumes or the anticipated needs of roadway users. The interchanges also lack directional legibility, making it difficult for visitors to access the City's existing amenities.

Existing and Forecasted (No Build) Operational Deficiencies

Traffic modeling conducted in 2016 showed that 1 of the 6 intersections analyzed are currently operating below a LOS C (Fortuna's standard). For full buildout over 20-years with no improvements to the intersections (No Build), 3 of the 6 intersections are expected to operate below a LOS C. Refer to **Table 6** for a summary of LOS for existing and no build future conditions.

Table 6: Existing Levels of Service

Interception	Control	Target	Existin	g LOS	Future No Build LOS		
Intersection	Type ^{1,2}	LOS	AM Peak	PM Peak	AM Peak	PM Peak	
Riverwalk Drive and Private Driveway	TWSC	С	В	А	В	В	
Riverwalk Drive and Dinsmore Drive	TWSC	С	В	В	В	С	
Riverwalk Drive and US 101 SB Ramps	AWSC	С	А	В	С	F	
Riverwalk Drive/12th Street and US 101 NB On- Ramp/Pond Street	TWSC	С	С	С	E	F	
US 101 NB Off-Ramp/12th Street and Pond Street	TWSC	С	В	А	В	В	
12th Street and Newburg Road	TWSC	С	F	D	F	F	

Notes:

- 1. AWSC = All Way Stop Control; TWSC = Two Way Stop Control
- LOS = Delay based on worst minor street approach for TWSC intersections, average of all approaches for AWSC and Signal

Geometric Design Deficiencies

The following summarizes the non-standard features and geometric deficiencies identified for existing conditions in the project area:

12th Street:

- Overcrossing Width per HDM 308.1
- Right Shoulder Width per HDM 302.1 and 308.1
- Curve Radii per HDM Index 203.2
- Decision Sight Distance per HDM Index 201.7
- Intersection Spacing per HDM 504.3
- Vertical Clearance per HDM 309.2

Newburg Road:

- Angle of Intersection per HDM 403.3
- Horizontal Clearance per HDM 309.1

US 101 NB On- and Off-Ramps:

- Curve Radii per HDM Index 203.2
- Decision Sight Distance per HDM Index 201.7
- Intersection Spacing per HDM 504.3

US 101 SB On- and Off-Ramps:

Intersection Spacing per HDM 504.3

Refer to **Attachment C** for a more comprehensive review of existing conditions and project design standards.

Pedestrian and Bicycle Deficiencies

The existing 12th Street interchange lacks bicycle and pedestrian infrastructure and there are no ADA-compliant pedestrian facilities.

6. CORRIDOR AND SYSTEM COORDINATION

The following discussion highlights the state, regional and local planning considerations for the proposed project improvements.

State Planning

Complete Streets

Caltrans Deputy Directive 64-Revision (DD-64R) provides for the needs of travelers of all ages and abilities in all planning, programming, design, construction, operations, and maintenance activities on the State Highway System. The Department views all transportation improvements (new and retrofit) as opportunities to improve safety, access, and mobility for all travelers and recognizes bicycle, pedestrian, and transit modes as integral elements of the transportation system.

Regional Planning

The 12th Street US101 Interchange Improvement Project was identified in HCAOG's 2017 Regional Transportation Plan (RTP) Update as a high-priority project.

Local Planning

General Plan

The City of Fortuna General Plan 2030 (General Plan) formalizes a long-term vision for the City's physical development. The 12th Street Interchange Improvement Project fulfils or meets many policies set forth in the General Plan, including specific direction to improve interchanges within the study area. These policies are detailed below.

Roadways and Highways

Policy TC-1.1 Reducing Mode Conflicts. The City shall seek to minimize conflicts between pedestrians, automobiles, and bicycles.

Policy TC-1.2 New Roadway Improvements. The City shall design and phase roadway improvements so that a level of service (LOS) C or better is maintained on all City streets, except that LOS D or better shall be maintained on Main Street.

Policy TC-1.3 Balanced Transportation System. The City shall strive to meet the level of service standard through a balanced transportation system that provides alternatives to the automobile and by promoting pedestrian, bicycle, and transit connections between employment areas and major residential and commercial areas.

Policy TC-1.4 Improved LOS. The City shall identify economic, design, and planning solutions to improve levels of service currently below LOS C. Where physical mitigation is infeasible, the City shall consider developing programs that enhance alternative access or otherwise reduce automobile travel demand.

Policy TC-1.15 Interchange Improvements. The City, through HCAOG in cooperation with Caltrans, shall allocate the costs for funding interchange improvements to areas of benefit and assign proportionate share costs to individual projects.

Bicycle and Trail Facilities

Policy TC-5.2 Bicycle System. The City shall develop and maintain a safe, convenient, and effective bicycle system that encourages increased bicycle use.

Policy TC-5.5 Rails-to-Trails. The City shall explore the concept of converting any abandoned railroad rights-of-way into multi-use bike and pedestrian paths for local and regional use per Sections 2540 through 2549 of the Streets and Highways Code.

The General Plan proposes a Class II bike lanes on 12th Street through the interchange, as well as Class II bike lanes on Newburg Road and Riverwalk Drive (refer to **Figure 5**).

Figure 5: Bicycle Network in Fortuna General Plan

Pedestrian Facilities

Policy TC-4.2 New Developments. The City shall continue to require new development to finance and install sidewalks and pedestrian pathways connecting them to existing sidewalks or widening the right-of-way fronting the development to accommodate new sidewalks.

Policy TC-4.3 Specific Plans. The City shall encourage specific development plans to include design continuity of pedestrian access that enables residents to walk from their homes to places of work, recreation, and shopping.

Policy TC-4.7 Pedestrian Trails Interconnection. Where feasible, the City shall loop and interconnect pedestrian trails.

7. ALTERNATIVES

Intersection Alternatives

Unless noted otherwise, the alternatives identified below address the purpose and need of the project. Although the signal alternative does meet the projects' purpose and need, its high estimated cost makes it infeasible for the City to implement, and therefore it is rejected from further consideration during the PA&ED phase. Only the roundabout alternatives are recommended to be carried forward to the PA&ED Phase of the project.

Based on the preliminary conceptual layouts, none of the build alternatives are anticipated to contain non-standard geometries with respect to both Caltrans Design Standards and City of Fortuna Design Standards. Further refinements to the proposed alternatives will be conducted during the PA&ED phase of the project.

Refer to **Attachment D** for conceptual design drawings, **Attachment E** for truck turning analysis, and **Attachment F** for roundabout fast path exhibits.

The "No Build" Alternative

This is the "No Build" condition, where the study intersections would remain unaltered with respect to intersection geometrics and stop control. This alternative does not meet the purpose and need of the proposed project.

Traffic Signal Alternative

This signalized intersection concept corridor would require the removal of the existing structure over US 101, the construction of a new overcrossing, realignment of Dinsmore Drive with a new bridge over Strongs Creek, and widening from the intersection of Riverwalk Drive and US 101 SB Ramps to the intersection of 12th Street and Newburg Road. The current two-lane roadway would require expansion to four lanes throughout the corridor to accommodate the projected growth. The existing two-lane structure over Strongs Creek would need to be replaced. The freeway ramps to US 101 would need to be reconstructed and the existing Rohner Creek Bridge on US 101 widened.

After analyzing the forecasted traffic volumes with Synchro, the lane geometry was determined for each intersection as shown in the conceptual design. Left-turn and right-turn pocket lengths were based on the 95th percentile queue length.

The signal alternative accommodates pedestrians and bicycles with standard Class II bike lanes, sidewalks, and intersection crossings (crosswalks) along 12th Street, US 101 ramps, and Newburg Road. Each crossing is 10' wide and extends across the entire intersection length. Due to the number of lanes at each approach, long crosswalks will increase pedestrian crossing times and will affect the traffic signal timing to ensure that pedestrians can safely cross the roadway.

North Roundabout Alternative

A five-leg roundabout at the 12th Street/US 101 NB Ramps intersection that incorporates a realigned Newburg Road as the fifth leg. The existing Newburg Road connection to 12th Street would be closed by creating a cul-de-sac. The NB ramps would need to be reconstructed to current Caltrans standards. According to the City's General Plan, 12th Street and Newburg Road are to have Class II bike lanes, and there is a planned "rail with trail" along the existing railroad corridor.

After analyzing the forecasted traffic volumes with the Sidra software, it was determined that the five-way intersection would operate at an acceptable level of service as a multi-lane roundabout. Newburg Road was realigned beginning near the intersection with Sunnybrook Drive. The concept shows connections to the planned rail with trail and the bike lanes on 12th Street and Newburg Road. The Class I Bike Path will provide bike and pedestrian connectivity across US 101. Since the existing

overcrossing is not wide enough to accommodate a bike path, the bridge structure would require widening or a separate pedestrian bridge would be required.

South Roundabout Alternative 1

South Roundabout Alternative 1 uses the "dog bone" roundabout concept to route traffic through two closely spaced intersections. Southbound US 101 on- and off-ramps, NB Dinsmore Drive, and 12th Street will connect to the northern roundabout. 12th Street, Riverwalk Drive, and a private driveway would meet in the southern roundabout which would be located south of the Strong Creek bridge and require replacement of the bridge.

SB Dinsmore Drive would connect to Riverwalk Drive between the two roundabouts and be stop controlled. Left hand turns to and from Dinsmore Drive would be prohibited, so traffic would need to navigate both roundabouts for some movements (e.g. northbound Riverwalk Drive to Dinsmore Drive, or Dinsmore Drive to 12th Street).

The concept includes bike lanes and sidewalks on Riverwalk Drive south of the roundabout with connections to 10' wide shared use paths through the roundabouts, which would connect over the 12th Street/US 101 bridge.

After analyzing the forecasted traffic volumes with Sidra, it was determined that the roundabout south of Strongs Creek would operate at an acceptable level of service as a single lane roundabout. However, the SB off-ramp and Riverwalk Drive approaches to the northern intersection need dedicated right-turn lanes to operate at an acceptable levels of service.

Roundabout Alternative - 12th Street South Alternative 2 (a, b & c)

This alternative uses a single roundabout at the southbound ramp intersection and a realigned Dinsmore Drive. The roundabout is placed on the north side of Strongs Creek and directs traffic from 12th Street, Riverwalk Drive, and the southbound US 101 on and offramps.

Three different Dinsmore Drive realignments options were developed:

- Alternative 2a realigns Dinsmore Drive across Strongs Creek through private property, collects adjacent driveways, and intersects Riverwalk Drive to the south with a minor street stop controlled intersection. The private driveway south of Strongs Creek is also directed onto Dinsmore Drive.
- Alternative 2b avoids the new Strongs Creek crossing with a less significant realignment of Dinsmore Drive, bringing it into 12th Street north of the roundabout. This reduces impacts to Strongs Creek and private property.
- Alternative 2c proposes a similar roundabout solution as Alternative 2b, but realigns Dinsmore Drive to connect to 12th Street closer to the US 101 bridge.

All of the Alternative 2 concepts include bike lanes on Riverwalk Drive with connections to 10' wide shared use paths through the roundabouts, which would connect over the 12th Street/US 101 bridge.

Structure Alternatives

A preliminary structural analysis was prepared to determine preliminary scope, feasibility, rough cost range, and a list of potential project risks required for proposed structural improvements.

The 12th Street Overcrossing Bridge (Br. No. 04-0130) spans over Route US 101 at the interchange. The bridge is on curved alignment with supports skewed and parallel to US 101. The structure is a 34-foot-wide, 4-span, 197-foot-long, concrete tee-beam structure, with a span arrangement of 44, 65, 53, and 35 feet. The structure was constructed in 1962. End supports are short seat abutments on concrete pile foundations, and intermediate supports are 2-column bents on concrete pile foundations. US 101 currently passes under the spans 2 and 3 with a 15-foot 5-inch vertical clearance over northbound lanes and 15-foot 6-inch vertical clearance over southbound lanes. The 34-foot-width currently carries two 12-foot travel lanes, two 2-foot shoulders, and two 3-foot-wide Type 2 Barrier railings. The clear width between barrier railings is 28 feet.

The Overcrossing is State-owned, on the National Highway System, and rated adequate for permit loads. The structure is in good condition with a health index of 100, but the sufficiency rating (SR) is 80.1 because of the bridge's narrow width and ADT. When originally built, the ADT was much lower and the 28 feet width was adequate.

To accommodate the proposed lane configurations and bicycle and pedestrian connectivity on 12th Street at the US 101 interchange, the following structural alternatives were considered:

12th Street Overcrossing Bridge - Replace Structure

The signal alternative requires the replacement of the existing bridge structure over US 101. Based on the conditions at the site and the interchange geometrics, a new 12th Street Overcrossing will be approximately 200 feet in length. The most economical structure type will likely be a 4-span, precast, prestressed, concrete girder structure with a 4.3-foot structure depth. Approximate span configuration will be 58 feet, 82 feet, 82 feet, and 58 feet. End supports will be short-seat concrete abutments and interior supports will be 5-column bents. All supports will be pile supported. Clear roadway width will be 58 feet between 8-foot-wide Type 732SW barriers. Chain link railing will be mounted on the barrier walls above the interior spans and tubular handrailing will be mounted to the barrier wall above the end spans. Falsework is not necessary to erect this type of girder structure. Girders will be set in place from US 101 using traffic closures.

<u>12th Street Overcrossing Bridge – Widen Structure or New Standalone Bicycle/Pedestrian Overcrossing</u>

To provide bicycle and pedestrian connectivity for the 12th Street Roundabout Concepts, either the existing US 101 bridge structure would need to be widened, or a new standalone bicycle/pedestrian overcrossing will need to be provided. The estimated cost of both options are similar, therefore further analysis is needed as the project develops to determine which option would be most preferred.

Widen US 101 Overcrossing Structure

The proposed bridge widening would consist of constructing a 197-foot-long, 9.7-foot-wide, 4-span, precast, prestressed concrete girder addition along the north side of the existing Overcrossing. The widening would provide a clear width of 10'-0" between barriers and match the existing bridge structure depth, structure type, profile, and pile foundation supports. Both the east and west approaches to the bridge will be on widened fill embankment closely matching existing conditions. Vertical clearance from the soffit of the widened bridge to the surface of US 101 below would not be affected.

The existing barrier and deck slab along the north side of the overcrossing would need to be removed and replaced. Traffic control and temporary barriers along the 12th Street roadway would be required to construct the widening. Additionally, traffic control systems would be required on US 101 to construct pile foundations and widen the existing column bents. Falsework would not be necessary to erect this type of girder structure. Girders will be set in place from US 101 using traffic closures.

Overall width of the widened structure would be 43-feet 8-inches. Clear vehicular roadway width would be 28 feet between the existing Type 3 concrete barrier along the south edge of the existing bridge and a new Type ST-30 bridge rail located to separate the 10-foot-wide pedestrian/bicycle facility from the vehicular traffic. MASH bridge barrier with chain link railing mounted on the barrier wall would bound the pedestrian/bicycle facility along the north edge of the widened structure.

New Standalone Bicycle/Pedestrian US 101 Overcrossing

A new pedestrian/bicycle overcrossing would consist of constructing a 203-foot-long, 12-foot-wide, 4-span, precast, prestressed concrete girder structure along the north side and close to the existing overcrossing. The new structure would provide a clear width of 10'-0" between barriers and match the existing bridge structure depth, structure type, profile, and pile foundation supports. Both the east and west approaches to the bridge would be on widened fill embankment closely matching existing conditions. Vertical clearance from the soffit of the new bridge to the surface of US 101 below should maintain approximately 16 feet.

MASH bridge barriers with chain link railing mounted on the barrier wall would bound the pedestrian/bicycle facility along both edges of the new structure.

Strongs Creek Bridge on Riverwalk Drive - Replace Structure

The south roundabout alternatives would require the existing Strongs Creek bridge be replaced with a new structure. The existing Strongs Creek Bridge on Riverwalk Drive (Br. No. 04C-0085) is a County-owned, 99-foot-long, continuous 3-span, concrete flat slab structure constructed in 1962 with a clear roadway width of 28 feet. The roadway is classified as a major collector and current ADT is approximately 2300 vehicles per day. Two steel pipelines are carried on the bridge, one on each edge. The structure is in fair condition with a health index of 100, but the SR is 72.4 because of the bridge's narrow width and ADT. When originally built, the ADT was much lower and the 28 feet width was adequate.

Based on the conditions at the site and the proposed roadway geometrics, the bridge width required at Strongs Creek on Riverwalk Drive will need to vary from about 58 feet at the west abutment (west creek bank) to about 76 feet at the east abutment (east creek bank). The existing 99-foot-long bridge length is adequate. Because the proposed bridge width is more than twice the existing 28 feet, it would be most economical to replace the entire structure rather than to widen it.

The most economical replacement structure type would likely be a continuous 3-span, concrete flat slab structure with a 1.5 foot structure depth. Approximate span configuration would be 33.5 feet, 32 feet, and 33.5 feet. End supports will be concrete diaphragm abutments supported on concrete piles and interior supports would be concrete pile bents. Bridge width would varry (58 feet at the west abutment to 76 feet at the east abutment) and the bridge would include concrete barriers, a 10-foot-wide pedestrian/bicycle facility, and 12-foot eastbound and westbound travel lanes, shoulders, and edge and road medians of varying widths. Tubular hand railing would be mounted to the barrier walls. Falsework is necessary to erect this type of slab structure. The pipeline utilities would have to be relocated and supported on the new bridge or buried in the stream bottom.

Strongs Creek Bridge (New Bridge) on Dinsmore Drive

The Signal Alternative and the Roundabout Alternative 2a both require a new bridge over Strongs Creek to accommodate the realigned Dinsmore Drive. Based on the conditions at the site and the proposed roadway geometrics, the new Strongs Creek Bridge on Dinsmore Drive will be approximately 157 feet in length and 38-feet-wide. The most economical structure type will likely be a continuous 5-span, concrete flat slab structure with a 1.5 foot structure depth. Approximate span configuration will be 27.5 feet, 34 feet, 34 feet, and 27.5 feet. End supports will be concrete diaphragm abutments supported on concrete piles and interior supports will be concrete pile bents. Supports will be parallel to the channel and skewed approximately 60 degrees from normal to the roadway. Clear roadway width will be 24 feet between concrete barriers. Tubular handrailing will be mounted to the barrier walls. Falsework is necessary to erect this type of slab structure.

Rohner Creek Bridge on US 101

The Signal Alternative requires the existing Rohner Creek bridge on US101 be widened to accommodate the extended NB onramp. The existing Rohner Creek Bridge on U.S. 101 (Br. No. 04-0108) is a pile supported, 87-foot-long, 74-feet-wide, continuous 3-span, concrete flat slab structure constructed in 1962. The structure is in good condition with a SR of 95.9.

Based on the conditions at the site and the proposed roadway geometrics, the existing bridge would need to be widened on its east edge approximately 16 feet to accommodate the proposed 12th Street/U.S. 101 IC northbound on-ramp widening. The widening would match the existing bridge type and will be a continuous 3-span, concrete flat slab structure with a 1.33 foot structure depth. Approximate span configuration will be 29.5 feet, 28 feet, and 29.5 feet. End supports would be concrete diaphragm abutments supported on concrete piles and interior supports would be concrete pile bents. Supports would be parallel to the channel and skewed approximately 20 degrees from normal to the roadway. Concrete barrier would be mounted along the new right edge of deck. Falsework is necessary to erect this type of slab structure.

Pedestrian and Bike Facilities and Connectivity

Signal Alternative

The signal alternative accommodates pedestrians and bicycles with standard Class II bike lanes, sidewalks, and intersection crossings along 12th Street, US 101 ramps, and Newburg Road. Each crossing is 10' wide and extends across the entire intersection length. Due to the number of lanes at each approach, long crosswalks will increase pedestrian crossing times and will affect the traffic signal timing to ensure that pedestrians can safely cross the roadway.

Roundabout Alternatives

Pedestrian crossings are provided on all legs of all roundabout alternatives. Crossings are 10 feet in width and set back a minimum of 20 feet from the roundabout's circulating roadway. Where crosswalks intersect splitter islands or medians, a 6-foot long minimum paved pathway is provided between the travel lanes for safety and refuge when waiting to cross. Shared-use pathways, 10 feet in width and located outside of the roundabout, are setback a minimum of 5 feet from the circulatory road with a landscape strip to increase accessibility and discourage pedestrians from crossing into the central traveled way.

Bicycles are accommodated by navigating through the roundabouts in two ways. Cyclists may choose to take the travel lane and travel through the roundabout as a vehicle or may choose to take the separated bike ramp / shared use path and travel around the roundabout as a pedestrian.

Gateway and Landscaping

Wayfinding, gateway aesthetics and plantings can be featured in each alternative in undeveloped open space along or within each intersection. Roundabouts, with their central landscape areas, lend themselves to focal points with artistic gateway treatments. Refer to **Attachment H** for preliminary landscape and gateway concepts.

Cost Estimates

Capital, support, and total estimated costs for each alternative are summarized in **Table 7**. The total capital costs include traffic control, mobilization, right-of-way, utility relocation, and contingencies. The total support costs include costs for environmental clearance, plans, specifications, and estimates (PS&E), right-of-way engineering and acquisition, and construction support and management. Refer to **Attachment I** for detailed costs estimates for each alternative.

Table 7: Cost Estimate Summary

Alternative	Total Capital Cost	Total Support Cost	Total Estimated Cost (Rounded)
Signal	\$31.1M	\$12.0M	\$43.1M
Roundabout North	\$9.1M	\$3.5M	\$12.6M
Roundabout South 1	\$8.1M	\$3.3M	\$11.4M
Roundabout South 2a	\$10.7M	\$4.3M	\$15.0M
Roundabout South 2b	\$8.4M	\$3.4M	\$11.8M
Roundabout South 2c	\$7.7M	\$3.0M	\$10.7M

Alternatives Comparison

A preliminary alternatives analysis was conducted to identify a preferred alternative. The analysis considered the following: cost, truck accommodation, safety, local access, complete streets, environmental impacts, right-of-way impacts, public input, and the purpose and need.

As previously stated, the signal alternative does meet the projects purpose and need, however, its high estimated cost makes it infeasible for the City to implement, and therefore it is rejected from further consideration.

The roundabout alternatives were generally considered comparable in terms of meeting the performance criteria, however the roundabout North Alternative and South Alternative 2c were identified as the preferred alternative as they best met the performance criteria and was preferred by the public and stakeholders.

No design exceptions have been identified as at this point. However, as the project is further developed, the need for exceptions to design standards should be analyzed.

8. RIGHT-OF-WAY

Initial research was conducted to determine road widths, rights-of-way, adjacent parcel ownerships and maintenance responsibilities, as these factors can affect feasible design solutions or preferred alternatives. Refer to **Attachment J** for additional information on right-of-way and ownership. Right-of-way data sheets will be prepared during the PA&ED phase of the project.

Ownership

A railroad corridor owned by the North Coast Railroad Authority (NCRA) cuts through the project site. While Caltrans owns 12th Street from the interchange to just south of the railroad, Humboldt County has a pavement maintenance agreement from 50 feet south of the railroad to Dinsmore Drive. Dinsmore Drive at the north end of Riverwalk Drive is indicated as being in Humboldt County ownership. However, there is also documentation describing annexation of Strongs Creek Road (Dinsmore Drive) by the City. The ownership of Strongs Creek bridge and exact limits of this annexation will need to be determined in the future as the project develops.

The rights-of-way through the 12th Street interchange are largely publicly held by the City, County, or State. Dinsmore Drive provides access to the public Fortuna Dog Park and industrial land uses such as the Fortuna Wastewater Treatment Plant. The northeast quadrant of the interchange is designated for industrial land use and is owned and occupied by Sequoia Gas Company. Clendenen's Cider works, an agricultural land use, is located on the northwest quadrant.

Right-of-Way Widths

North of the railroad tracks, 12th Street right-of-way is 60 feet wide. South of the railroad tracks, the street is indicated to be 75 feet wide. Newburg Road varies in width from 40 to 50 feet.

Table 8 summarizes the approximate anticipated right-of-way impacts for each project alternative.

In addition to permanent acquisitions, temporary permissions/easements and/or encroachment permits will need to be obtained during the Right-of-Way phase of the project.

Table 8: Right-of-way Impacts

Alternative	APN#	Right-of-Way Acquisition			
		SQFT	Acre		
Signal Concept	•	215,894	4.96		
	200-353-035	26,670	0.61		
	200-353-044	25,114	0.58		
	200-353-005	2,786	0.06		
	200-381-001	18,310	0.42		
	200-381-002	2,165	0.05		
	200-381-003	15,607	0.36		
	200-381-004	31,722	0.73		
	200-381-005	34,852	0.80		
	200-381-006	28,621	0.66		
	200-381-007	7,855	0.18		
	200-381-009	22,943	0.53		
Roundabout Concept - Option 1		5,078	0.12		
	200-353-021	2,467	0.06		
	200-353-035	2,610	0.06		
Roundabout Concept – Option 2a	·	51,030	1.17		
	200-353-035	25,916	0.59		
	200-353-044	25,114	0.58		
Roundabout Concept - Option 2b	·	N/A	N/A		
		N/A	N/A		
Roundabout Concept - Option 2c	·	N/A	N/A		
		N/A	N/A		
Roundabout Concept		51,687	1.19		
	200-381-001	18,311	0.42		
	200-381-002	11,852	0.27		
	200-381-009	199	0.004		
	201-331-005	21,325	0.49		

Utilities

Existing underground and above ground utilities in the vicinity of the 12th Street interchange will need to be modified or relocated to accommodate the proposed improvements. Utility ownership is presented in **Table 9**.

Table 9: Utilities in Vicinity of 12th Street Interchange

Utility	Owner
Storm Drain	Caltrans/City of Fortuna
Cable Television	Suddenlink
Telephone	AT&T
Electrical	PG&E
Water	City of Fortuna
Railroad Signal	NCRA

Railroad

The railroad corridor roughly parallels the east side of US 101 and crosses through the project area at the intersection with Newburg Road. The NCRA is the public agency that owns right-of-way and the Northwestern Pacific Railroad (NWPRR) is the contract operator of the railroad. Together they have the responsibility for the safety, operation and maintenance of the railroad. Although there is currently no active rail service, any modifications to railroad crossings at roadway intersections require the approval of the California Public Utilities Commission (CPUC) under General Order 88-B.

California Senate Bill (SB) 1029 mandates that the NCRA property and right-of-way be railbanked in order to create the Great Redwood Trail. According to discussions with CPUC staff, if the rail corridor is railbanked and the rails and ties removed, then CPUC no longer have jurisdiction over the crossing.

As the project moves forward to project development, close coordination with the NCRA (or its successor agency) and the CPUC will be required to ensure the interchange improvements are consistent with rail corridor operations.

9. STAKEHOLDER INVOLVEMENT

The project concepts were developed and vetted through a public process that included regular meetings of a Technical Advisory Group (TAG), the general public, and specific project stakeholders. This section discusses the results of the public and stakeholder engagement during the design development process.

Technical Advisory Group (TAG)

A TAG was convened in January 2016 to support initial project planning and the development of project alternatives. The TAG met on five different occasions provide technical information relevant to the project, to coordinate with local agencies, and to act as the "eyes and ears" of the community to guide the project. Group members included representatives from HCAOG, the City of Fortuna, the Humboldt County Department Public Work, and Caltrans District 1.

Community Meetings

Two workshops were held in March and July of 2016 to obtain public input into the project assessment and design. Outreach for the project was conducted with flyers, emails, radio public service announcements on six or more stations, social media posts, and targeted in-person outreach to colleagues and residents. In order to encourage participation, each workshop offered food, a child-friendly space with activities, and Spanish-English interpretation. Both workshops resulted in specific and helpful feedback from stakeholders that was utilized during the development and evaluation of design alternatives.

First Community Meeting (March 2016)

The goals of this first workshop was to understand how residents and visitors currently navigate 12th Street interchange area, to identify specific concerns related to safety, operations, and connectivity, and to discuss potential design treatments that could be implements

The attendees identified many challenges for pedestrians and bicyclists, including narrow or virtually non-existent shoulders, and challenging road crossings. Meeting participants showed a preference for design alternatives involving roundabouts. Signalized intersection alternative comments were mostly mildly negative. Roundabout options with fewer roundabouts, and fewer bicycle/pedestrian crossings were preferred.

Second Community Meeting (July 2016)

The second workshop, conducted on July 20, 2016, was primarily focused on presenting design alternatives, answering questions and soliciting community feedback. There was a clear preference for the North Roundabout Alternative and South Roundabout Alternative 2 for Kenmar Road.

Public Presentations

The results of the 2016 Highway 101, Fortuna Downtown and Riverwalk Area Complete Streets and Connectivity Study was presented at the following public meetings:

- Fortuna City Council Meeting November 8, 2016
- HCAOG Board Meeting November 17, 2016
- HCAOG Technical Advisory Committee (TAC) Meeting December 1, 2016

In addition, the results of the study were presented to the Caltrans District 1 Executive Committee on January 3, 2017.

10. ENVIRONMENTAL COMPLIANCE

Preliminary Environmental Analysis

In 2016, an initial environmental evaluation of the project and alternatives was conducted to help anticipate potential environmental constraints that may affect project design, alternatives, cost, schedule, and delivery. The evaluation included a reconnaissance-level site investigation of existing conditions in the project area to identify the presence or potential presence of biological resources listed under the Federal Endangered Species Act (ESA), the presence of wetlands and Waters of the US as regulated by the US Army Corps of Engineers (USACE), the presence or potential presence of species listed as endangered or threatened under the California Endangered Species Act (CESA) or considered a species of special concern (SSC) by the California Department of Fish and Wildlife (CDFW), or the potential for special-status plant species having a rare plant ranking as determined by the California Native Plant Society (CNPS) rare plant inventory, and to present the potential of sensitive habitats as listed by the CDFW. Refer to **Attachment K** for more information on the initial environmental evaluation that was prepared. During the PA&ED phase of the project, a formal Preliminary Environmental Analysis Report (PEAR) may be completed to satisfy Caltrans if required.

NEPA, CEQA and Permitting

During the PA&ED phase, the project will be evaluated for potential impacts on the environment in compliance with the California Environmental Quality Act (CEQA) and National Environmental Policy Act (NEPA). Feasible opportunities to avoid or reduce impacts will be pursued and mitigation measures will be developed to reduce potentially significant impacts as appropriate. The draft CEQA document will be made available to the public for review and comment.

Based on the information currently available, the expected compliance pathways are a Mitigated Negative Declaration of environmental impact for CEQA and a Categorical Exclusion for NEPA in conformance with the Federal Highways Administration/Caltrans programmatic process.

The wetland and riparian habitats in the project area have a moderate to high likelihood of supporting listed reptile, frog and fish species including Western Pond Turtle *Emys (Actinymys) marmorata*, Northern Red-legged Frog Rana aurora, and Foothill Yellow-legged Frog *Rana boylii*. Several sensitive plant species also have a moderate likelihood of occurring in the study area.

Subsequent environmental investigations including a wetland delineation will be needed to address potential sensitive species identified and address any impacts to protected habitats. Additionally, a variety of permits and related environmental review will be necessary for project planning and design.

Anticipated Environmental Permitting and Compliance Requirements are presented in Table 10.

Table 10. Anticipated Environmental Permitting and Compliance Requirements

Law/Regulation	Permit/Approval	Authority			
CEQA	Mitigated Negative Declaration	Lead Agency			
NEPA	Categorical Exclusion	Caltrans on behalf of Federal Highways Administration			
Clean Water Act Section 404	Nationwide Permit	US Army Corps of Engineers			
Porter-Cologne/Clean Water Act Section 401	401 Certification and/or Waste Discharge Requirements (WDR)	North Coast Regional Water Quality Control Board			
National Historic Preservation Act	Letter of Concurrence	State Historic Preservation Office & Tribal Historic Preservation Office			

A Preliminary Environmental Study (PES) Form will be developed during the PA&ED phase of the project. The following technical studies and plans are anticipated to be required:

- Natural Environmental Study (NES) of Biological Resources
- Wetland Delineation and Rare Plant Survey
- Initial Site Assessment (ISA)
- Visual Impact Assessment (VIA), Minor VIA, or Visual Technical Memorandum
- Floodplain Evaluation & Location Hydraulic Study
- Geotechnical Investigation
- Historic Property Survey Report (HPSR) and Archaeological Survey Report (ARS)
- Preliminary Hydraulics/Hydrology Study
- Stormwater Data Report (SWDR)
- Water Quality Assessment Report
- Structures Advanced Planning Study and Preliminary Foundation Report

11. FUNDING

Funding to advance the project has not yet been programmed, however the City of Fortuna intends to request funding to advance the PA&ED phase of the project utilizing funds from the 2022 State Transportation Improvement Program (STIP).

Funding for PS&E, right-of-way and construction has not been programmed. Potential funding sources for PS&E, right-of-way and construction include: the state Active Transportation Program (ATP), the federal RAISE program, future STIP cycles, and local funds.

It has been determined that this project is eligible for Federal-aid funding.

Capital Outlay Project Estimate

Table 11 presents a summary of the capital outlay estimates for the proposed alternatives. Detailed estimates for the various alternatives are presented in **Attachment I**.

Table 11: Summary of Capital Outlay Estimate

Alternative	Estimated Capital Cost							
Alternative	Construction	Right-of-Way	Utilities					
Signal	\$26.6M	\$4.3M	\$200K					
North Roundabout	\$7.8M	\$1.1M	\$200K					
South Roundabout 1	\$7.8M	\$100K	\$200K					
South Roundabout 2a	\$10.5M	\$0	\$200K					
South Roundabout 2b	\$8.2M	\$0	\$200K					
South Roundabout 2c	\$7.5M	\$0	\$200K					

The level of detail available to develop these capital outlay project estimates is useful for long-range planning purposes only. The capital outlay project estimates should not be used to program or commit State-programmed capital outlay funds.

Capital Outlay Support Estimate

Capital outlay support estimate for programming PA&ED in the 2022 STIP for this project by phase is as follows:

North Roundabout: \$1,000,000 South Roundabout 2C: \$850,000

12. DELIVERY SCHEDULE

The following section outlines the delivery schedule for the proposed alternative.

Table 10: Project Delivery Schedule

Project Milestones	Scheduled Delivery Date			
Program Project	12/15/2021			
Begin Environmental (PA&ED) Phase	08/01/2023			
Circulate Draft Environmental Document	12/01/2024			
Draft Project Report	12/01/2024			
End Environmental Milestone	6/30/2025			

The anticipated funding fiscal year for construction is 2029/30

13. RISKS

A risk register and risk analysis will be complete for the project during the PA&ED phase of the project.

14. EXTERNAL AGENCY COORDINATION

This project does not anticipate coordination with the Federal Highway Administration (FHWA).

Coordination between the City of Fortuna, County of Humboldt and Caltrans will be required throughout all phases of this project. In addition, the project will require the following coordination:

Caltrans

Encroachment Permit

<u>US Army Corps of Engineers</u> Department of the Army Permit for: Clean Water Act Section 404

California Department of Fish and Wildlife
California Fish and Game Code Section 1602
Lake or Streambed Alteration Agreement

Regional Water Quality Control Board Clean Water Act Section 401 Water Quality Certification

Railroads

North Coast Railroad Authority

<u>California Public Utilities Commission (unless rail corridor railbanked and rail and ties removed)</u>
Modification to an Existing Rail Crossing, GO-88B

15. PROJECT REVIEWS

Caltrans District 1 has indicated that formal approval of this PSR is not required at this time. The City will engage Caltrans prior to proceeding with PA&ED at which time formal Caltrans reviews can occur, if requested.

16. PROJECT PERSONNEL

City of Fortuna

Merritt Perry, City Manager,707-725-1410 Brendan Byrd, City Engineer, 707-725-1469 Kevin Carter, Director of Public Works, 707-725-1472 Bob Natt, General Services Superintendent, 707-725-1466

Caltrans District 1

Brad Mettam, Deputy District Director, Planning and Local Assistance, 707-496-4794 Jesse Roberts, Transportation Planning, 707-441-4693

Humboldt County Association of Governments

Beth Burks, Director, 707-444-8208

County of Humboldt

Tony Seghetti, Deputy Director Engineering, 707-445-7377 Tom Mattson, Director of Public Works, 707-445-7491

GHD (Consultant)

Josh Wolf, PE, Project Manager, 707-443-8326

17. ATTACHMENTS

- A. Location map
- B. Traffic Counts and LOS Analysis
- C. Review of Geometric Design Standards
- D. Conceptual Design Drawings
- E. Truck Turning Analysis
- F. Fast Path Exhibits
- G. Preliminary Structures Analysis
- H. Landscaping/Gateway Concepts
- I. Cost Estimates
- J. Right-of-Way and Property Ownership
- K. Environmental Constraints Analysis

Map Projection: Lambert Conformal Conic Horizontal Datum: North American 1983 Grid: NAD 1983 StatePlane California I FIPS 0401 Feet

CITY OF FORTUNA PREPARED PSR-PDS FOR 12TH STREET **AND HIGHWAY 101 INTERCHANGE**

Project No. 12559859 Revision No. -

Date 8/31/2021

Existing Conditions

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Traffic Vol, veh/h	2	0	0	105	95	4
Future Vol, veh/h	2	0	0	105	95	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Οιυρ	None	-	None		None
Storage Length	0	None	-	None	-	None
Veh in Median Storage, #		-	-	0	0	-
	0	-	-	0	0	-
Grade, % Peak Hour Factor	75	- 75	- 75	75	75	- 75
				9	9	9
Heavy Vehicles, %	9	9	9		127	5
Mvmt Flow	3	0	0	140	127	5
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	269	129	132	0	_	0
Stage 1	129	-	-	-	-	-
Stage 2	140	-	-	-	-	_
Critical Hdwy	6.49	6.29	4.19	-	_	_
Critical Hdwy Stg 1	5.49	-	-	_	-	_
Critical Hdwy Stg 2	5.49	-	-	-		_
Follow-up Hdwy	3.581	3.381	2.281	_	-	_
Pot Cap-1 Maneuver	706	902	1411	_	_	-
Stage 1	880	-	-	_	-	_
Stage 2	870	-	_	_		_
Platoon blocked, %	010			_	-	_
Mov Cap-1 Maneuver	706	902	1411	_	_	_
Mov Cap-2 Maneuver	706	- 502	-	_	<u> </u>	_
Stage 1	880	<u>-</u>	_	_		_
Stage 2	870		_	_		_
Olugo Z	010		_			
Approach	EB		NB		SB	
HCM Control Delay, s	10.1		0		0	
HCM LOS	В					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1411	- 706				
HCM Lane V/C Ratio	- 1711	- 0.004				
HCM Control Delay (s)	0	- 10.1				
HCM Lane LOS	A	- 10.1				
HCM 95th %tile Q(veh)	0	- 0				
	U	- 0	-			

Synchro 9 Report Fortuna Interchanges Page 5

Intersection						
Int Delay, s/veh	1.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
					98	
Traffic Vol, veh/h	25 25	1	18 18	89	98	18
Future Vol, veh/h		1 0		89		18
Conflicting Peds, #/hr	0		0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #		-	-	0	0	-
Grade, %	0	- 04	- 04	0	0	- 0.4
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles, %	6	6	6	406	6	6
Mvmt Flow	30	1	21	106	117	21
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	276	127	138	0	-	0
Stage 1	127	_	-	-	-	-
Stage 2	149	-	-	-	-	_
Critical Hdwy	6.46	6.26	4.16	-	-	_
Critical Hdwy Stg 1	5.46	-	-	-	-	_
Critical Hdwy Stg 2	5.46	_	-	-	-	_
Follow-up Hdwy	3.554	3.354	2.254	-	-	_
Pot Cap-1 Maneuver	705	913	1421	-	-	_
Stage 1	889	-	-	-	-	_
Stage 2	869	-	-	-	-	-
Platoon blocked, %				-	-	_
Mov Cap-1 Maneuver	694	913	1421	-	-	-
Mov Cap-2 Maneuver	694	-	-	-	-	_
Stage 1	889	-	-	-	-	-
Stage 2	855	-	-	-	-	_
			ND		0.0	
Approach	EB		NB		SB	
HCM Control Delay, s	10.4		1.3		0	
HCM LOS	В					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1421	- 700				
HCM Lane V/C Ratio	0.015	- 0.044				
HCM Control Delay (s)	7.6	0 10.4				
HCM Lane LOS	A	A B				
HCM 95th %tile Q(veh)	0	- 0.1				
TOWN COURT /OUNC CA(VOIT)	- 3	0.1				

Synchro 9 Report Fortuna Interchanges Page 6

Intersection												
Intersection Delay, s/veh	9.3											
Intersection LOS	Α											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Traffic Vol, veh/h	0	0	113	63	0	0	0	0	0	105	0	9
Future Vol, veh/h	0	0	113	63	0	0	0	0	0	105	0	9
Peak Hour Factor	0.92	0.84	0.84	0.84	0.92	0.84	0.84	0.84	0.92	0.84	0.84	0.84
Heavy Vehicles, %	2	6	6	6	2	6	6	6	2	6	6	6
Mvmt Flow	0	0	135	75	0	0	0	0	0	125	0	11
Number of Lanes	0	0	1	0	0	0	0	0	0	1	0	0
Approach			EB							NB		
Opposing Approach										SB		
Opposing Lanes			0							1		
Conflicting Approach Left			SB							EB		
Conflicting Lanes Left			1							1		
Conflicting Approach Right			NB									
Conflicting Lanes Right			1							0		
HCM Control Delay			9.5							9.1		
HCM LOS			Α							Α		
Lane	1	NBLn1	EBLn1	SBLn1								
Vol Left, %		92%	0%	0%								
Vol Thru, %		0%	64%	24%								
Vol Right, %		8%	36%	76%								
Sign Control		Stop	Stop	Stop								
Traffic Vol by Lane		114	176	224								
LT Vol		105	0	0								
Through Vol		0	113	53								
RT Vol		9	63	171								
Lane Flow Rate		136	210	267								
Geometry Grp		1	1	1								
Degree of Util (X)		0.186	0.272	0.313								
Departure Headway (Hd)		4.935	4.68	4.222								
Convergence, Y/N		Yes	Yes	Yes								
Сар		726	765	851								
Service Time		2.974	2.721	2.254								
HCM Lane V/C Ratio		0.187	0.275	0.314								
HCM Control Delay		9.1	9.5	9.2								
HCM Lane LOS		Α	Α	Α								
HCM 95th-tile Q		0.7	1.1	1.3								

Synchro 9 Report Fortuna Interchanges Page 7

Intersection					
Intersection Delay, s/veh					
Intersection LOS					
Movement	SBU	SBL	SBT	SBR	
Traffic Vol, veh/h	0	0	53	171	
Future Vol, veh/h	0	0	53	171	
Peak Hour Factor	0.92	0.84	0.84	0.84	
Heavy Vehicles, %	2	6	6	6	
Mymt Flow	0	0	63	204	
Number of Lanes	0	0	1	0	
A			0.0		
Approach			SB		
Opposing Approach			NB		
Opposing Lanes			1		
Conflicting Approach Left					
Conflicting Lanes Left			0		
Conflicting Approach Right			EB		
Conflicting Lanes Right			1		
HCM Control Delay			9.2		
HCM LOS			Α		
Lane					

Fortuna Interchanges

Synchro 9 Report
Page 8

Intersection													
Int Delay, s/veh	0.9												
•													
Movement	EBL	EBT	EBR		WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	0	0		7	0	0	48	228	0	1	169	156
Future Vol, veh/h	0	0	0		7	0	0	48	228	0	1	169	156
Conflicting Peds, #/hr	0	0	0		0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	·	None		-	-	None	-	-	None	-	-	None
Storage Length	-	-	-		-	-	-	-	-	-	-	-	_
Veh in Median Storage, #	-	0	-		-	0	-	-	0	-	-	0	-
Grade, %	-	0	-		-	0	-	-	0	-	-	0	-
Peak Hour Factor	78	78	78		78	78	78	78	78	78	78	78	78
Heavy Vehicles, %	3	3	3		3	3	3	3	3	3	3	3	3
Mvmt Flow	0	0	0		9	0	0	62	292	0	1	217	200
Major/Minor					Minor1			Major1			Major2		
Conflicting Flow All					734	834	292	417	0	0	292	0	0
Stage 1					415	415	-	-	-	-	-	-	_
Stage 2					319	419	-	-	-	-	-	-	-
Critical Hdwy					7.13	6.53	6.23	4.13	-	-	4.13	-	-
Critical Hdwy Stg 1					6.13	5.53	-	-	-	-	-	-	-
Critical Hdwy Stg 2					6.13	5.53	-	-	-	-	-	-	-
Follow-up Hdwy					3.527	4.027	3.327	2.227	-	-	2.227	-	-
Pot Cap-1 Maneuver					334	303	745	1137	-	-	1264	-	-
Stage 1					613	591	-	-	-	-	-	-	-
Stage 2					690	588	-	-	-	-	-	-	-
Platoon blocked, %									-	-		-	-
Mov Cap-1 Maneuver					317	283	745	1137	-	-	1264	-	-
Mov Cap-2 Maneuver					317	283	-	-	-	-	-	-	-
Stage 1					573	553	-	-	-	-	-	-	-
Stage 2					689	587	-	-	-	-	-	-	-
Approach					WB			NB			SB		_
HCM Control Delay, s					16.7			1.5			0		
HCM LOS					С						-		
Minor Lane/Major Mvmt	NBL	NBT	NBRV	VBLn1	SBL	SBT	SBR						
Capacity (veh/h)	1137		-			-	-						
HCM Lane V/C Ratio	0.054			0.028		_	_						
HCM Control Delay (s)	8.3			16.7	7.9	-	_						
HCM Lane LOS	A			C	A	_	_						
HCM 95th %tile Q(veh)	0.2		-	0.1	0		-						
	V.2			V. 1									

Synchro 9 Report Page 9 Fortuna Interchanges

Intersection													
Int Delay, s/veh	0.1												
3 .													
Movement	EBL	EBT	EBR		WBL	WBT	WBR	NB	L NB	Γ NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	1	0		0	1	2		310		0		0
Future Vol, veh/h	0	1	0		0	1	2		310		0		0
Conflicting Peds, #/hr	0	0	0		0	0	0) 0	0		0
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Fre			Stop		Stop
RT Channelized	·-	_	None		-	-	None		-	- None	-		None
Storage Length	-	-	-		-	-	-		-		-	-	-
Veh in Median Storage, #	-	0	-		-	0	-		- () -	-	0	-
Grade, %	-	0	-		-	0	-) -	-	·	-
Peak Hour Factor	78	78	78		78	78	78	7			78	78	78
Heavy Vehicles, %	3	3	3		3	3	3			3	3		3
Mvmt Flow	0	1	0		0	1	3		39	7 0	0	0	0
Major/Minor	Minor2			М	inor1			Major	1				
Conflicting Flow All	415	413	_		-	413	397) 0			
Stage 1	0	0	-		-	413	-		-				
Stage 2	415	413	-		-	0	-		-				
Critical Hdwy	7.13	6.53	-		-	6.53	6.23	4.1	3				
Critical Hdwy Stg 1	-	-	-		-	5.53	-		-				
Critical Hdwy Stg 2	6.13	5.53	-		-	-	-						
Follow-up Hdwy	3.527	4.027	-		-	4.027		2.22	7				
Pot Cap-1 Maneuver	546	528	0		0	528	650		-				
Stage 1	-	-	0		0	592	-		-				
Stage 2	613	592	0		0	-	-		-				
Platoon blocked, %													
Mov Cap-1 Maneuver	543	528	-		-	528	650						
Mov Cap-2 Maneuver	543	528	-		-	528	-		-				
Stage 1	-	-	-		-	592	-						
Stage 2	609	592	-		-	-	-		-				
Approach	EB				WB			N	3				
HCM Control Delay, s	11.8				11								
HCM LOS	В				В								
Minor Lane/Major Mvmt	NBL	NBT	NBR E	BLn1W	BLn1								
Capacity (veh/h)	-	-	-	528	604								
HCM Lane V/C Ratio	-	-	-	0.002 (0.006								
HCM Control Delay (s)	-	-	-	11.8	11								
HCM Lane LOS	-	-	-	В	В								
HCM 95th %tile Q(veh)	-	-	-	0	0								

Synchro 9 Report Page 10 Fortuna Interchanges

Movement WBL WBR	Intersection									
Movement WBL WBR NBT NBR SBL SBT		31.2								
Fraffic Vol, veh/h 155 172 366 174 107 171 vulture Vol, veh/h 155 172 366 174 107 171 vulture Vol, veh/h 155 172 366 174 107 171 vulture Vol, veh/h 155 172 366 174 107 171 vulture Vol, veh/h 155 172 366 174 107 171 vulture Vol, veh/h 155 172 366 174 107 171 vulture Vol, veh/h 107 171 vulture Vol, veh/h 155 172 366 174 107 171 vulture Vol, veh/h 107 171 vulture Vol, veh/h 100 0 0 0 0 0 0 0 0 0 0 0	THE BOILDY, STOOT	01.2								
Fraffic Vol, veh/h 155 172 366 174 107 171 vulture Vol, veh/h 155 172 366 174 107 171 vulture Vol, veh/h 155 172 366 174 107 171 vulture Vol, veh/h 155 172 366 174 107 171 vulture Vol, veh/h 155 172 366 174 107 171 vulture Vol, veh/h 155 172 366 174 107 171 vulture Vol, veh/h 107 171 vulture Vol, veh/h 155 172 366 174 107 171 vulture Vol, veh/h 107 171 vulture Vol, veh/h 100 0 0 0 0 0 0 0 0 0 0 0	Movement	WRI	WRR		NRT	NRR	SRI	SRT		
Future Vol., veh/h 155 172 366 174 107 171 Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 0										
Conflicting Peds, #/hr										
Sign Control Stop Stop Free										
None										
Storage Length										
/eh in Median Storage, # 0					-	None	-	None		
Grade %			20		_	-	-	-		
Peak Hour Factor 72 72 72 72 72 72 72 7			-							
Heavy Vehicles, %			- 70					-		
Major Majo										
Major/Minor Minor1 Major1 Major2			•					-		
Conflicting Flow All	Mvmt Flow	215	239		508	242	149	238		
Conflicting Flow All										
Stage 1 629 - - - - -	Major/Minor	Minor1		N	/lajor1		Major2			
Stage 2 535	Conflicting Flow All	1164	629		0	0	750	0		
Critical Hdwy Stg 1 5.41 4.11	Stage 1	629	-		-	-	-	-		
Stage 1	Stage 2	535	-		-	-	-	-		
Critical Hdwy Stg 2 5.41	Critical Hdwy	6.41	6.21		-	-	4.11	-		
Critical Hdwy Stg 2 5.41	Critical Hdwy Stg 1	5.41	-		-	-	-	-		
Follow-up Hdwy 3.509 3.309 2.209 - Pot Cap-1 Maneuver 216 484 864 - Stage 1 533	, ,	5.41	-		-	-	-	-		
Stage 1		3.509	3.309		-	-	2.209	-		
Stage 1 533			484		-	-	864	_		
Stage 2 589			-		-	-	_	-		
Platoon blocked, % Nov Cap-1 Maneuver ~ 173			-		_	_	_	_		
Mov Cap-1 Maneuver ~ 173					-	-		-		
Stage 1		~ 173	484		-	_	864	-		
Stage 1 533 -			-		-	-	-	-		
Stage 2 472			_		_	_	_	_		
Approach WB NB SB HCM Control Delay, s 106 0 3.9 HCM LOS F Minor Lane/Major Mvmt NBT NBRWBLn1WBLn2 SBL SBT Capacity (veh/h) - 173 484 864 - HCM Lane V/C Ratio - 1.244 0.494 0.172 - HCM Control Delay (s) - 201.9 19.5 10 0 HCM Lane LOS - F C B A HCM 95th %tile Q(veh) - 12 2.7 0.6 -			<u>-</u>		_	_	-	_		
Control Delay, s	Olago 2	···=								
Control Delay, s	Annroach	W/R			NR		SR			
Minor Lane/Major Mvmt NBT NBRWBLn1WBLn2 SBL SBT Capacity (veh/h) 173 484 864 - HCM Lane V/C Ratio - 1.244 0.494 0.172 - HCM Control Delay (s) - 201.9 19.5 10 0 HCM Lane LOS - F C B A HCM 95th %tile Q(veh) - 12 2.7 0.6 -										
Minor Lane/Major Mvmt NBT NBRWBLn1WBLn2 SBL SBT Capacity (veh/h) 173 484 864 - HCM Lane V/C Ratio - 1.244 0.494 0.172 - HCM Control Delay (s) - 201.9 19.5 10 0 HCM Lane LOS - F C B A HCM 95th %tile Q(veh) - 12 2.7 0.6 -					U		5.9			
Capacity (veh/h) 173 484 864 - HCM Lane V/C Ratio - 1.244 0.494 0.172 - HCM Control Delay (s) - 201.9 19.5 10 0 HCM Lane LOS - F C B A HCM 95th %tile Q(veh) - 12 2.7 0.6 -	I IOWI LOS	Г								
Capacity (veh/h) 173 484 864 - HCM Lane V/C Ratio - 1.244 0.494 0.172 - HCM Control Delay (s) - 201.9 19.5 10 0 HCM Lane LOS - F C B A HCM 95th %tile Q(veh) - 12 2.7 0.6 -	NA:	NDT	NIDDWD: 414	0 00	OPT					
HCM Lane V/C Ratio 1.244 0.494 0.172 - HCM Control Delay (s) 201.9 19.5 10 0 HCM Lane LOS F C B A HCM 95th %tile Q(veh) 12 2.7 0.6 -										
HCM Control Delay (s) 201.9 19.5 10 0 HCM Lane LOS F C B A HCM 95th %tile Q(veh) 12 2.7 0.6 -		-			-					
HCM Lane LOS F C B A HCM 95th %tile Q(veh) 12 2.7 0.6 - Notes		-			-					
HCM 95th %tile Q(veh) 12 2.7 0.6 - Notes		-								
Notes		-			Α					
	HCM 95th %tile Q(veh)	-	- 12	2.7 0.6	-					
	Notes									
		city \$: Del	av exceeds 300	s +; Comp	utation	Not Det	fined *: All	maior v	olume in platoon	

Fortuna Interchanges Synchro 9 Report Page 11

Intersection													
Int Delay, s/veh 86	6												
int Delay, Siveri 00	.0												
Movement	EBL	EBT	EBR	WBL	WBT	WBR		NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	126	22	332	107	0		0	0	0	352	0	19
Future Vol, veh/h	0	126	22	332	107	0		0	0	0	352	0	19
Conflicting Peds, #/hr	0	0	0	0	0	0		0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Free	Free	Free		Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None		-	-	None	-	-	None
Storage Length	_	_	-	_	_	-		_	_	-	_	_	-
Veh in Median Storage, #	-	0	_	-	0	-		-	0	-	-	0	_
Grade, %	-	0	_	-	0	_		_	0	-	_	0	_
Peak Hour Factor	94	94	94	94	94	94		94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2		2	2	2	2	2	2
Mvmt Flow	0	134	23	353	114	0		0	0	0	374	0	20
Major/Minor				Major2							Minor2		
Conflicting Flow All				0	0	0					820	820	114
Stage 1				-	-	-					820	820	_
Stage 2				_	-	-					0	0	-
Critical Hdwy				4.12	-	_					7.12	6.52	6.22
Critical Hdwy Stg 1				-	-	_					6.12	5.52	-
Critical Hdwy Stg 2				-	-	_					-	-	-
Follow-up Hdwy				2.218	-	_					3.518	4.018	3.318
Pot Cap-1 Maneuver				-	-	0					~ 294	310	939
Stage 1				-	-	0					~ 369	389	_
Stage 2				-	-	0					-	-	_
Platoon blocked, %					-								
Mov Cap-1 Maneuver				-	-	-					~ 294	310	939
Mov Cap-2 Maneuver				-	-	-					~ 294	310	-
Stage 1				-	-	-					~ 369	389	-
Stage 2				-	-	-					-	-	-
Approach				WB							SB		
HCM Control Delay, s											189		
HCM LOS											F		
Minor Lane/Major Mvmt	WBL	WBT :	SBLn1										
Capacity (veh/h)	-	-	305										
HCM Lane V/C Ratio	-	-	1.294										
HCM Control Delay (s)	-	-	189										
HCM Lane LOS	-	-	F										
HCM 95th %tile Q(veh)	-	-	19										
Notes													
~: Volume exceeds capacity	y \$: De	lay exc	eeds 300	s +: Com	outation	Not De	fined	*: All r	najor v	olume in	platoon		

Fortuna Interchange Synchro 9 Report Page 1

Intersection												
Int Delay, s/veh	3.2											
,												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	13	465	0	0	413	228	26	0	220	0	0	0
Future Vol, veh/h	13	465	0	0	413	228	26	0	220	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	Free	·-	-	Yield	·-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	_
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	14	495	0	0	439	243	28	0	234	0	0	0
Major/Minor	Major1			Major2			Minor1					
	439	0	_	-	-	0	961	961	495			
•	-	-	-	=	-	-			-			
•	-	-	-	-	-	-	439		-			
	4.12	-	-	-	-	-	6.42	6.52	6.22			
	-	-	-	-	-	-	5.42	5.52	-			
Critical Hdwy Stg 2	-	-	-	-	-	-	5.42	5.52	-			
Follow-up Hdwy	2.218	-	-	-	-	-	3.518	4.018	3.318			
Pot Cap-1 Maneuver	1121	-	0	0	-	0	284	256	575			
Stage 1	-	-	0	0	-	0	595	531	-			
Stage 2	-	-	0	0	-	0	650	578	-			
Platoon blocked, %		-			-							
Mov Cap-1 Maneuver	1121	-	-	-	-	-	279	0	575			
•	-	-	-	-	-	-	279	0	-			
Stage 1	-	-	-	-	-	-		0	-			
Stage 2	-	-	-	-	-	-	650	0	-			
Approach	EB			WB			NB					
HCM Control Delay, s	0.2			0			14.4					
HCM LOS							В					
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	WBT								
	643	1121	-	-								
HCM Lane V/C Ratio		0.012	-	-								
HCM Control Delay (s)	14.4	8.3	0	-								
HCM Lane LOS	В	Α	Α	-								
HCM 95th %tile Q(veh)	2	0	-	-								
Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Delay, s HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS	- 94 2 14 Major1 439 4.12 2.218 1121 1121 EB 0.2 NBLn1 643 0.407 14.4 B	0 0 94 2 495 0 - - - - - - - - - - - - - - - - - -	- 94 2 0 0 0 0 0	94 2 0 Major2 0 0 0 0 0 0 0 WBT	0 94 2 439	0 	94 2 28 Minor1 961 522 439 6.42 5.42 5.42 3.518 284 595 650 279 279 585 650	94 2 0 961 522 439 6.52 5.52 5.52 4.018 256 531 578	94 2 234 495 - 6.22 - 3.318 575 - -	94 2	0 94 2	

Synchro 9 Report Page 2 Fortuna Interchange

Intersection														
Int Delay, s/veh	1.2													
, , , , , , , , , , , , , , , , , , ,														
Movement	EBL	EBT	EBR		WBL	WBT	WBR	1	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	642	43		9	611	0		30	0	13	0	0	0
Future Vol, veh/h	0	642	43		9	611	0		30	0	13	0	0	0
Conflicting Peds, #/hr	0	0	0		0	0	0		0	0	0	0	0	0
Sign Control	Free	Free	Free		Free	Free	Free	S	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None		-	-	None		-	-	None	-	-	None
Storage Length	-	-	-		-	-	-		-	-	-	-	-	-
Veh in Median Storage, #	-	0	-		-	0	-		-	0	-	-	0	-
Grade, %	-	0	-		-	0	-		-	0	-	-	0	-
Peak Hour Factor	94	94	94		94	94	94		94	94	94	94	94	94
Heavy Vehicles, %	1	1	1		1	1	1		1	1	1	1	1	1
Mvmt Flow	0	683	46		10	650	0		32	0	14	0	0	0
Major/Minor	Major1			M	ajor2			Min	or1			Minor2		
Conflicting Flow All	650	0	0		729	0	0		375	1375	706	1382	1398	650
Stage 1	-	-	-		129	-	-		706	706	-	669	669	030
Stage 2	_	_	_		_	_	_		669	669	_	713	729	_
Critical Hdwy	4.11	_			4.11		_		'.11	6.51	6.21	7.11	6.51	6.21
Critical Hdwy Stg 1	7.11	_	_			_	_		5.11	5.51	- 0.21	6.11	5.51	0.21
Critical Hdwy Stg 2	_	_	_		_	_	_		5.11	5.51	_	6.11	5.51	
Follow-up Hdwy	2.209	_	_	2	2.209	_	_		509	4.009	3.309	3.509	4.009	3.309
Pot Cap-1 Maneuver	941	_	_		879	_	_		123	146	438	122	141	471
Stage 1	-	_	_		-	_	_		428	440	-	449	457	- '' -
Stage 2	_	_	_		_	_	_		449	457	_	424	430	_
Platoon blocked, %		_	_			_	_					.21	100	
Mov Cap-1 Maneuver	941	_	_		879	_	_		121	143	438	117	138	471
Mov Cap-2 Maneuver	-	_	_		-	_	_		121	143	-	117	138	-
Stage 1	_	_	_		_	_	_		428	440	_	449	449	_
Stage 2	_	_	-		-	_	_		441	449	_	411	430	_
5 ta.g5 _														
Approach	EB				WB				NB			SB		
HCM Control Delay, s	0				0.1			2	37.7			0		
HCM LOS	U				0.1			· ·	F			A		
TIOWI LOG												A		
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBI n1						
Capacity (veh/h)	155	941	-	-	879	-	-	-						
HCM Lane V/C Ratio	0.295	J *1 1			0.011	_		_						
HCM Control Delay (s)	37.7	0	_		9.1	0	_	0						
HCM Lane LOS	57.7 E	A	_	_	9.1 A	A	_	A						
HCM 95th %tile Q(veh)	1.2	0	_		0	-	_							
How Jour Joure Q(veri)	1.2	U	_	-	U	_	-							

Fortuna Interchange Synchro 9 Report

	۶	→	•	•	←	4	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		र्स	7	ሻ	∱ ∱		ነ	^	
Traffic Volume (veh/h)	271	119	265	5	75	55	123	175	11	60	223	422
Future Volume (veh/h)	271	119	265	5	75	55	123	175	11	60	223	422
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1881	1881	1900	1881	1881	1881	1881	1900	1881	1881	1900
Adj Flow Rate, veh/h	274	120	268	5	76	56	124	177	11	61	225	0
Adj No. of Lanes	0	1	1	0	1	1	1	2	0	1	2	0
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Percent Heavy Veh, %	1	1	1	1	1	1	1	1	1	1	1	1
Cap, veh/h	359	157	454	10	157	143	165	612	38	105	520	0
Arrive On Green	0.28	0.28	0.28	0.09	0.09	0.09	0.09	0.18	0.18	0.06	0.15	0.00
Sat Flow, veh/h	1264	554	1599	116	1760	1599	1792	3420	211	1792	3668	0
Grp Volume(v), veh/h	394	0	268	81	0	56	124	92	96	61	225	0
Grp Sat Flow(s),veh/h/ln	1818	0	1599	1875	0	1599	1792	1787	1844	1792	1787	0
Q Serve(g_s), s	9.2	0.0	6.7	1.9	0.0	1.5	3.1	2.1	2.1	1.5	2.7	0.0
Cycle Q Clear(g_c), s	9.2	0.0	6.7	1.9	0.0	1.5	3.1	2.1	2.1	1.5	2.7	0.0
Prop In Lane	0.70		1.00	0.06		1.00	1.00		0.11	1.00		0.00
Lane Grp Cap(c), veh/h	517	0	454	168	0	143	165	320	330	105	520	0
V/C Ratio(X)	0.76	0.00	0.59	0.48	0.00	0.39	0.75	0.29	0.29	0.58	0.43	0.00
Avail Cap(c_a), veh/h	707	0	622	729	0	622	677	1181	1219	209	1428	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	15.1	0.0	14.2	20.1	0.0	19.9	20.5	16.5	16.5	21.2	18.0	0.0
Incr Delay (d2), s/veh	3.3	0.0	1.2	2.1	0.0	1.7	6.7	0.5	0.5	5.0	0.6	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.1	0.0	3.1	1.1	0.0	0.7	1.9	1.1	1.1	0.9	1.4	0.0
LnGrp Delay(d),s/veh	18.5	0.0	15.5	22.2	0.0	21.6	27.2	16.9	16.9	26.2	18.6	0.0
LnGrp LOS	В		В	С		С	С	В	В	С	В	
Approach Vol, veh/h		662			137			312			286	
Approach Delay, s/veh		17.3			22.0			21.0			20.2	
Approach LOS		В			С			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.2	12.8		17.7	8.8	11.2		8.6				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	5.4	30.6		18.0	17.5	18.5		18.0				
Max Q Clear Time (g_c+l1), s	3.5	4.1		11.2	5.1	4.7		3.9				
Green Ext Time (p_c), s	0.0	2.6		2.0	0.2	2.1	_	0.4		_		
Intersection Summary			46.0									
HCM 2010 Ctrl Delay			19.2									
HCM 2010 LOS			В									

Fortuna Interchange Synchro 9 Report

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Traffic Vol, veh/h	0	2	0	163	137	1
Future Vol, veh/h	0	2	0	163	137	1
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	_	-	<u>-</u>	-
Veh in Median Storage, #		-	_	0	0	_
Grade, %	0	_	<u>-</u>	0	0	_
Peak Hour Factor	81	81	81	81	81	81
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	2	0	201	169	1
IVIVIIIL I IOVV	0			201	109	
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	371	170	170	0	-	0
Stage 1	170	-	-	-	-	-
Stage 2	201	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	630	874	1407	-	-	-
Stage 1	860	-	-	-	-	-
Stage 2	833	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	630	874	1407	-	-	-
Mov Cap-2 Maneuver	630	-	-	-	-	-
Stage 1	860	-	-	-	-	-
Stage 2	833	-	-	-	-	-
Approach	EB		NB		SB	
	9.1		0		0	
HCM LOS			0		U	
HCM LOS	А					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1407	- 874				
HCM Lane V/C Ratio	-	- 0.003				
HCM Control Delay (s)	0	- 9.1				
HCM Lane LOS	Α	- A				
HCM 95th %tile Q(veh)	0	- 0				
•						

Synchro 9 Report Fortuna Interchange Page 5

Intersection						
Int Delay, s/veh	1.4					
3 ·						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Traffic Vol, veh/h	28	15	6	157	123	18
Future Vol, veh/h	28	15	6	157	123	18
Conflicting Peds, #/hr	0	0	0		0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- -	None	-		-	None
Storage Length	0	-	_	-		NONE
Veh in Median Storage, #		-	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	1	1	1	1	1	1
Mymt Flow	32	17	7	178	140	20
WWW. I IOW	02			170	140	20
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	342	150	160	0	-	0
Stage 1	150	-	-	-	-	-
Stage 2	192	-	-	-	-	-
Critical Hdwy	6.41	6.21	4.11	-	-	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-	-	-	-	-
Follow-up Hdwy	3.509	3.309	2.209	-	-	-
Pot Cap-1 Maneuver	656	899	1425	-	-	-
Stage 1	880	-	-	-	-	-
Stage 2	843	-	-	-	-	-
Platoon blocked, %	2-6	•••		-	-	-
Mov Cap-1 Maneuver	653	899	1425	-	-	-
Mov Cap-2 Maneuver	653	-	-	-	-	-
Stage 1	880	-	-	-	-	-
Stage 2	839	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	10.3		0.3		0	
HCM LOS	В					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1425	- 722				
HCM Lane V/C Ratio	0.005	- 0.068				
HCM Control Delay (s)	7.5	0.008				
HCM Lane LOS	7.5 A	A B				
HCM 95th %tile Q(veh)	0	- 0.2				
HOW JOHN JOHN W(VEII)	U	- 0.2	_			

Synchro 9 Report Fortuna Interchange

Intersection												
Intersection Delay, s/veh	10.2											
Intersection LOS	В											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Traffic Vol, veh/h	0	0	124	89	0	0	0	0	0	176	0	9
Future Vol, veh/h	0	0	124	89	0	0	0	0	0	176	0	9
Peak Hour Factor	0.92	0.88	0.88	0.88	0.92	0.88	0.88	0.88	0.92	0.88	0.88	0.88
Heavy Vehicles, %	2	1	1	1	2	1	1	1	2	1	1	1
Mvmt Flow	0	0	141	101	0	0	0	0	0	200	0	10
Number of Lanes	0	0	1	0	0	0	0	0	0	1	0	0
Approach			EB							NB		
Opposing Approach										SB		
Opposing Lanes			0							1		
Conflicting Approach Left			SB							EB		
Conflicting Lanes Left			1							1		
Conflicting Approach Right			NB									
Conflicting Lanes Right			1							0		
HCM Control Delay			10.3							10.2		
HCM LOS			В							В		
Lane		NBLn1	EBLn1	SBLn1								
Vol Left, %		95%	0%	0%								
Vol Thru, %		0%	58%	18%								
Vol Right, %		5%	42%	82%								
Sign Control		Stop	Stop	Stop								
Traffic Vol by Lane		185	213	295								
LT Vol		176	0	0								
Through Vol		0	124	52								
RT Vol		9	89	243								
Lane Flow Rate		210	242	335								
Geometry Grp		1	1	1								
Degree of Util (X)		0.295	0.327	0.4								
Departure Headway (Hd)		5.048	4.868	4.295								
Convergence, Y/N		Yes	Yes	Yes								
Сар		706	733	831								
Service Time		3.114	2.94	2.35								
HCM Lane V/C Ratio		0.297	0.33	0.403								
HCM Control Delay		10.2	10.3	10.2								
HCM Lane LOS		В	В	В								
HCM 95th-tile Q		1.2	1.4	1.9								

Synchro 9 Report Page 7 Fortuna Interchange

Intersection					
Intersection Delay, s/veh					
Intersection LOS					
	OPLI	001	ODT	000	
Movement	SBU	SBL	SBT	SBR	
Traffic Vol, veh/h	0	0	52	243	
Future Vol, veh/h	0	0	52	243	
Peak Hour Factor	0.92	0.88	0.88	0.88	
Heavy Vehicles, %	2	1	1	1	
Mvmt Flow	0	0	59	276	
Number of Lanes	0	0	1	0	
Approach			SB		
Opposing Approach			NB		
Opposing Lanes			1		
Conflicting Approach Left					
Conflicting Lanes Left			0		
Conflicting Approach Right			EB		
Conflicting Lanes Right			1		
HCM Control Delay			10.2		
HCM LOS			В		
			_		
Lane					

Fortuna Interchange Synchro 9 Report Page 8

Intersection												
Int Delay, s/veh	0.7											
·												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	0	0	7		0	55	363	1	2	206	133
Future Vol, veh/h	0	0	0	7	0	0	55	363	1	2	206	133
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	<u>-</u>	-	None	-			-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	<u>.</u>	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	7	0	0	59	386	1	2	219	141
Major/Minor				Minor1			Major1			Major2		
Conflicting Flow All				798	869	387	361	0	0	387	0	0
Stage 1				504	504	J01 -	J0 I	-	-	-		U
Stage 2				294		_	-	_	_	-	-	_
Critical Hdwy				6.42	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1				5.42	5.52	0.22	4.12	_	_	4.12	-	
Critical Hdwy Stg 2				5.42	5.52			_	_		-	-
Follow-up Hdwy					4.018	3 318	2.218	_	_	2.218	-	_
Pot Cap-1 Maneuver				355	290	661	1198		_	1171	-	-
Stage 1				607	541	001	1190	_	_	1171	-	_
Stage 2				756	623	_	-	-	-	-	-	-
Platoon blocked, %				750	023	-	-	-	_	-	-	_
Mov Cap-1 Maneuver				332	0	661	1198	-	-	1171		-
Mov Cap-2 Maneuver				332	0	001	1190	-	-	1171	-	-
Stage 1				569	0	-	-		-	-	-	-
				754	0	-	-	-	-	-	-	_
Stage 2				7 54	U	-	-	-	-	-	-	-
				W/D			ND			0.0		
Approach				WB			NB			SB		
HCM Control Delay, s				16.1			1.1			0		
HCM LOS				С								
Minor Lane/Major Mvmt	NBL	NBT	NBRWBLn		SBT	SBR						
Capacity (veh/h)	1198	-	- 33		-	-						
HCM Lane V/C Ratio	0.049	-		2 0.002	-	-						
HCM Control Delay (s)	8.2	0	- 16.		-	-						
HCM Lane LOS	Α	Α		C A	-	-						
HCM 95th %tile Q(veh)	0.2	-	- 0.	1 0	-	-						

Synchro 9 Report Page 9 Fortuna Interchange

Intersection													
Int Delay, s/veh	0.5												
, ,													
Movement	EBL	EBT	EBR		WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	3	0		0	1	3	6	121	0	0	0	0
Future Vol, veh/h	0	3	0		0	1	3	6	121	0	0	0	0
Conflicting Peds, #/hr	0	0	0		0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None		-	-	None	-	-	None	-	-	None
Storage Length	-	-	-		-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-		-	0	-	-	0	-	-	0	-
Grade, %	-	0	-		-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94		94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	2
Mvmt Flow	0	3	0		0	1	3	6	129	0	0	0	0
Major/Minor	Minor2			N	1inor1			Major1					
Conflicting Flow All	144	141	_		-	141	129	0	0	0			
Stage 1	0	0	_		-	141	_	_		_			
Stage 2	144	141	-		-	0	-	-	-	-			
Critical Hdwy	7.12	6.52	-		-	6.52	6.22	4.12	-	-			
Critical Hdwy Stg 1	-	-	-		-	5.52	-	-	-	-			
Critical Hdwy Stg 2	6.12	5.52	-		-	-	-	-	-	-			
Follow-up Hdwy	3.518	4.018	-		-	4.018	3.318	2.218	-	-			
Pot Cap-1 Maneuver	825	750	0		0	750	921	-	-	-			
Stage 1	-	-	0		0	780	-	-	-	-			
Stage 2	859	780	0		0	-	-	-	-	-			
Platoon blocked, %									-	-			
Mov Cap-1 Maneuver	821	750	-		-	750	921	-	-	-			
Mov Cap-2 Maneuver	821	750	-		-	750	-	-	-	-			
Stage 1	-	-	-		-	780	-	-	-	-			
Stage 2	855	780	-		-	-	-	-	-	-			
Approach	EB				WB			NB					
HCM Control Delay, s	9.8				9.2								
HCM LOS	Α				Α								
Minor Lane/Major Mvmt	NBL	NBT	NBR E	EBLn1W	/BLn1								
Capacity (veh/h)	-	-	-	750	871								
HCM Lane V/C Ratio	-	-	-	0.004	0.005								
HCM Control Delay (s)	-	-	-	9.8	9.2								
HCM Lane LOS	-	-	-	Α	Α								
HCM 95th %tile Q(veh)	-	-	-	0	0								

Synchro 9 Report Page 10 Fortuna Interchange

Intersection							
Int Delay, s/veh	7.5						
Movement	WBL	WBR		NB	T NBR	SBL	SBT
Traffic Vol, veh/h	143	112		20		149	198
Future Vol, veh/h	143	112		20		149	198
Conflicting Peds, #/hr	0	0			0 0		0
Sign Control	Stop	Stop		Fre			Free
RT Channelized	- -	None		110	- None		
Storage Length	0	25				_	-
Veh in Median Storage, #	0	-			0 -	-	0
Grade, %	0	_			0 -		0
Peak Hour Factor	93	93		9			93
Heavy Vehicles, %	1	1		•	1 1	1	1
Mymt Flow	154	120		22		•	213
WWW.CT IOW	101	120			_ 002	100	210
Major/Minor	Minor1			Major		Major2	
Conflicting Flow All	906	373			0 0	524	0
Stage 1	373	-				-	-
Stage 2	533	-				-	-
Critical Hdwy	6.41	6.21				4.11	-
Critical Hdwy Stg 1	5.41	-				-	-
Critical Hdwy Stg 2	5.41	-					-
Follow-up Hdwy	3.509	3.309				00	-
Pot Cap-1 Maneuver	308	675				1048	-
Stage 1	699	-				-	-
Stage 2	590	-				-	-
Platoon blocked, %							-
Mov Cap-1 Maneuver	255	675				1048	-
Mov Cap-2 Maneuver	255	-				-	-
Stage 1	699	-				-	-
Stage 2	488	-				-	-
Approach	WB			N	3	SB	
HCM Control Delay, s	26.6				0	3.9	
HCM LOS	20.0 D					0.0	
Minor Long /Maior Mary	NDT	NIDDIMDI :- 414	/D1 = 0	CDI CD	т		
Minor Lane/Major Mvmt	NBT	NBRWBLn1V		SBL SB			
Capacity (veh/h)	-	- 255	675	1048	-		
HCM Control Doloy (a)	-	- 0.603			- n		
HCM Long LOS	-	- 38.5	11.5		0		
HCM Cath (Villa O(viah)	-	- E	В		4		
HCM 95th %tile Q(veh)	-	- 3.6	0.6	0.5	-		

Synchro 9 Report Page 11 Fortuna Interchange

Cumulative No Build Alternative

Intersection						
	0.1					
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Traffic Vol, veh/h	5	0	0	245	295	8
Future Vol, veh/h	5	0	0	245	295	8
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	·-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	9	9	9	9	9	9
Mvmt Flow	6	0	0	278	335	9
Mai/Mi	Minno		B.4		M. C.	
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	618	340	344	0	-	0
Stage 1	340	-	-	-	-	-
Stage 2	278	-	-	-	-	-
Critical Hdwy	6.49	6.29	4.19	-	-	-
Critical Hdwy Stg 1	5.49	-	-	-	-	-
Critical Hdwy Stg 2	5.49	-	-	-	-	-
Follow-up Hdwy	3.581	3.381	2.281	-	-	-
Pot Cap-1 Maneuver	442	687	1177	-	-	-
Stage 1	705	-	-	-	-	-
Stage 2	753	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	442	687	1177	-	-	-
Mov Cap-2 Maneuver	442	-	-	-	-	-
Stage 1	705	-	-	-	-	-
Stage 2	753	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	13.3		0		0	
HCM LOS	15.5 B		0		0	
TIOWI LOO	U					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1177	- 442				
HCM Lane V/C Ratio	-	- 0.013				
HCM Control Delay (s)	0	- 13.3				
HCM Lane LOS	A	- 10.5				
HCM 95th %tile Q(veh)	0	- 0				
HOW JOHN JOHN Q(VOII)	U		-			

Synchro 9 Report Page 5 Fortuna Interchanges

Interception						
Intersection	0.9					
Int Delay, s/veh	0.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Traffic Vol, veh/h	25	1	18	232	302	25
Future Vol, veh/h	25	1	18	232	302	25
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	6	6	6	6	6	6
Mvmt Flow	28	1	20	264	343	28
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	662	357	372	0	iviajuiz	0
Stage 1	357	-	312	-	<u>-</u>	-
Stage 2	305	-	-	_	-	-
Critical Hdwy	6.46	6.26	4.16	_	<u>-</u>	-
Critical Hdwy Stg 1	5.46	0.20	4.10	_	<u>-</u>	_
Critical Hdwy Stg 2	5.46	<u> </u>			<u>-</u>	-
Follow-up Hdwy	3.554	3.354	2.254	_	<u>-</u>	_
Pot Cap-1 Maneuver	421	678	1165		<u>-</u>	-
Stage 1	699	070	1105	_	<u>.</u>	_
Stage 2	739	-	-		<u>-</u>	-
Platoon blocked, %	100		_	_		_
Mov Cap-1 Maneuver	413	678	1165	_	<u>-</u>	-
Mov Cap-1 Maneuver	413	- 010	1103	_	_	_
Stage 1	699	_	-		<u>-</u>	
Stage 2	724	_	_	_		_
Olago Z	144	<u>-</u>	_		_	_
Approach	EB		NB		SB	
HCM Control Delay, s	14.2		0.6		0	
HCM LOS	В					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1165	- 419				
HCM Lane V/C Ratio	0.018	- 0.071				
HCM Control Delay (s)	8.1	0 14.2				
HCM Lane LOS	A	A B				
HCM 95th %tile Q(veh)	0.1	- 0.2				
. I Sivi ootii /otilo Q(voli)	0.1	U.Z				

Synchro 9 Report Page 6 Fortuna Interchanges

FRT	FRR	WRII	WRI	WRT	WRR	NRH	NRI	NRT	NBR
									19
									19
									0.88
									6
									22
									0
	<u> </u>	U	U	U	U	U		U	J
EB							NB		
							SB		
0							1		
							EB		
1							1		
NB									
1							0		
17.8							15.1		
С							С		
EBLn1	SBLn1								
0%	0%								
49%	34%								
51%	66%								
Stop	Stop								
338	444								
0	0								
164	153								
174	291								
384	505								
1	1								
0.617	0.742								
	5.294								
	Yes								
622	681								
	0 000								
3.854	3.363								
0.617	0.742								
0.617 17.8	0.742 22.1								
0.617	0.742								
	0 SB 1 NB 1 17.8 C EBLn1 0% 49% 51% Stop 338 0 164 174 384 1 0.617 5.784 Yes	164 174 164 174 0.88 0.88 6 6 186 198 1 0 EB 0 SB 1 NB 1 17.8 C EBLn1 SBLn1 0% 0% 49% 34% 51% 66% Stop Stop 338 444 0 0 0 164 153 174 291 384 505 1 1 0.617 0.742 5.784 5.294 Yes Yes	164 174 0 164 174 0 0.88 0.88 0.88 6 6 2 186 198 0 1 0 0 EB 0 SB 1 NB 1 17.8 C EBLn1 SBLn1 0% 0% 49% 34% 51% 66% Stop Stop 338 444 0 0 0 164 153 174 291 384 505 1 1 0.617 0.742 5.784 5.294 Yes Yes	164 174 0 0 164 174 0 0 0.88 0.88 0.88 0.88 6 6 2 6 186 198 0 0 1 0 0 0 EB 0 SB 1 NB 1 17.8 C EBLn1 SBLn1 0% 0% 49% 34% 51% 66% Stop Stop 338 444 0 0 0 164 153 174 291 384 505 1 1 0.617 0.742 5.784 5.294 Yes Yes	164 174 0 0 0 0 164 174 0 0 0 0 0.88 0.88 0.88 0.88 0.88 6 6 6 2 6 6 186 198 0 0 0 1 0 0 0 0 EB 0 SB 1 NB 1 17.8 C EBLn1 SBLn1 0% 0% 49% 34% 51% 66% Stop Stop 338 444 0 0 0 164 153 174 291 384 505 1 1 0.617 0.742 5.784 5.294 Yes Yes	164 174 0 0 0 0 0 164 174 0 0 0 0 0 0.88 0.88 0.88 0.88 0.88 0.88	164 174 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	164 174 0 0 0 0 0 0 238 164 174 0 0 0 0 0 0 0 238 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.8	164 174 0 0 0 0 0 0 238 0 164 174 0 0 0 0 0 0 238 0 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0

Synchro 9 Report Page 7 Fortuna Interchanges

Intersection					
Intersection Delay, s/veh					
Intersection LOS					
Movement	SBU	SBL	SBT	SBR	
Traffic Vol, veh/h	0	0	153	291	
Future Vol, veh/h	0	0	153	291	
Peak Hour Factor	0.88	0.88	0.88	0.88	
Heavy Vehicles, %	2	6	6	6	
Mvmt Flow	0	0	174	331	
Number of Lanes	0	0	1	0	
			0.5		
Approach			SB		
Opposing Approach			NB		
Opposing Lanes			1		
Conflicting Approach Left					
Conflicting Lanes Left			0		
Conflicting Approach Right			EB		
Conflicting Lanes Right			1		
HCM Control Delay			22.1		
HCM LOS			С		
Lane					

Synchro 9 Report Page 8 Fortuna Interchanges

Intersection													
Int Delay, s/veh	1.3												
Movement	EB	L EBT	EBR		WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h		0 0			15	0	0	109	420	0	1	323	410
Future Vol, veh/h		0 0			15	0	0	109	420	0	1	323	410
Conflicting Peds, #/hr		0 0			0	0	0	0	0	0	0	0	0
Sign Control	Sto				Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized					-	-	None	-	-	None	-	-	None
Storage Length			-		-	-	-	-	-	-	-	-	-
Veh in Median Storage, #		- 0	-		-	0	-	-	0	-	-	0	-
Grade, %		- 0	-		-	0	-	-	0	-	-	0	-
Peak Hour Factor	8	88 8	88		88	88	88	88	88	88	88	88	88
Heavy Vehicles, %		3 3	3		3	3	3	3	3	3	3	3	3
Mvmt Flow		0 0	0		17	0	0	124	477	0	1	367	466
Major/Minor					Minor1			Major1			Major2		
Conflicting Flow All					1327	1560	477	833	0	0	477	0	0
Stage 1					725	725	411	-	-	-	411	-	U
Stage 2					602	835	_	_	_	-	_	-	-
Critical Hdwy					6.43	6.53	6.23	4.13	_	_	4.13		_
Critical Hdwy Stg 1					5.43	5.53	0.20	4.13	_	_	4.10	_	
Critical Hdwy Stg 2					5.43	5.53	_	-	_	_	_	_	_
Follow-up Hdwy					3.527			2.227	_	_	2.227	_	_
Pot Cap-1 Maneuver					170	112	586	796	_	_	1080	_	_
Stage 1					478	428	-	700	_	_	-	_	_
Stage 2					545	381	_	_	_	_	-	_	_
Platoon blocked, %					0.0				_	_		_	_
Mov Cap-1 Maneuver					134	0	586	796	-	_	1080	-	-
Mov Cap-2 Maneuver					134	0	-	-	_	_	-	-	_
Stage 1					377	0	-	=	-	_	-	-	-
Stage 2					544	0	_	-	-	-	-	-	-
J													
A					WD			ND			CD		
Approach					WB			NB 0.4			SB		
HCM Control Delay, s					35.7			2.1			0		
HCM LOS					E								
Minor Lane/Major Mvmt	NB	L NBT	NBR\	NBLn1	SBL	SBT	SBR						
Capacity (veh/h)	79			134	1080	-	-						
HCM Lane V/C Ratio	0.15		-	0.127		-	-						
HCM Control Delay (s)	10.	4 0	-	35.7	8.3	-	-						
HCM Lane LOS		3 A	-	Е	Α	-	-						
HCM 95th %tile Q(veh)	0.	5 -	-	0.4	0	-	-						

Synchro 9 Report Page 9 Fortuna Interchanges

Intersection													
Int Delay, s/veh	0.1												
,,													
Movement	EBL	EBT	EBR		WBL	WBT	WBR	NB	L NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	1	0		0	1	2	1	5 351	0	0	0	0
Future Vol, veh/h	0	1	0		0	1	2	1		0	0	0	
Conflicting Peds, #/hr	0	0	0		0	0	0		0 0	0	0	0	0
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Fre	e Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None		-	-	None			None	·-	-	None
Storage Length	-	-	-		-	-	-			-	-	-	-
Veh in Median Storage, #	-	0	-		-	0	-		- 0	-	-	0	-
Grade, %	-	0	-		-	0	-		- 0	-	-	0	-
Peak Hour Factor	88	88	88		88	88	88	8	88 8	88	88	88	88
Heavy Vehicles, %	3	3	3		3	3	3		3 3	3	3	3	3
Mvmt Flow	0	1	0		0	1	2	1	7 399	0	0	0	0
Major/Minor	Minor2			M	linor1			Major	1				
Conflicting Flow All	435	433	-		-	433	399		0 0	0			
Stage 1	0	0	-		-	433	-			-			
Stage 2	435	433	-		-	0	-			-			
Critical Hdwy	7.13	6.53	-		-	6.53	6.23	4.1	3 -	-			
Critical Hdwy Stg 1	-	-	-		-	5.53	-			-			
Critical Hdwy Stg 2	6.13	5.53	-		-	-	-			-			
Follow-up Hdwy	3.527	4.027	-		-	4.027	3.327	2.22	7 -	-			
Pot Cap-1 Maneuver	530	514	0		0	514	649			-			
Stage 1	-	-	0		0	580	_			-			
Stage 2	598	580	0		0	-	-			-			
Platoon blocked, %									-	-			
Mov Cap-1 Maneuver	527	514	-		-	514	649			-			
Mov Cap-2 Maneuver	527	514	-		-	514	-			-			
Stage 1	-	-	-		-	580	-			-			
Stage 2	595	580	-		-	-	-			-			
Ü													
Approach	EB				WB			N	3				
HCM Control Delay, s	12				11.1								
HCM LOS	В				В								
Minor Lane/Major Mvmt	NBL	NBT	NBR E	EBLn1W	BL _{n1}								
Capacity (veh/h)	-	-	-	514	597								
HCM Lane V/C Ratio	-	-	-	0.002	0.006								
HCM Control Delay (s)	_	-	-	12	11.1								_
HCM Lane LOS	-	-	-	В	В								
HCM 95th %tile Q(veh)													

Synchro 9 Report Page 10 Fortuna Interchanges

Intersection									
	VE 0								
nt Delay, s/veh 60	5.8								
Movement	WBL	WBR		NBT	NBR	SBL	SBT		
Traffic Vol, veh/h	487	471		422	349	230	246		
Future Vol, veh/h	487	471		422	349	230	246		
Conflicting Peds, #/hr	0	0		0	0	0	0		
Sign Control	Stop	Stop		Free	Free	Free	Free		
RT Channelized	- -	None		-	None		None		
Storage Length	0	25		_	-	_	-		
Veh in Median Storage, #	0	-		0	_	-	0		
Grade, %	0	_		0	_	_	0		
Peak Hour Factor	88	88		88	88	88	88		
Heavy Vehicles, %	1	1		1	1	1	1		
Mvmt Flow	553	535		480	397	261	280		
IVIVIIIL FIOW	555	555		400	331	201	200		
Major/Minor	Minor1			Major1		Major2			
Conflicting Flow All	1480	678		0	0	876	0		
Stage 1	678	-		_	-	-	_		
Stage 2	802	_		_	_	_	_		
Critical Hdwy	6.41	6.21		_	-	4.11	-		
Critical Hdwy Stg 1	5.41	-		_	_	-	_		
Critical Hdwy Stg 2	5.41	_		_	_	-	-		
Follow-up Hdwy	3.509	3.309		_	_	2.209	_		
Pot Cap-1 Maneuver	~ 139	~ 454		_	_	775	_		
Stage 1	~ 506	707		_	_	113	_		
Stage 2	~ 443	<u>-</u>			_	-	-		
Platoon blocked, %	~ 443	-		-	-	-	-		
Mov Cap-1 Maneuver	~ 84	~ 454		-	-	775	-		
	~ 84	~ 404		-	-	115	-		
Mov Cap-2 Maneuver		-		-	-	-	-		
Stage 1	~ 506	-		-	-	-	-		
Stage 2	~ 266	-		-	-	-	-		
Approach	WB			NB		SB			
HCM Control Delay, s	\$ 1391.5			0		5.8			
HCM LOS	F			J		0.0			
110M 200									
Minor Lane/Major Mvmt	NBT	NBRWBLn1W	/BLn2 SBL	. SBT					
Capacity (veh/h)	-	- 84	454 775						
HCM Lane V/C Ratio	-	- 6.588	1.179 0.337	-					
HCM Control Delay (s)	-	\$ 2612.1	129.5 12	2 0					
HCM Lane LOS	-	- F	F B						
HCM 95th %tile Q(veh)	-	- 62	20.1 1.5	· -					
`									
Notes									
~: Volume exceeds capac	ity \$: Dela	ay exceeds 30	Us +: Con	nputation	Not De	tined *: All	major v	olume in platoon	

Fortuna Interchanges Synchro 9 Report Page 11

Intersection: 7: Riverwalk Drive & US 101 SB On & US 101 SB Off

Movement	EB	NB	SB
Directions Served	TR	LTR	LTR
Maximum Queue (ft)	101	72	209
Average Queue (ft)	40	44	71
95th Queue (ft)	75	62	146
Link Distance (ft)	343	40	310
Upstream Blk Time (%)		7	
Queuing Penalty (veh)		19	
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 8: Riverwalk Drive/12th Street & US 101 NB On

Movement	WB	NB	SB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	36	152	29
Average Queue (ft)	12	34	2
95th Queue (ft)	37	98	13
Link Distance (ft)	52	591	169
Upstream Blk Time (%)	0		
Queuing Penalty (veh)	0		
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 9: US 101 NB Off/12th Street & Pond Street

Movement	EB	WB	NB
Directions Served	LT	TR	LTR
Maximum Queue (ft)	6	23	56
Average Queue (ft)	0	2	2
95th Queue (ft)	3	12	25
Link Distance (ft)	52	163	255
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Fortuna Interchanges
SimTraffic Report
Page 2

Intersection: 10: 12th Street & Newburg Road

Movement	WB	WB	NB	SB
Directions Served	L	R	TR	LT
Maximum Queue (ft)	875	12	151	578
Average Queue (ft)	857	1	36	519
95th Queue (ft)	870	11	101	657
Link Distance (ft)	855		182	529
Upstream Blk Time (%)	100		0	79
Queuing Penalty (veh)	0		1	0
Storage Bay Dist (ft)		25		
Storage Blk Time (%)	100	0		
Queuing Penalty (veh)	470	1		

Zone Summary

Zone wide Queuing Penalty: 590

Fortuna Interchanges
SimTraffic Report
Page 3

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Traffic Vol, veh/h	0	6	0	459	353	6
Future Vol, veh/h	0	6	0	459	353	6
	0	0	0	459	0	0
Conflicting Peds, #/hr Sign Control			Free	Free	Free	Free
RT Channelized	Stop	Stop None				None
Storage Length	- 0	None -	-	NOHE	-	None
Veh in Median Storage, #		-	-	0	0	
Grade, %	0	-	<u>-</u>	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	6	0	483	372	6
IVIVIIIL I IOW	0	0	0	700	312	U
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	858	375	378	0	-	0
Stage 1	375	-	-	-	-	-
Stage 2	483	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	327	671	1180	-	-	-
Stage 1	695	-	-	-	-	-
Stage 2	620	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	327	671	1180	-	-	-
Mov Cap-2 Maneuver	327	-	-	-	-	-
Stage 1	695	-	-	-	-	-
Stage 2	620	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	10.4		0		0	
HCM LOS	В					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1180	- 671				
HCM Lane V/C Ratio	-	- 0.009				
HCM Control Delay (s)	0	- 10.4				
HCM Lane LOS	A	- 10.4 - B				
HCM 95th %tile Q(veh)	0	- 0				
HOW JOHN JUNE Q(VOII)	U	0				

Fortuna Interchange Synchro 9 Report Page 5

Intersection						
Int Delay, s/veh	2.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Traffic Vol, veh/h	79	43	17	442	316	47
Future Vol, veh/h	79 79	43	17	442	316	47
	0	43	0	0	0	0
Conflicting Peds, #/hr Sign Control		-	Free	Free	Free	Free
RT Channelized	Stop -	Stop None	-			None
Storage Length	0	None	-	INOHE -	-	None
Veh in Median Storage, #			_	0	0	-
Grade, %	0	_	-	0	0	_
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	83	45	18	465	333	49
IVIVIIIL I IOW	- 03	40	10	700		43
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	858	357	382	0	-	0
Stage 1	357	-	-	-	-	-
Stage 2	501	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	327	687	1176	-	-	-
Stage 1	708	-	-	-	-	-
Stage 2	609	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	320	687	1176	-	-	-
Mov Cap-2 Maneuver	320	-	-	-	-	-
Stage 1	708	-	-	-	-	-
Stage 2	596	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	18.5		0.3		0	
HCM LOS	C					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
	1176	- 394				
Capacity (veh/h) HCM Lane V/C Ratio	0.015	- 0.326				
HCM Control Delay (s)	8.1	0.326				
HCM Lane LOS		0 18.5 A C				
HCM 95th %tile Q(veh)	A 0	- 1.4				
HOW Sour wille Q(ven)	U	- 1.4				

Fortuna Interchange Synchro 9 Report Page 6

-												
Intersection												
Intersection Delay, s/veh	65.1											
Intersection LOS	F											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Traffic Vol, veh/h	0	0	301	216	0	0	0	0	0	496	0	25
Future Vol, veh/h	0	0	301	216	0	0	0	0	0	496	0	25
Peak Hour Factor	0.92	0.95	0.95	0.95	0.92	0.95	0.95	0.95	0.92	0.95	0.95	0.95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	317	227	0	0	0	0	0	522	0	26
Number of Lanes	0	0	1	0	0	0	0	0	0	1	0	0
Approach			EB							NB		
Opposing Approach										SB		
Opposing Lanes			0							1		
Conflicting Approach Left			SB							EB		
Conflicting Lanes Left			1							1		
Conflicting Approach Right			NB									
Conflicting Lanes Right			1							0		
HCM Control Delay			65							67.1		
HCM LOS			F							F		
Lane		NBLn1	EBLn1	SBLn1								
Vol Left, %		95%	0%	0%								
Vol Thru, %		0%	58%	18%								
Vol Right, %		5%	42%	82%								
Sign Control		Stop	Stop	Stop								
Traffic Vol by Lane		521	517	831								
LT Vol		496	0	0								
Through Vol		0	301	147								
RT Vol		25	216	684								
Lane Flow Rate		548	544	875								
Geometry Grp		1	1	1								
Degree of Util (X)		1	1	1								
Departure Headway (Hd)		7.193	6.781	6.537								
Convergence, Y/N		Yes	Yes	Yes								
Сар		510	539	560								
Service Time		5.193	4.781	4.537								
HCM Lane V/C Ratio		1.075	1.009	1.563								
HCM Control Delay		67.1	65	63.8								
HCM Lane LOS		F	F	F								
HCM 95th-tile Q		13.7	14.1	14.4								

Synchro 9 Report Fortuna Interchange Page 7

Intersection Delay, s/veh						
Intersection LOS	Intersection					
Movement SBU SBL SBT SBR Traffic Vol, veh/h 0 0 147 684 Future Vol, veh/h 0 0 147 684 Peak Hour Factor 0.92 0.95 0.95 0.95 Heavy Vehicles, % 2 2 2 2 Mymt Flow 0 0 155 720 Number of Lanes 0 0 1 0 Approach SB SB Opposing Approach NB Opposing Lanes 1 1 Conflicting Approach Left Conflicting Janes Left 0 0 Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 63.8 HCM LOS F F	Intersection Delay, s/veh					
Traffic Vol, veh/h 0 0 147 684 Future Vol, veh/h 0 0 147 684 Peak Hour Factor 0.92 0.95 0.95 0.95 Heavy Vehicles, % 2 2 2 2 Mymt Flow 0 0 155 720 Number of Lanes 0 0 1 0 Approach SB Opposing Approach Opposing Lanes 1 Conflicting Approach Left Conflicting Approach Left Conflicting Lanes Left Oconflicting Lanes Left EB Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 63.8 HCM LOS F	Intersection LOS					
Traffic Vol, veh/h 0 0 147 684 Future Vol, veh/h 0 0 147 684 Peak Hour Factor 0.92 0.95 0.95 0.95 Heavy Vehicles, % 2 2 2 2 Mymt Flow 0 0 155 720 Number of Lanes 0 0 1 0 Approach SB Opposing Approach Opposing Lanes 1 Conflicting Approach Left Conflicting Approach Left Conflicting Lanes Left Oconflicting Lanes Left EB Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 63.8 HCM LOS F	Mayamant	CDII	CDI	CDT	CDD	
Future Vol, veh/h 0 0 147 684 Peak Hour Factor 0.92 0.95 0.95 0.95 Heavy Vehicles, % 2 2 2 2 Mymt Flow 0 0 155 720 Number of Lanes 0 0 1 Approach SB Opposing Approach NB Opposing Lanes 1 Conflicting Approach Left 0 Conflicting Lanes Left 0 Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 63.8 HCM LOS F						
Peak Hour Factor 0.92 0.95 0.95 0.95 Heavy Vehicles, % 2 2 2 2 2 Mwmt Flow 0 0 155 720 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Heavy Vehicles, % 2 2 2 Mvmt Flow 0 0 155 720 Number of Lanes 0 0 1 0 Approach SB SB Opposing Approach NB Opposing Lanes 1 Conflicting Approach Left 0 Conflicting Lanes Left 0 Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 63.8 HCM LOS F						
Mvmt Flow 0 0 155 720 Number of Lanes 0 0 1 0 Approach SB Opposing Approach NB Opposing Lanes 1 Conflicting Approach Left Conflicting Lanes Left 0 Conflicting Approach Right Conflicting Lanes Right 1 HCM Control Delay HCM Control Delay 63.8 HCM LOS F		0.92	0.95	0.95	0.95	
Number of Lanes 0 0 1 0 Approach SB Opposing Approach NB Opposing Lanes 1 Conflicting Approach Left Conflicting Lanes Left 0 Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 63.8 HCM LOS F	Heavy Vehicles, %	2	2	2	2	
Approach SB Opposing Approach NB Opposing Lanes 1 Conflicting Approach Left Conflicting Lanes Left 0 Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 63.8 HCM LOS F	Mvmt Flow	0	0	155	720	
Opposing Approach Opposing Lanes 1 Conflicting Approach Left Conflicting Lanes Left 0 Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 63.8 HCM LOS F	Number of Lanes	0	0	1	0	
Opposing Approach Opposing Lanes 1 Conflicting Approach Left Conflicting Lanes Left 0 Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 63.8 HCM LOS F						
Opposing Approach Opposing Lanes 1 Conflicting Approach Left Conflicting Lanes Left 0 Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 63.8 HCM LOS F						
Opposing Lanes 1 Conflicting Approach Left Conflicting Lanes Left 0 Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 63.8 HCM LOS F	Approach			SB		
Conflicting Approach Left Conflicting Lanes Left Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 63.8 HCM LOS F	Opposing Approach			NB		
Conflicting Lanes Left 0 Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 63.8 HCM LOS F	Opposing Lanes			1		
Conflicting Lanes Left 0 Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 63.8 HCM LOS F	Conflicting Approach Left					
Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 63.8 HCM LOS F				0		
Conflicting Lanes Right 1 HCM Control Delay 63.8 HCM LOS F				EB		
HCM Control Delay 63.8 HCM LOS F				1		
HCM LOS F				63.8		
Lane	I IOIVI LOO			r r		
Lane						
	Lane					

Synchro 9 Report Page 8 Fortuna Interchange

Intersection															
	1.1														
, ,															
Movement	El	3L	EBT	EBR	,	WBL	WBT	WBR		NBL	NBT	NBR	SB	L SBT	SBR
Traffic Vol, veh/h		0	0	0		25	0	0		180	1006	1		2 492	484
Future Vol, veh/h		0	0	0		25	0	0		180	1006	1		2 492	484
Conflicting Peds, #/hr		0	0	0		0	0	0		0	0	0		0 0	
Sign Control	Sto		Stop	Stop		Stop	Stop	Stop		Free	Free	Free	Fre		Free
RT Channelized		-	-	None		-	-	None		_	-	None			None
Storage Length		-	_	-		-	_	-		_	-	-			-
Veh in Median Storage, #		_	0	-		-	0	_		-	0	-		- 0	_
Grade, %		-	0	_		-	0	_		_	0	-		- 0	
Peak Hour Factor	(95	95	95		95	95	95		95	95	95	9		
Heavy Vehicles, %		2	2	2		2	2	2		2	2	2		2 2	
Mvmt Flow		0	0	0		26	0	0		189	1059	1		2 518	509
Major/Minor					Mi	inor1				Major1			Major	2	
Conflicting Flow All						2215	2470	1059		1027	0	0	106		0
Stage 1						1438	1438	-		-	-	-	100		
Stage 2						777	1032	_		_	_	_			
Critical Hdwy						6.42	6.52	6.22		4.12	_	_	4.1	2 -	_
Critical Hdwy Stg 1						5.42	5.52	-		- 1.12	_	_		- 	
Critical Hdwy Stg 2						5.42	5.52	_		_	_	_			
Follow-up Hdwy					3	3.518	4.018			2.218	_	_	2.21		
Pot Cap-1 Maneuver						48	30	273		676	_	_	65		
Stage 1						219	198			-	_	_	00		
Stage 2						453	310	_		_	_	_			
Platoon blocked, %						100	010				_	_		_	_
Mov Cap-1 Maneuver						~ 15	0	273		676	_	_	65	7 -	_
Mov Cap-2 Maneuver						~ 15	0			-	_	_	00		
Stage 1						70	0	_		_	_	_			
Stage 2						449	0	_		_	_	_			
olago L															
Approach						WB				NB			S	3	
HCM Control Delay, s					\$.2	381.9				1.9				0	
HCM LOS					ΨΟ	F				1.5				U	
TIOW LOO						'									
Minor Lane/Major Mvmt	NE	21	NBT	NBRW	21 n1	SBL	SBT	SBR							
Capacity (veh/h)		76	-	INDIAM	15	657	-	ODIN							
HCM Lane V/C Ratio	0.2		-	1	1.754 0		-	_							
HCM Control Delay (s)	12		0			10.5	-								
HCM Lane LOS	12	4 В	A	-⊅ 0 -	F	10.5 B		-							
HCM 95th %tile Q(veh)	1	.1	- -	-	3.9	0	-	-							
, ,		. 1			5.5	U	_	_							
Notes															
~: Volume exceeds capac	eity \$:	Dela	ay exc	eeds 300)s +:	Com	putation	Not De	etined	*: All ı	major v	olume ir	n platoon		

Fortuna Interchange Synchro 9 Report Page 9

Intersection															
Int Delay, s/veh	0.3														
Movement	EBL	EBT	EBR		WBL	WBT	WBR		NBL	NBT	NBR	SI	BL	SBT	SBR
Traffic Vol, veh/h	0	3	0		0	1	3		25	207	0		0	0	0
Future Vol, veh/h	0	3	0		0	1	3		25	207	0		0	0	0
Conflicting Peds, #/hr	0	0	0		0	0	0		0	0	0		0	0	0
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop		Free	Free	Free	St	ор	Stop	Stop
RT Channelized	-	-	None		-	-	None		-	-	None		-	-	None
Storage Length	-	-	-		-	-	-		-	-	-		-	-	-
Veh in Median Storage, #	-	0	-		-	0	-		-	0	-		-	0	-
Grade, %	-	0	-		-	0	-		-	0	-		-	0	-
Peak Hour Factor	95	95	95		95	95	95		95	95	95		95	95	95
Heavy Vehicles, %	2	2	2		2	2	2		2	2	2		2	2	2
Mvmt Flow	0	3	0		0	1	3		26	218	0		0	0	0
Major/Minor	Minor2			М	linor1			Ma	ajor1						
Conflicting Flow All	273	271	_		_	271	218		0	0	0				
Stage 1	0	0	-		-	271			-	-	-				
Stage 2	273	271	_		-	0	_		-	_	_				
Critical Hdwy	7.12	6.52	-		-	6.52	6.22		4.12	_	-				
Critical Hdwy Stg 1	-	_	-		-	5.52	_		-	-	_				
Critical Hdwy Stg 2	6.12	5.52	-		-	-	-		-	-	-				
Follow-up Hdwy	3.518	4.018	-		-	4.018	3.318	2	.218	-	-				
Pot Cap-1 Maneuver	679	636	0		0	636	822		-	-	-				
Stage 1	-	-	0		0	685	-		-	-	-				
Stage 2	733	685	0		0	-	-		-	-	-				
Platoon blocked, %										-	-				
Mov Cap-1 Maneuver	676	636	-		-	636	822		-	-	-				
Mov Cap-2 Maneuver	676	636	-		-	636	-		-	-	-				
Stage 1	-	-	-		-	685	-		-	-	-				
Stage 2	729	685	-		-	-	-		-	-	-				
Approach	EB				WB				NB						
HCM Control Delay, s	10.7				9.7										
HCM LOS	В				Α										
	_														
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1W	Bl n1										
Capacity (veh/h)	-		-	636	766										
HCM Lane V/C Ratio	_	_	_	0.005											
HCM Control Delay (s)	_	_	_	10.7	9.7										
HCM Lane LOS	_	_	_	В	A										
HCM 95th %tile Q(veh)	_	_	_	0	0										
1.5.11 00th /0th0 Q(VOII)				J	U										

Fortuna Interchange Synchro 9 Report Page 10

Intersection									
Int Delay, s/veh	11.8								
in Bolay, or ron	11.0								
						25.			
Movement	WBL	WBR		NBT	NBR	SBL	SBT		
Traffic Vol, veh/h	656	380		328	885	524	320		
Future Vol, veh/h	656	380		328	885	524	320		
Conflicting Peds, #/hr	0	0		0	0	0	0		
Sign Control	Stop	Stop		Free	Free	Free	Free		
RT Channelized	-	None		-	None	-	None		
Storage Length	0	25		-	-	-	-		
Veh in Median Storage,	# 0	-		0	-	-	0		
Grade, %	0	-		0	-	-	0		
Peak Hour Factor	95	95		95	95	95	95		
Heavy Vehicles, %	2	2		2	2	2	2		
Mvmt Flow	691	400		345	932	552	337		
NA ' /NA'	N. 01								
Major/Minor	Minor1			Major1		Major2			
Conflicting Flow All	2251	811		0	0	1277	0		
Stage 1	811	-		-	-	-	-		
Stage 2	1440	-		-	-	-	-		
Critical Hdwy	6.42	6.22		-	-	4.12	-		
Critical Hdwy Stg 1	5.42	-		-	-	-	-		
Critical Hdwy Stg 2	5.42	-		-	-	-	-		
Follow-up Hdwy	3.518	3.318		-	-	2.218	-		
Pot Cap-1 Maneuver	~ 46	~ 379		-	-	~ 544	-		
Stage 1	~ 437	-		-	-	-	-		
Stage 2	~ 218	-		-	-	-	-		
Platoon blocked, %				-	-		-		
Mov Cap-1 Maneuver	0	~ 379		-	-	~ 544	-		
Mov Cap-2 Maneuver	0	-		-	-	-	-		
Stage 1	~ 437	-		-	-	-	-		
Stage 2	0	-		-	-	-	-		
J									
	14/5								
Approach	WB			NB		SB			
HCM Control Delay, s				0		43.3			
HCM LOS	-								
Minor Lane/Major Mvmt	NBT	NBRWBLn1W	BLn2 SBL	SBT					
Capacity (veh/h)	1101	-	379 ~ 544	-					
HCM Lane V/C Ratio	-		1.055 1.014	_					
HCM Control Delay (s)	-		95.3 69.8	0					
HCM Lane LOS	-		95.3 69.6 F F	A					
	-								
HCM 95th %tile Q(veh)	-	-	13.6 14.9	-					
Notes									
~: Volume exceeds capa	city \$: Del	lay exceeds 300)s +: Comp	outation	Not Def	ined *: All	major v	olume in platoon	
	, , , , , ,	,			= 0.			. р.ш.т.	

Fortuna Interchange Synchro 9 Report Page 11

Intersection: 7: Riverwalk Drive & US 101 SB On & US 101 SB Off

Movement	EB	NB	SB
Directions Served	TR	LTR	LTR
Maximum Queue (ft)	57	114	364
Average Queue (ft)	16	64	331
95th Queue (ft)	39	96	350
Link Distance (ft)	343	40	310
Upstream Blk Time (%)		20	97
Queuing Penalty (veh)		105	0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 8: Riverwalk Drive/12th Street & US 101 NB On

Movement	WB	NB	SB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	46	92	9
Average Queue (ft)	17	10	0
95th Queue (ft)	46	51	4
Link Distance (ft)	51	591	169
Upstream Blk Time (%)	1		
Queuing Penalty (veh)	0		
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 9: US 101 NB Off/12th Street & Pond Street

Movement	EB	WB	NB
Directions Served	LT	TR	LTR
Maximum Queue (ft)	15	31	174
Average Queue (ft)	1	4	21
95th Queue (ft)	7	20	110
Link Distance (ft)	51	95	255
Upstream Blk Time (%)			2
Queuing Penalty (veh)			0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Fortuna Interchange SimTraffic Report
Page 2

Intersection: 10: 12th Street & Newburg Road

Movement	WB	NB	SB
Directions Served	L	TR	LT
Maximum Queue (ft)	862	152	555
Average Queue (ft)	855	21	539
95th Queue (ft)	864	83	552
Link Distance (ft)	855	182	529
Upstream Blk Time (%)	100	0	100
Queuing Penalty (veh)	0	0	0
Storage Bay Dist (ft)			
Storage Blk Time (%)	100		
Queuing Penalty (veh)	380		

Zone Summary

Zone wide Queuing Penalty: 1164

Fortuna Interchange SimTraffic Report
Page 3

Cumulative Signal Alternative

Intersection						
Int Delay, s/veh	0.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			-41	1≽	
Traffic Vol, veh/h	30	5	18	227	453	27
Future Vol, veh/h	30	5	18	227	453	27
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	ŧ 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	9	9	9	9	9	9
Mvmt Flow	34	6	20	258	515	31
Major/Minor	Minor2		Major1		Major2	
	700	530	545	0	ividjuiz	0
Conflicting Flow All					-	
Stage 1	530 170	-	-	-	-	-
Stage 2	6.735	6.335	4.235	-	-	-
Critical Hdwy	5.535	0.335	4.235	-	-	-
Critical Hdwy Stg 1	5.535	-	-	-	-	-
Critical Hdwy Stg 2		3.3855	2.2855	-	-	-
Follow-up Hdwy	3.5855		2.2855		-	-
Pot Cap-1 Maneuver	376 572	531	961	-	-	-
Stage 1	572	-	-	-	-	-
Stage 2	825	-	-	-	-	-
Platoon blocked, %	367	F24	004	-	-	-
Mov Cap-1 Maneuver		531	981	-	-	-
Mov Cap-2 Maneuver Stage 1	367	-	-	-	-	-
· ·	572 805	- -	-	-	-	-
Stage 2	800	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	15.5		0.7		0	
HCM LOS	С					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	981	- 384				
HCM Lane V/C Ratio	0.021	- 0.104				
HCM Control Delay (s)	8.7					
HCM Lane LOS						
	A	A C				
HCM 95th %tile Q(veh)	0.1	- 0.3				

5:00 pm Baseline Synchro 9 Report Page 7

Movement	-	۶	→	•	•	←	•	1	†	/	\	+	4
Traffic Volume (veh/h)	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (veh/h) Number 7	Lane Configurations	ሻ	4						∱ ∱		ሻ	↑	
Number 7 4 14 14 5 2 12 12 1 6 16 Initial O (Ob), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Traffic Volume (veh/h)	291	0	153	0	0	0	0	238	19	11	327	0
Initial Q (Ob), veh	Future Volume (veh/h)	291	0		0	0	0		238		11	327	
Ped-Bike Adj(A, pbT) 1.00<			4					5	2	12			16
Parking Bus, Acj	, , ,		0						0			0	
Adj Sat Flow, veh/biln 1792 1790 0 0 1792 1900 1792 1792 0 Adj No of Lanes 1 1 0 0 270 22 12 372 0 Peak Hour Factor 0.88	2												
Adj Flow Rate, veh/h 252 110 174 0 270 22 12 372 0 Adj No, of Lanes 1 1 0 0 2 0 1 1 0 Peak Hour Factor 0.88 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.00</td> <td></td> <td></td> <td></td> <td></td> <td></td>								1.00					
Adj No. of Lanes 1 1 0 0 2 0 1 1 0 Peak Hour Factor 0.88 0.80 0.00<								0					0
Peak Hour Factor													
Percent Heavy Veh, %													
Cap, veh/h 508 187 295 0 1154 93 587 648 0 Arrive On Green 0.30 0.30 0.30 0.30 0.36 0.00 0.22 4.4 0.0 0.0 1.5 1.6 1.8 4.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0													0.88
Arrive On Green 0.30 0.30 0.30 0.30 0.30 0.30 0.36 0.36													0
Sat Flow, veh/h 1707 627 991 0 3281 258 1042 1792 0 Grp Vat Flow(s), veh/h/h 252 0 284 0 143 149 12 372 0 Grp Sat Flow(s), veh/h/ln 1707 0 1618 0 1703 1747 1042 1792 0 Q Serve(g. s), s 3.2 0.0 4.0 0 0.15 1.6 0.2 4.4 0.0 Cycle Q Clear(g. c), s 3.2 0.0 4.0 0.0 1.5 1.6 1.8 4.4 0.0 Cycle Q Clear(g. c), s 3.2 0.0 4.0 0.0 1.5 1.6 1.8 4.4 0.0 Cycle Q Clear(g. c), s 3.2 0.0 4.0 0.0 0.15 1.0 0.0 Lane Gro Cap(c), weh/h 168 0 482 0 616 632 587 648 0 HCM Platon Ratio 1.00 1.00 1.00 1.													
Grp Volume(v), veh/h 252 0 284 0 143 149 12 372 0 Grp Sat Flow(s), veh/h/ln 1707 0 1618 0 1703 1747 1042 1792 0 Q Serve(g. s), s 3.2 0.0 4.0 0.0 1.5 1.6 0.2 4.4 0.0 Cycle Q Clear(g. c), s 3.2 0.0 4.0 0.0 1.5 1.6 1.8 4.4 0.0 Prop In Lane 1.00 0.61 0.00 0.15 1.00 0.00 Lane Grp Cap(c), veh/h 508 0 482 0 616 632 587 648 0 V/C Ratio(X) 0.50 0.00 0.59 0.00 0.23 0.24 0.02 0.57 0.00 Avail Cap(c. a), veh/h 1162 0 1102 0 1160 1199 90 0.22 0.2 0.0 120 0.0 0.0 1.00 1.00 1.00								0.00					0.00
Grp Sat Flow(s), veh/h/ln 1707 0 1618 0 1703 1747 1042 1792 0 Q Serve(g_s), s 3.2 0.0 4.0 0.0 1.5 1.6 0.2 4.4 0.0 Cycle Q Clear(g_c), s 3.2 0.0 4.0 0.0 1.5 1.6 0.2 4.4 0.0 Cycle Q Clear(g_c), s 3.2 0.0 4.0 0.0 1.5 1.6 1.8 4.4 0.0 Prop In Lane 1.00 0.61 0.00 0.15 1.0 0.00 0.0 Lane Grp Cap(c), veh/h 508 0 482 0 616 632 587 648 0 V/C Ratio(X) 0.50 0.00 0.59 0.00 0.23 0.24 0.02 0.57 0.00 Avail Cap(c_a), veh/h 1162 0 1102 0 1160 1190 920 1221 0 0 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Sat Flow, veh/h	1707	627					0	3281	258	1042	1792	0
Q Serve(g_s), s 3.2 0.0 4.0 0.0 1.5 1.6 0.2 4.4 0.0 Cycle Q Clear(g_c), s 3.2 0.0 4.0 0.0 1.5 1.6 0.2 4.4 0.0 Cycle Q Clear(g_c), s 3.2 0.0 4.0 0.0 1.5 1.6 1.8 4.4 0.0 Prop In Lane 1.00 0.61 0.00 0.15 1.00 0.00 0.00 Lane Grp Cap(c), veh/h 508 0 482 0 616 632 587 648 0 V/C Ratio(X) 0.50 0.00 0.59 0.00 0.23 0.24 0.02 0.57 0.00 Avail Cap(c_a), veh/h 1162 0 1102 0 1160 1190 920 1221 0 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0			0					0					0
Cycle Q Clear(g_c), s 3.2 0.0 4.0 0.0 1.5 1.6 1.8 4.4 0.0 Prop In Lane 1.00 0.61 0.00 0.15 1.00 0.00 Lane Grp Cap(c), veh/h 508 0 482 0 616 632 587 648 0 V/C Ratio(X) 0.50 0.00 0.59 0.00 0.23 0.24 0.02 0.57 0.00 Avail Cap(c_a), veh/h 1162 0 1102 0 1160 1190 920 1221 0 HCM Platoon Ratio 1.00	Grp Sat Flow(s),veh/h/ln		0	1618				0	1703	1747	1042	1792	-
Prop In Lane 1.00 0.61 0.00 0.15 1.00 0.00 Lane Grp Cap(c), veh/h 508 0 482 0 616 632 587 648 0 V/C Ratio(X) 0.50 0.00 0.59 0.00 0.23 0.24 0.02 0.57 0.00 Avail Cap(c_a), veh/h 1162 0 1100 1.00 <			0.0										
Lane Grp Cap(c), veh/h 508 0 482 0 616 632 587 648 0 V/C Ratio(X) 0.50 0.00 0.59 0.00 0.23 0.24 0.02 0.57 0.00 Avail Cap(c_a), veh/h 1162 0 1102 0 1160 1190 920 1221 0 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Cycle Q Clear(g_c), s		0.0						1.5	1.6	1.8	4.4	
V/C Ratio(X) 0.50 0.00 0.59 0.00 0.23 0.24 0.02 0.57 0.00 Avail Cap(c_a), veh/h 1162 0 1102 0 1160 1190 920 1221 0 HCM Platoon Ratio 1.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td></td><td></td><td></td><td></td><td>0.00</td></td<>								0.00					0.00
Avail Cap(c_a), veh/h 1162 0 1102 0 1160 1190 920 1221 0 HCM Platoon Ratio 1.00													
HCM Platoon Ratio	V/C Ratio(X)		0.00					0.00					0.00
Upstream Filter(I) 1.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 0.00 Uniform Delay (d), s/veh 7.6 0.0 7.9 0.0 5.9 5.9 6.5 6.8 0.0 Incr Delay (d2), s/veh 0.7 0.0 1.2 0.0 0.2 0.2 0.0 0.8 0.0 Initial Q Delay(d3),s/veh 0.0													
Uniform Delay (d), s/veh 7.6 0.0 7.9 0.0 5.9 5.9 6.5 6.8 0.0 Incr Delay (d2), s/veh 0.7 0.0 1.2 0.0 0.2 0.2 0.0 0.8 0.0 Initial Q Delay(d3), s/veh 0.0													
Incr Delay (d2), s/veh													
Initial Q Delay(d3),s/veh 0.0													
%ile BackOfQ(50%),veh/ln 1.6 0.0 1.9 0.0 0.7 0.8 0.1 2.3 0.0 LnGrp Delay(d),s/veh 8.4 0.0 9.1 0.0 6.1 6.1 6.5 7.6 0.0 LnGrp LOS A <td></td>													
LnGrp Delay(d),s/veh 8.4 0.0 9.1 0.0 6.1 6.1 6.5 7.6 0.0 LnGrp LOS A													
LnGrp LOS A													
Approach Vol, veh/h 536 292 384 Approach Delay, s/veh 8.7 6.1 7.6 Approach LOS A A A A Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 6 7 8 Assigned Phs 2 4 6 6 7 8 Phs Duration (G+Y+Rc), s 14.1 12.4 14.1 14.1 14.1 14.1 14.1 14.1 15.2 18.0 18			0.0					0.0					0.0
Approach Delay, s/veh 8.7 6.1 7.6 Approach LOS A A A A Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 14.1 12.4 14.1 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 18.0 Max Q Clear Time (g_c+I1), s 3.6 6.0 6.4 Green Ext Time (p_c), s 3.5 2.1 3.1 Intersection Summary HCM 2010 Ctrl Delay 7.7 HCM 2010 LOS A	LnGrp LOS	Α		Α						Α	Α		
Approach LOS A A A A Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 14.1 12.4 14.1 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 18.0 Max Q Clear Time (g_c+l1), s 3.6 6.0 6.4 Green Ext Time (p_c), s 3.5 2.1 3.1 Intersection Summary HCM 2010 Ctrl Delay 7.7 HCM 2010 LOS A													
Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 14.1 12.4 14.1 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 Max Q Clear Time (g_c+l1), s 3.6 6.0 6.4 Green Ext Time (p_c), s 3.5 2.1 3.1 Intersection Summary HCM 2010 Ctrl Delay 7.7 HCM 2010 LOS A	Approach Delay, s/veh		8.7						6.1			7.6	
Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 14.1 12.4 14.1 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 18.0 Max Q Clear Time (g_c+11), s 3.6 6.0 6.4 Green Ext Time (p_c), s 3.5 2.1 3.1 Intersection Summary HCM 2010 Ctrl Delay 7.7 HCM 2010 LOS A	Approach LOS		Α						Α			Α	
Phs Duration (G+Y+Rc), s 14.1 12.4 14.1 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 Max Q Clear Time (g_c+l1), s 3.6 6.0 Green Ext Time (p_c), s 3.5 2.1 Intersection Summary HCM 2010 Ctrl Delay 7.7 HCM 2010 LOS A	Timer	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s 14.1 12.4 14.1 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 Max Q Clear Time (g_c+I1), s 3.6 6.0 6.4 Green Ext Time (p_c), s 3.5 2.1 3.1 Intersection Summary HCM 2010 Ctrl Delay 7.7 HCM 2010 LOS A	Assigned Phs		2		4		6						
Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 Max Q Clear Time (g_c+I1), s 3.6 6.0 6.4 Green Ext Time (p_c), s 3.5 2.1 3.1 Intersection Summary HCM 2010 Ctrl Delay 7.7 HCM 2010 LOS A	· ·		14.1		12.4		14.1						
Max Green Setting (Gmax), s 18.0 18.0 Max Q Clear Time (g_c+I1), s 3.6 6.0 6.4 Green Ext Time (p_c), s 3.5 2.1 3.1 Intersection Summary HCM 2010 Ctrl Delay 7.7 HCM 2010 LOS A			4.5		4.5		4.5						
Max Q Clear Time (g_c+I1), s 3.6 6.0 6.4 Green Ext Time (p_c), s 3.5 2.1 3.1 Intersection Summary HCM 2010 Ctrl Delay 7.7 HCM 2010 LOS A	` ,						18.0						
Intersection Summary HCM 2010 Ctrl Delay 7.7 HCM 2010 LOS A			3.6		6.0		6.4						
HCM 2010 Ctrl Delay 7.7 HCM 2010 LOS A	(6 = 7:												
HCM 2010 Ctrl Delay 7.7 HCM 2010 LOS A	Intersection Summary												
HCM 2010 LOS A				7.7									

	•	→	•	•	←	•	1	†	<u> </u>	/	ļ	4	
Movement I	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations					सी	7	ሻ	^			↑	1	
Traffic Volume (veh/h)	0	0	0	15	0	351	109	420	0	0	323	410	
Future Volume (veh/h)	0	0	0	15	0	351	109	420	0	0	323	410	
Number				3	8	18	5	2	12	1	6	16	
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln				1900	1845	1845	1845	1845	0	0	1845	1845	
Adj Flow Rate, veh/h				17	0	399	124	477	0	0	367	466	
Adj No. of Lanes				0	1	1	1	2	0	0	1	1	
Peak Hour Factor				0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	
Percent Heavy Veh, %				3	3	3	3	3	0.00	0.00	3	3	
Cap, veh/h				503	0	449	198	2001	0	0	714	607	
Arrive On Green				0.29	0.00	0.29	0.11	0.57	0.00	0.00	0.39	0.39	
Sat Flow, veh/h				1757	0.00	1568	1757	3597	0.00	0.00	1845	1568	
·											367		
Grp Volume(v), veh/h				17	0	399 1568	124 1757	477 1752	0	0	1845	466 1568	
Grp Sat Flow(s), veh/h/ln				1757	0					0			
Q Serve(g_s), s				0.4	0.0	15.4	4.2	4.3	0.0	0.0	9.6	16.3	
Cycle Q Clear(g_c), s				0.4	0.0	15.4	4.2	4.3	0.0	0.0	9.6	16.3	
Prop In Lane				1.00	^	1.00	1.00	0004	0.00	0.00	744	1.00	
Lane Grp Cap(c), veh/h				503	0	449	198	2001	0	0	714	607	
V/C Ratio(X)				0.03	0.00	0.89	0.63	0.24	0.00	0.00	0.51	0.77	
Avail Cap(c_a), veh/h				613	0	547	376	2752	0	0	922	784	
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)				1.00	0.00	1.00	1.00	1.00	0.00	0.00	1.00	1.00	
Uniform Delay (d), s/veh				16.2	0.0	21.5	26.7	6.7	0.0	0.0	14.8	16.8	
Incr Delay (d2), s/veh				0.0	0.0	14.4	3.3	0.1	0.0	0.0	0.6	3.5	
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/l	n			0.2	0.0	8.4	2.2	2.1	0.0	0.0	5.0	7.6	
LnGrp Delay(d),s/veh				16.2	0.0	35.9	30.0	6.8	0.0	0.0	15.4	20.3	
LnGrp LOS				В		D	С	Α			В	С	
Approach Vol, veh/h					416			601			833		
Approach Delay, s/veh					35.1			11.6			18.1		
Approach LOS					D			В			В		
Timer	1	2	3	4	5	6	7	8					
Assigned Phs		2			5	6		8					
Phs Duration (G+Y+Rc),	S	40.5			11.6	28.9		22.5					
Change Period (Y+Rc), s		4.5			4.5	4.5		4.5					
Max Green Setting (Gmax		49.5			13.5	31.5		22.0					
Max Q Clear Time (g_c+l		6.3			6.2	18.3		17.4					
Green Ext Time (p_c), s	,, •	9.2			0.2	6.1		0.7					
Intersection Summary													
HCM 2010 Ctrl Delay			19.8										
HCM 2010 Cur Delay			19.0 B										
I IGNI 2010 LOS			В										

Movement		√	•	†	<u> </u>	\	ļ			
Traffic Volume (veh/h)	Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Traffic Volume (veh/h) 487 471 422 349 230 246 Future Volume (veh/h) 487 471 422 349 230 246 Number 3 18 2 12 1 6 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 Ped-Bike Adj(A pbT) 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1881 1881 1881 1881 1881 1881 Adj Flow Rate, veh/h 553 535 480 397 261 280 Adj No. of Lanes 2 1 1 1 2 1 Peak Hour Factor 0.88 0.88 0.88 0.88 0.88 0.88 Percent Heavy Veh, % 1 1 1 1 1 1 1 Cap, veh/h 1221 762 560 1038 435 932 Arrive On Green 0.35 0.35 0.30 0.30 0.13 0.50 Sat Flow, veh/h 3476 1599 1881 1599 3476 1881 Grp Volume(v), veh/h 553 535 480 397 261 280 Grp Sat Flow(s), veh/h/ln1738 1599 1881 1599 3476 1881 Q Serve(g.s), s 7.8 16.7 15.2 7.3 4.5 5.6 Cycle Q Clear(g_c), s 7.8 16.7 15.2 7.3 4.5 5.6 Cycle Q Clear(g_c), s 7.8 16.7 15.2 7.3 4.5 5.6 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 1221 762 560 1038 435 932 V/C Ratio(X) 0.45 0.70 0.86 0.38 0.60 0.30 Avail Cap(c_a), veh/h 1670 968 592 1065 1121 1335 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 15.8 13.0 21.0 5.2 26.2 9.5 Incr Delay (d2), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfO(50%), veh/ln3.7 7.6 9.7 6.5 2.2 2.9 LnGrp Delay(d), s/veh 15.4 20.3 18.3 Approach LoS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 Change Period (Y+Rc), \$ 4.6 5.1 5.1 4.6 Max Green Setting (Gmax), \$ 4.9 9.9 44.9 30.4 Max Q Clear Time (g_c+1f6, \$ 17.2 7.6 5.6 7.5 3.6	Lane Configurations	ሻሻ	7	†	7	16	†			
Number										
Initial Q (Qb), veh	Future Volume (veh/h)	487		422		230	246			
Ped-Bike Adj(A pbT)				2		1				
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Adj Sat Flow, veh/h/ln 1881 1881 1881 1881 1881 1881 1881 Adj Flow Rate, veh/h 553 535 480 397 261 280 Adj No. of Lanes 2 1 1 1 1 2 1 Peak Hour Factor 0.88 0.88 0.88 0.88 0.88 0.88 0.88 Percent Heavy Veh, % 1 1 1 1 1 1 1 1 Cap, veh/h 1221 762 560 1038 435 932 Arrive On Green 0.35 0.35 0.30 0.30 0.13 0.50 Sat Flow, veh/h 3476 1599 1881 1599 3476 1881 Grp Volume(v), veh/h 553 535 480 397 261 280 Grp Sat Flow(s), veh/h/ln1738 1599 1881 1599 3476 1881 Q Serve(g_s), s 7.8 16.7 15.2 7.3 4.5 5.6 Cycle Q Clear(g_c	, ,,			0		-	0			
Adj Sat Flow, veh/h/ln 1881 1881 1881 1881 1881 1881 1881 1881 1881 280 Adj Flow Rate, veh/h 553 535 480 397 261 280 Adj No. of Lanes 2 1 1 1 2 1 2 1	, , _, ,									
Adj Flow Rate, veh/h 553 535 480 397 261 280 Adj No. of Lanes 2 1 1 1 2 1 Peak Hour Factor 0.88 0.88 0.88 0.88 0.88 0.88 Percent Heavy Veh, % 1	• •									
Adj No. of Lanes										
Peak Hour Factor 0.88 0.88 0.88 0.88 0.88 0.88 Percent Heavy Veh, % 1	Adj Flow Rate, veh/h		535	480	397	261	280			
Percent Heavy Veh, % 1 2 8 Arrive On Green 0.35 0.35 0.30 0.30 0.13 0.50 3 Sat Flow, veh/h 3476 1599 1881 1599 3476 1881 Grp Sat Flow(s), veh/h In1738 1599 1881 1599 1738 1881 Q Serve(g_s), s 7.8 16.7 15.2 7.3 4.5 5.6 Cycle Q Clear(g_c), s 7.8 16.7 15.2 7.3 4.5 5.6 Cycle Q Clear(g_c), s 7.8 16.7 15.2 7.3 4.5 5.6 Cycle Q Clear(g_c), s 7.8 16.7 15.2 7.3 4.5 5.6										
Cap, veh/h 1221 762 560 1038 435 932 Arrive On Green 0.35 0.35 0.30 0.30 0.13 0.50 Sat Flow, veh/h 3476 1599 1881 1599 3476 1881 Grp Volume(v), veh/h 553 535 480 397 261 280 Grp Sat Flow(s), veh/h/In1738 1599 1881 1599 1738 1881 Q Serve(g_s), s 7.8 16.7 15.2 7.3 4.5 5.6 Cycle Q Clear(g_c), s 7.8 16.7 15.2 7.3 4.5 5.6 Cycle Q Clear(g_c), veh/h 1221 762 560 1038 435 932 V/C Ratio(X) 0.45 0.70 0.86 0.38 0.60 0.30 Avail Cap(c_a), veh/h 1670 968 592 1065 1121 1335 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88			
Arrive On Green 0.35 0.35 0.30 0.30 0.13 0.50 Sat Flow, veh/h 3476 1599 1881 1599 3476 1881 Grp Volume(v), veh/h 553 535 480 397 261 280 Grp Sat Flow(s), veh/h/In1738 1599 1881 1599 1738 1881 Q Serve(g_s), s 7.8 16.7 15.2 7.3 4.5 5.6 Cycle Q Clear(g_c), s 7.8 16.7 15.2 7.3 4.5 5.6 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 1221 762 560 1038 435 932 V/C Ratio(X) 0.45 0.70 0.86 0.38 0.60 0.30 Avail Cap(c_a), veh/h 1670 968 592 1065 1121 1335 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <t< td=""><td>Percent Heavy Veh, %</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td></t<>	Percent Heavy Veh, %	1	1	1	1	1	1			
Arrive On Green 0.35 0.35 0.30 0.30 0.13 0.50 Sat Flow, veh/h 3476 1599 1881 1599 3476 1881 Grp Volume(v), veh/h 553 535 480 397 261 280 Grp Sat Flow(s), veh/h/ln1738 1599 1881 1599 1738 1881 Q Serve(g_s), s 7.8 16.7 15.2 7.3 4.5 5.6 Cycle Q Clear(g_c), s 7.8 16.7 15.2 7.3 4.5 5.6 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 1221 762 560 1038 435 932 V/C Ratio(X) 0.45 0.70 0.86 0.38 0.60 0.30 Avail Cap(c_a), veh/h 1670 968 592 1065 1121 1335 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <t< td=""><td>Cap, veh/h</td><td>1221</td><td>762</td><td>560</td><td>1038</td><td>435</td><td>932</td><td></td><td></td><td></td></t<>	Cap, veh/h	1221	762	560	1038	435	932			
Grp Volume(v), veh/h 553 535 480 397 261 280 Grp Sat Flow(s),veh/h/ln1738 1599 1881 1599 1738 1881 Q Serve(g_s), s 7.8 16.7 15.2 7.3 4.5 5.6 Cycle Q Clear(g_c), s 7.8 16.7 15.2 7.3 4.5 5.6 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 1221 762 560 1038 435 932 V/C Ratio(X) 0.45 0.70 0.86 0.38 0.60 0.30 Avail Cap(c_a), veh/h 1670 968 592 1065 1121 1335 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 15.8 13.0 21.0 5.2 26.2 9.5 Incr Delay (d2), s/veh 0.3 1.6 11.6 0.2 1.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/lr8.7 7.6 9.7 6.5 2.2 2.9 LnGrp Delay(d),s/veh 16.1 14.7 32.5 5.4 27.5 9.6 LnGrp LOS B B C A C A Approach Vol, veh/h 1088 Approach Delay, s/veh 15.4 20.3 18.3 Approach LOS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), \$2.5 23.9 36.4 26.8 Change Period (Y+Rc), \$4.6 5.1 5.1 4.6 Max Green Setting (Gmax), \$4 19.9 44.9 30.4 Max Q Clear Time (g_c+I16, \$5 17.2 7.6 18.7 Green Ext Time (p_c), s 0.7 1.6 7.5 3.6	Arrive On Green	0.35	0.35	0.30	0.30	0.13	0.50			
Grp Sat Flow(s),veh/h/ln1738 1599 1881 1599 1738 1881 Q Serve(g_s), s 7.8 16.7 15.2 7.3 4.5 5.6 Cycle Q Clear(g_c), s 7.8 16.7 15.2 7.3 4.5 5.6 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 1221 762 560 1038 435 932 V/C Ratio(X) 0.45 0.70 0.86 0.38 0.60 0.30 Avail Cap(c_a), veh/h 1670 968 592 1065 1121 1335 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 15.8 13.0 21.0 5.2 26.2 9.5 Incr Delay (d2), s/veh 0.3 1.6 11.6 0.2 1.3 0.2 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0	Sat Flow, veh/h	3476	1599	1881	1599	3476	1881			
Grp Sat Flow(s),veh/h/ln1738 1599 1881 1599 1738 1881 Q Serve(g_s), s 7.8 16.7 15.2 7.3 4.5 5.6 Cycle Q Clear(g_c), s 7.8 16.7 15.2 7.3 4.5 5.6 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 1221 762 560 1038 435 932 V/C Ratio(X) 0.45 0.70 0.86 0.38 0.60 0.30 Avail Cap(c_a), veh/h 1670 968 592 1065 1121 1335 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 15.8 13.0 21.0 5.2 26.2 9.5 Incr Delay (d2), s/veh 0.3 1.6 11.6 0.2 1.3 0.2 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0	Grp Volume(v), veh/h	553	535	480	397	261	280			
Q Serve(g_s), s 7.8 16.7 15.2 7.3 4.5 5.6 Cycle Q Clear(g_c), s 7.8 16.7 15.2 7.3 4.5 5.6 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 1221 762 560 1038 435 932 V/C Ratio(X) 0.45 0.70 0.86 0.38 0.60 0.30 Avail Cap(c_a), veh/h 1670 968 592 1065 1121 1335 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 15.8 13.0 21.0 5.2 26.2 9.5 Incr Delay (d2), s/veh 0.3 1.6 11.6 0.2 1.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/lr8.7 7.6 9.7 6.5 2.2 2.9 LnGrp Delay(d),s/veh 16.1 14.7 32.5 5.4 27.5 9.6 LnGrp LOS B B C A C A Approach Vol, veh/h 1088 877 541 Approach Delay, s/veh 15.4 20.3 18.3 Approach LOS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), \$2.5 23.9 36.4 26.8 Change Period (Y+Rc), \$4.6 5.1 5.1 4.6 Max Green Setting (Gmax), \$4.9 30.4 Max Q Clear Time (g_c+116, \$5 17.2 7.6 18.7 Green Ext Time (p_c), s 0.7 1.6										
Cycle Q Clear(g_c), s 7.8 16.7 15.2 7.3 4.5 5.6 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 1221 762 560 1038 435 932 V/C Ratio(X) 0.45 0.70 0.86 0.38 0.60 0.30 Avail Cap(c_a), veh/h 1670 968 592 1065 1121 1335 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.01 1.00 1.00 0.0 0.0 0.0 0.0										
Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 1221 762 560 1038 435 932 V/C Ratio(X) 0.45 0.70 0.86 0.38 0.60 0.30 Avail Cap(c_a), veh/h 1670 968 592 1065 1121 1335 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 15.8 13.0 21.0 5.2 26.2 9.5 Incr Delay (d2), s/veh 0.3 1.6 11.6 0.2 1.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/lr8.7 7.6 9.7 6.5 2.2 2.9 LnGrp Delay(d), s/veh 16.1 14.7 32.5 5.4 27.5 9.6 LnGrp LOS B B C A C A Approach LOS B										
Lane Grp Cap(c), veh/h 1221 762 560 1038 435 932 V/C Ratio(X) 0.45 0.70 0.86 0.38 0.60 0.30 Avail Cap(c_a), veh/h 1670 968 592 1065 1121 1335 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 15.8 13.0 21.0 5.2 26.2 9.5 Incr Delay (d2), s/veh 0.3 1.6 11.6 0.2 1.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/lr3.7 7.6 9.7 6.5 2.2 2.9 LnGrp Delay(d),s/veh 16.1 14.7 32.5 5.4 27.5 9.6 LnGrp LOS B B C A C A Approach Vol, veh/h 1088 877 541 Approach Delay, s/veh 15.4 20.3 18.3 Approach LOS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), \$2.5 23.9 36.4 26.8 Change Period (Y+Rc), \$ 4.6 5.1 5.1 4.6 Max Green Setting (Gmax), 4 19.9 44.9 30.4 Max Q Clear Time (g_c+I16, 5 17.2 7.6 18.7 Green Ext Time (p_c), \$ 0.7 1.6 7.5 3.6	, , ,						0.0			
V/C Ratio(X) 0.45 0.70 0.86 0.38 0.60 0.30 Avail Cap(c_a), veh/h 1670 968 592 1065 1121 1335 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 15.8 13.0 21.0 5.2 26.2 9.5 Incr Delay (d2), s/veh 0.3 1.6 11.6 0.2 1.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln8.7 7.6 9.7 6.5 2.2 2.9 LnGrp Delay(d),s/veh 16.1 14.7 32.5 5.4 27.5 9.6 LnGrp LOS B B C A C A Approach Vol, veh/h 1088 877 541 Approach LOS B C B Timer 1 2 3 4 5 6 <				560			932			
Avail Cap(c_a), veh/h 1670 968 592 1065 1121 1335 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 15.8 13.0 21.0 5.2 26.2 9.5 Incr Delay (d2), s/veh 0.3 1.6 11.6 0.2 1.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/lrß.7 7.6 9.7 6.5 2.2 2.9 LnGrp Delay(d),s/veh 16.1 14.7 32.5 5.4 27.5 9.6 LnGrp LOS BBCCACACACACACACACACACACACACACACACACACA										
HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 15.8 13.0 21.0 5.2 26.2 9.5 Incr Delay (d2), s/veh 0.3 1.6 11.6 0.2 1.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/lr3.7 7.6 9.7 6.5 2.2 2.9 LnGrp Delay(d),s/veh 16.1 14.7 32.5 5.4 27.5 9.6 LnGrp LOS B B C A C A Approach Vol, veh/h 1088 877 541 Approach Delay, s/veh 15.4 20.3 18.3 Approach LOS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), \$2.5 23.9 36.4 26.8 Change Period (Y+Rc), \$ 4.6 5.1 5.1 4.6 Max Green Setting (GmaՋ). 4 19.9 44.9 30.4 Max Q Clear Time (g_c+116, 5 17.2 7.6 18.7 Green Ext Time (p_c), s 0.7 1.6 7.5 3.6	` '									
Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 15.8 13.0 21.0 5.2 26.2 9.5 Incr Delay (d2), s/veh 0.3 1.6 11.6 0.2 1.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln3.7 7.6 9.7 6.5 2.2 2.9 LnGrp Delay(d),s/veh 16.1 14.7 32.5 5.4 27.5 9.6 LnGrp LOS B B C A C A Approach Vol, veh/h 1088 877 541 Approach Delay, s/veh 15.4 20.3 18.3 Approach LOS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), \$2.5 23.9 36.4 26.8 Change Period (Y+Rc), \$ 4.6 5.1 5.1 4.6 Max Green Setting (Gmax). \$ 19.9 44.9 30.4 Max Q Clear Time (g_c+116, \$ 17.2 7.6 18.7 Green Ext Time (p_c), \$ 0.7 1.6 7.5 3.6	1 \ - /-									
Uniform Delay (d), s/veh 15.8 13.0 21.0 5.2 26.2 9.5 Incr Delay (d2), s/veh 0.3 1.6 11.6 0.2 1.3 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/In3.7 7.6 9.7 6.5 2.2 2.9 LnGrp Delay(d),s/veh 16.1 14.7 32.5 5.4 27.5 9.6 LnGrp LOS B B C A C A Approach Vol, veh/h 1088 877 541 Approach Delay, s/veh 15.4 20.3 18.3 Approach LOS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), \$2.5 23.9 36.4 26.8 Change Period (Y+Rc), \$ 4.6 5.1 5.1 4.6 Max Green Setting (Gmax).4 19.9 44.9 30.4 Max Q Clear Time (g_c+116,5 17.2 7.6 18.7 Green Ext Time (p_c), s 0.7 1.6 7.5 3.6										
Incr Delay (d2), s/veh										
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln3.7 7.6 9.7 6.5 2.2 2.9 LnGrp Delay(d),s/veh 16.1 14.7 32.5 5.4 27.5 9.6 LnGrp LOS B B C A C A Approach Vol, veh/h 1088 877 541 Approach Delay, s/veh 15.4 20.3 18.3 Approach LOS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), \$2.5 23.9 36.4 26.8 Change Period (Y+Rc), \$ 4.6 5.1 5.1 4.6 Max Green Setting (Gmax).4 19.9 44.9 30.4 Max Q Clear Time (g_c+116,5 17.2 7.6 18.7 Green Ext Time (p_c), \$ 0.7 1.6 7.5 3.6	• , ,									
%ile BackOfQ(50%),veh/lrß.7 7.6 9.7 6.5 2.2 2.9 LnGrp Delay(d),s/veh 16.1 14.7 32.5 5.4 27.5 9.6 LnGrp LOS B B C A C A Approach Vol, veh/h 1088 877 541 Approach Delay, s/veh 15.4 20.3 18.3 Approach LOS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), \$2.5 23.9 36.4 26.8 Change Period (Y+Rc), \$ 4.6 5.1 5.1 4.6 Max Green Setting (GmaՋՋ.4 19.9 44.9 30.4 Max Q Clear Time (g_c+I16,5 17.2 7.6 18.7 Green Ext Time (p_c), \$ 0.7 1.6 7.5 3.6	• ():									
LnGrp Delay(d),s/veh 16.1 14.7 32.5 5.4 27.5 9.6 LnGrp LOS B B C A C A Approach Vol, veh/h 1088 877 541 Approach Delay, s/veh 15.4 20.3 18.3 Approach LOS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), \$2.5 23.9 36.4 26.8 Change Period (Y+Rc), \$ 4.6 5.1 5.1 4.6 Max Green Setting (Gmax)0.4 19.9 44.9 30.4 Max Q Clear Time (g_c+116,5 17.2 7.6 18.7 Green Ext Time (p_c), s 0.7 1.6 7.5 3.6	• ,									
LnGrp LOS B B C A C A Approach Vol, veh/h 1088 877 541 Approach Delay, s/veh 15.4 20.3 18.3 Approach LOS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), \$2.5 23.9 36.4 26.8 Change Period (Y+Rc), \$ 4.6 5.1 5.1 4.6 Max Green Setting (Gmax), \$ 19.9 44.9 30.4 Max Q Clear Time (g_c+116, \$ 17.2 7.6 18.7 Green Ext Time (p_c), \$ 0.7 1.6 7.5 3.6	, , ,									
Approach Vol, veh/h 1088 877 541 Approach Delay, s/veh 15.4 20.3 18.3 Approach LOS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), \$2.5 23.9 36.4 26.8 Change Period (Y+Rc), s 4.6 5.1 5.1 4.6 Max Green Setting (Gmax). 19.9 44.9 30.4 Max Q Clear Time (g_c+116, 5 17.2 7.6 18.7 Green Ext Time (p_c), s 0.7 1.6 7.5 3.6										
Approach Delay, s/veh 15.4 20.3 18.3 Approach LOS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), \$2.5 23.9 36.4 26.8 Change Period (Y+Rc), s 4.6 5.1 5.1 4.6 Max Green Setting (Gmax0.4 19.9 44.9 30.4 Max Q Clear Time (g_c+l16,5 17.2 7.6 18.7 Green Ext Time (p_c), s 0.7 1.6 7.5 3.6			D		Α.	U				
Approach LOS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), \$2.5 23.9 36.4 26.8 Change Period (Y+Rc), \$ 4.6 5.1 5.1 4.6 Max Green Setting (GmaՋ). \$ 19.9 44.9 30.4 Max Q Clear Time (g_c+l16, \$ 17.2 7.6 18.7 Green Ext Time (p_c), \$ 0.7 1.6 7.5 3.6										
Timer 1 2 3 4 5 6 7 8 Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), \$2.5 23.9 36.4 26.8 Change Period (Y+Rc), \$ 4.6 5.1 5.1 4.6 Max Green Setting (GmaՋ). \$ 19.9 44.9 30.4 Max Q Clear Time (g_c+l16, \$ 17.2 7.6 18.7 Green Ext Time (p_c), \$ 0.7 1.6 7.5 3.6										
Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), \$2.5 23.9 36.4 26.8 Change Period (Y+Rc), \$ 4.6 5.1 5.1 4.6 Max Green Setting (Gmax). \$19.9 44.9 30.4 Max Q Clear Time (g_c+l16,5 17.2 7.6 18.7 Green Ext Time (p_c), \$0.7 1.6 7.5 3.6	Approach LOS	В		Ü			R			
Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), \$2.5 23.9 36.4 26.8 Change Period (Y+Rc), \$ 4.6 5.1 5.1 4.6 Max Green Setting (GmaՋ). \$ 19.9 44.9 30.4 Max Q Clear Time (g_c+l16, \$ 17.2 7.6 18.7 Green Ext Time (p_c), \$ 0.7 1.6 7.5 3.6	Timer	1	2	3	4	5	6	7	8	
Phs Duration (G+Y+Rc), \$2.5 23.9 36.4 26.8 Change Period (Y+Rc), \$ 4.6 5.1 5.1 4.6 Max Green Setting (Gmax), \$ 19.9 44.9 30.4 Max Q Clear Time (g_c+l16, \$ 17.2 7.6 18.7 Green Ext Time (p_c), \$ 0.7 1.6 7.5 3.6		1	2							
Change Period (Y+Rc), s 4.6 5.1 5.1 4.6 Max Green Setting (Gmax). € 19.9 44.9 30.4 Max Q Clear Time (g_c+I16, 5 17.2 7.6 18.7 Green Ext Time (p_c), s 0.7 1.6 7.5 3.6		\$2.5								
Max Green Setting (Gmax).4 19.9 44.9 30.4 Max Q Clear Time (g_c+l16,5 17.2 7.6 18.7 Green Ext Time (p_c), s 0.7 1.6 7.5 3.6										
Max Q Clear Time (g_c+l16,5s 17.2 7.6 18.7 Green Ext Time (p_c), s 0.7 1.6 7.5 3.6										
Green Ext Time (p_c), s 0.7 1.6 7.5 3.6										
Intersection Summary										
HCM 2010 Ctrl Delay 17.7										
HCM 2010 LOS B	HCM 2010 LOS			В						

Intersection: 7: Riverwalk Drive & US 101 SB On & US 101 SB Off

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	LTR	T	TR	L	T
Maximum Queue (ft)	121	104	90	77	28	202
Average Queue (ft)	53	35	34	27	3	90
95th Queue (ft)	99	84	71	62	16	172
Link Distance (ft)	351	351	189	189		854
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)					200	
Storage Blk Time (%)						0
Queuing Penalty (veh)						0

Intersection: 8: Riverwalk Drive/12th Street & US 101 NB On

Movement	WB	WB	NB	NB	NB	SB	SB
Directions Served	LT	R	L	T	T	T	R
Maximum Queue (ft)	124	209	140	161	151	237	195
Average Queue (ft)	19	87	52	56	49	109	87
95th Queue (ft)	121	185	105	134	115	204	160
Link Distance (ft)	408			854	854	251	251
Upstream Blk Time (%)	0					0	
Queuing Penalty (veh)	0					0	
Storage Bay Dist (ft)		250	150				
Storage Blk Time (%)	0	1		2			
Queuing Penalty (veh)	0	0		2			

Intersection: 10: 12th Street & Newburg Road

Movement	WB	WB	WB	NB	NB	SB	SB	SB	
Directions Served	L	L	R	Т	R	L	L	Т	
Maximum Queue (ft)	174	187	229	273	255	143	175	149	
Average Queue (ft)	78	86	75	203	81	17	95	64	
95th Queue (ft)	147	162	159	287	187	73	152	116	
Link Distance (ft)		821		251	251			530	
Upstream Blk Time (%)				6	1				
Queuing Penalty (veh)				21	3				
Storage Bay Dist (ft)	225		225			200	200		
Storage Blk Time (%)	0		0				0	0	
Queuing Penalty (veh)	0		1				0	0	

Zone Summary

Zone wide Queuing Penalty: 48

Intersection						
Int Delay, s/veh	2.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W.			414	1	
Traffic Vol, veh/h	79	49	17	442	310	53
Future Vol, veh/h	79	49	17	442	310	53
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	_	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	ŧ 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	83	52	18	465	326	56
Major/Minor	Minor		Major4		Maiaro	
Major/Minor	Minor2	05.1	Major1		Major2	
Conflicting Flow All	622	354	382	0	-	0
Stage 1	354	-	-	-	-	-
Stage 2	268	- 0.04=	- 4 4 4 =	-	-	-
Critical Hdwy	6.645	6.245	4.145	-	-	-
Critical Hdwy Stg 1	5.445	-	-	-	-	-
Critical Hdwy Stg 2	5.845	2 2005	0.0005	-	-	-
Follow-up Hdwy	3.5285	3.3285	2.2285	-	<u>-</u>	-
Pot Cap-1 Maneuver	432	686	1168	-	-	-
Stage 1	707	-	-	-	<u>-</u>	-
Stage 2	751	-	-	-	-	-
Platoon blocked, %	400	600	4460	-	-	-
Mov Cap-1 Maneuver	423	686	1168	-	-	-
Mov Cap-2 Maneuver	423	-	-	-	-	-
Stage 1	707	-	-	-	-	-
Stage 2	735	<u>-</u>	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	14.9		0.4		0	
HCM LOS	В					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1168	- 496				
HCM Lane V/C Ratio	0.015	- 0.272				
HCM Control Delay (s)	8.1	0.1 14.9				
HCM Lane LOS	A	A B				
HCM 95th %tile Q(veh)	0	- 1.1				
		1.1				

	۶	→	•	•	←	•	1	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4						∱ ∱		Ť	†	
Traffic Volume (veh/h)	684	0	147	0	0	0	0	496	25	301	216	0
Future Volume (veh/h)	684	0	147	0	0	0	0	496	25	301	216	0
Number	7	4	14				5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1845	1845	1900				0	1845	1900	1845	1845	0
Adj Flow Rate, veh/h	865	0	0				0	522	26	317	227	0
Adj No. of Lanes	2	1	0				0	2	0	1	1	0
Peak Hour Factor	0.95	0.95	0.95				0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	3	3	3				0	3	3	3	3	0
Cap, veh/h	1450	761	0				0	753	37	354	874	0
Arrive On Green	0.41	0.00	0.00				0.00	0.22	0.22	0.07	0.16	0.00
Sat Flow, veh/h	3514	1845	0				0	3491	169	1757	1845	0
Grp Volume(v), veh/h	865	0	0				0	269	279	317	227	0
Grp Sat Flow(s),veh/h/ln	1757	1845	0				0	1752	1815	1757	1845	0
Q Serve(g_s), s	17.3	0.0	0.0				0.0	12.7	12.7	16.1	9.7	0.0
Cycle Q Clear(g_c), s	17.3	0.0	0.0				0.0	12.7	12.7	16.1	9.7	0.0
Prop In Lane	1.00		0.00				0.00		0.09	1.00		0.00
Lane Grp Cap(c), veh/h	1450	761	0				0	388	402	354	874	0
V/C Ratio(X)	0.60	0.00	0.00				0.00	0.69	0.69	0.90	0.26	0.00
Avail Cap(c_a), veh/h	1450	761	0				0	543	563	359	1043	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	0.33	0.33	1.00
Upstream Filter(I)	1.00	0.00	0.00				0.00	1.00	1.00	0.87	0.87	0.00
Uniform Delay (d), s/veh	20.6	0.0	0.0				0.0	32.2	32.2	41.1	24.1	0.0
Incr Delay (d2), s/veh	1.8	0.0	0.0				0.0	3.1	3.1	20.6	0.2	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	8.7	0.0	0.0				0.0	6.5	6.7	9.9	5.0	0.0
LnGrp Delay(d),s/veh	22.4	0.0	0.0				0.0	35.4	35.3	61.7	24.3	0.0
LnGrp LOS	<u> </u>							D	D	<u>E</u>	С	
Approach Vol, veh/h		865						548			544	
Approach Delay, s/veh		22.4						35.3			46.1	
Approach LOS		С						D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), s	22.7	25.0		42.2		47.8						
Change Period (Y+Rc), s	4.6	5.1		5.1		5.1						
Max Green Setting (Gmax), s	18.4	27.9		28.9		50.9						
Max Q Clear Time (g_c+l1), s	18.1	14.7		19.3		11.7						
Green Ext Time (p_c), s	0.0	5.2		3.7		8.0						
Intersection Summary												
HCM 2010 Ctrl Delay			32.6									
HCM 2010 LOS			32.0 C									
Notes												

	•	→	•	•	←	•	1	†	<u> </u>	/	ļ	4	
Movement I	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations					4	7	ሻ	^				7	
Traffic Volume (veh/h)	0	0	0	25	0	207	180	1006	0	0	492	484	
Future Volume (veh/h)	0	0	0	25	0	207	180	1006	0	0	492	484	
Number				3	8	18	5	2	12	1	6	16	
nitial Q (Qb), veh				0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln				1900	1845	1845	1845	1845	0	0	1845	1845	
Adj Flow Rate, veh/h				0	0	246	189	1059	0	0	518	509	
Adj No. of Lanes				0	1	2	1	2	0	0	1	1	
Peak Hour Factor				0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %				3	3	3	3	3	0.50	0.50	3	3	
Cap, veh/h				0	205	348	688	2766	0	0	641	544	
Arrive On Green				0.00	0.00	0.11	0.26	0.53	0.00	0.00	0.69	0.69	
Sat Flow, veh/h				0.00	1845	3136	1757	3597	0.00	0.00	1845	1568	
Grp Volume(v), veh/h				0	1045	246	189	1059	0	0	518	509	
Grp Sat Flow(s),veh/h/ln				0	1845	1568	1757	1752	0	0	1845	1568	
Q Serve(g_s), s				0.0	0.0	6.8	7.7	16.1	0.0	0.0	17.6	25.5	
Cycle Q Clear(g_c), s				0.0	0.0	6.8	7.7	16.1	0.0	0.0	17.6	25.5	
Prop In Lane				0.00	005	1.00	1.00	0700	0.00	0.00	044	1.00	
_ane Grp Cap(c), veh/h				0	205	348	688	2766	0	0	641	544	
//C Ratio(X)				0.00	0.00	0.71	0.27	0.38	0.00	0.00	0.81	0.93	
Avail Cap(c_a), veh/h				0	451	767	688	2766	0	0	758	645	
HCM Platoon Ratio				1.00	1.00	1.00	0.67	0.67	1.00	1.00	2.00	2.00	
Upstream Filter(I)				0.00	0.00	1.00	0.69	0.69	0.00	0.00	0.88	0.88	
Uniform Delay (d), s/veh				0.0	0.0	38.6	23.0	8.3	0.0	0.0	11.7	12.9	
ncr Delay (d2), s/veh				0.0	0.0	2.7	0.1	0.3	0.0	0.0	9.4	23.2	
nitial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/l	n			0.0	0.0	3.1	3.8	7.8	0.0	0.0	10.3	14.0	
LnGrp Delay(d),s/veh				0.0	0.0	41.3	23.2	8.5	0.0	0.0	21.0	36.1	
_nGrp LOS						D	С	Α			С	D	
Approach Vol, veh/h					246			1248			1027		
Approach Delay, s/veh					41.3			10.8			28.5		
Approach LOS					D			В			С		
Timer	1	2	3	4	5	6	7	8					
Assigned Phs		2			5	6		8					
Phs Duration (G+Y+Rc), s		75.5			39.8	35.8		14.5					
Change Period (Y+Rc), s	,	4.5			4.5	4.5		4.5					
Max Green Setting (Gmax	χ) e	59.0			17.5	37.0		22.0					
Max Q Clear Time (g_c+l		18.1			9.7	27.5		8.8					
Green Ext Time (p_c), s	1), 3	10.1			4.6	3.8		0.8					
Intersection Summary		. 3.0				3.3		3.0					
			24.0										
HCM 2010 Ctrl Delay			21.0										
HCM 2010 LOS			С										
Notes													

	•	•	†	<u> </u>	/				
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	ሻሻ	7	↑	7	ሻሻ	↑			
Traffic Volume (veh/h)	656	380	328	885	524	320			
Future Volume (veh/h)	656	380	328	885	524	320			
Number	3	18	2	12	1	6			
Initial Q (Qb), veh	0	0	0	0	0	0			
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00				
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00			
Adj Sat Flow, veh/h/ln	1845	1845	1845	1845	1845	1845			
Adj Flow Rate, veh/h	691	400	345	932	552	337			
Adj No. of Lanes	2	1	1	1	2	1			
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95			
Percent Heavy Veh, %	3	3	3	3	3	3			
Cap, veh/h	858	691	739	1022	644	1182			
Arrive On Green	0.25	0.25	0.53	0.53	0.19	0.64			
Sat Flow, veh/h	3408	1568	1845	1568	3408	1845			
Grp Volume(v), veh/h	691	400	345	932	552	337			
Grp Sat Flow(s), veh/h/h		1568	1845	1568	1704	1845			
	17.1	17.2	1045	36.0	14.1	7.2			
Q Serve(g_s), s	17.1	17.2	10.5	36.0	14.1	7.2			
Cycle Q Clear(g_c), s			10.5			1.2			
Prop In Lane	1.00	1.00	720	1.00	1.00	4400			
Lane Grp Cap(c), veh/h		691	739	1022	644	1182			
V/C Ratio(X)	0.81	0.58	0.47	0.91	0.86	0.29			
Avail Cap(c_a), veh/h	1151	826	739	1022	773	1182			
HCM Platoon Ratio	1.00	1.00	1.33	1.33	1.00	1.00			
Upstream Filter(I)	1.00	1.00	0.93	0.93	1.00	1.00			
Uniform Delay (d), s/vel		18.9	15.1	9.1	35.3	7.1			
Incr Delay (d2), s/veh	3.1	0.8	2.0	12.8	8.2	0.6			
Initial Q Delay(d3),s/vel		0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),ve		7.5	5.7	26.6	7.3	3.8			
LnGrp Delay(d),s/veh	34.7	19.7	17.0	21.9	43.5	7.7			
LnGrp LOS	С	В	В	С	D	Α			
Approach Vol, veh/h	1091		1277			889			
Approach Delay, s/veh	29.2		20.6			29.9			
Approach LOS	С		С			С			
	1	2	3	4	5		7	8	
Timer Assigned Phs	1	2	3	4	5	6	I	8	
	1								
Phs Duration (G+Y+Rc)	, .	41.1				62.8		27.2	
Change Period (Y+Rc),		5.1				5.1		4.6	
Max Green Setting (Gm	, .	24.9				44.9		30.4	
Max Q Clear Time (g_c	, ,	38.0				9.2		19.2	
Green Ext Time (p_c), s	s 0.9	0.0				11.3		3.4	
Intersection Summary									
HCM 2010 Ctrl Delay			26.0						
HCM 2010 LOS			С						

Intersection: 7: Riverwalk Drive/US 101 SB Off & US 101 SB Ramp

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	LTR	Т	TR	L	Т
Maximum Queue (ft)	346	396	231	240	293	233
Average Queue (ft)	179	223	131	142	172	110
95th Queue (ft)	292	335	203	215	272	198
Link Distance (ft)	390	390	199	199		892
Upstream Blk Time (%)	0	1	1	1		
Queuing Penalty (veh)	0	0	2	3		
Storage Bay Dist (ft)					300	
Storage Blk Time (%)					1	
Queuing Penalty (veh)					2	

Intersection: 8: Riverwalk Drive/12th Street & US 101 NB Ramp

Movement	WB	WB	NB	NB	NB	SB	SB
Directions Served	LTR	R	L	T	T	T	R
Maximum Queue (ft)	135	172	235	551	550	345	189
Average Queue (ft)	50	78	94	131	203	181	101
95th Queue (ft)	106	147	182	418	478	336	184
Link Distance (ft)	163	163		892	892	349	349
Upstream Blk Time (%)	1	1				0	
Queuing Penalty (veh)	0	0				2	
Storage Bay Dist (ft)			150				
Storage Blk Time (%)			1	1			
Queuing Penalty (veh)			6	2			

Intersection: 10: 12th Street & Newburg Road

Movement	WB	WB	WB	NB	NB	SB	SB	SB	
Directions Served	L	L	R	Т	R	L	L	Т	
Maximum Queue (ft)	268	275	205	364	403	283	330	355	
Average Queue (ft)	126	125	54	191	320	188	240	127	
95th Queue (ft)	216	212	139	314	429	291	338	296	
Link Distance (ft)		820		349	349			530	
Upstream Blk Time (%)				0	8			0	
Queuing Penalty (veh)				2	49			0	
Storage Bay Dist (ft)	225		225			250	250		
Storage Blk Time (%)	1	0	0			0	9		
Queuing Penalty (veh)	4	2	0			1	28		

Zone Summary

Zone wide Queuing Penalty: 180

Cumulative Roundabout Alternative

LEVEL OF SERVICE

Site: Riverwalk Drive/Driveway AM

12th Street Interchange Roundabout Concept - Option 1 Cumulative AM Roundabout

All Movement Classes

	South	North	West	Intersection
LOS	Α	Α	Α	Α

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

LANE SUMMARY

Site: Riverwalk Drive/Driveway AM

12th Street Interchange Roundabout Concept - Option 1 Cumulative AM Roundabout

Lane Use ar	nd Perforr	nance)										
	Demand F Total veh/h	Flows HV %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Average Delay sec	Level of Service	95% Back of Veh	Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. %	Prob. Block. %
South: Riverw	valk Drive												
Lane 1 ^d	333	3.0	1368	0.243	100	4.3	LOS A	1.5	37.3	Full	1600	0.0	0.0
Approach	333	3.0		0.243		4.3	LOS A	1.5	37.3				
North: Riverw	alk Drive												
Lane 1 ^d	314	3.0	1376	0.228	100	4.2	LOS A	1.2	30.7	Full	1600	0.0	0.0
Approach	314	3.0		0.228		4.2	LOS A	1.2	30.7				
West: Drivewa	ay												
Lane 1 ^d	8	4.7	1074	0.007	100	10.0	LOS A	0.0	0.8	Full	1600	0.0	0.0
Approach	8	4.7		0.007		10.0	LOS A	0.0	0.8				
Intersection	655	3.0		0.243		4.3	LOSA	1.5	37.3				

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:20:09 PM

LEVEL OF SERVICE

Site: Riverwalk Drive/Driveway PM

12th Street Interchange Roundabout Concept - Option 1 Cumulative PM Roundabout

All Movement Classes

	South	North	West	Intersection
LOS	Α	Α	Α	Α

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

LANE SUMMARY

Site: Riverwalk Drive/Driveway PM

12th Street Interchange Roundabout Concept - Option 1 Cumulative PM Roundabout

Lane Use a	nd Perforr	nance)										
	Demand F Total veh/h	Flows HV %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Average Delay sec	Level of Service	95% Back of Veh	Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. %	Prob. Block. %
South: Rivery	walk Drive												
Lane 1 ^d	484	3.0	1376	0.352	100	4.2	LOS A	2.5	63.4	Full	1600	0.0	0.0
Approach	484	3.0		0.352		4.2	LOSA	2.5	63.4				
North: Rivery	walk Drive												
Lane 1 ^d	409	3.0	1376	0.298	100	4.2	LOS A	1.7	42.9	Full	1600	0.0	0.0
Approach	409	3.0		0.298		4.2	LOS A	1.7	42.9				
West: Drivew	<i>v</i> ay												
Lane 1 ^d	7	3.3	1016	0.007	100	6.6	LOSA	0.0	0.8	Full	1600	0.0	0.0
Approach	7	3.3		0.007		6.6	LOSA	0.0	0.8				
Intersection	901	3.0		0.352		4.3	LOSA	2.5	63.4				

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright @ 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:21:05 PM

Intersection						
Int Delay, s/veh	0.4					
		EDD	MDI	NDT	ODT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		र्स	4	0.5
Traffic Vol, veh/h	0	25	0	237	302	25
Future Vol, veh/h	0	25	0	237	302	25
Conflicting Peds, #/hr	0	0	_ 0	0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, #		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	6	6	6	6	6	6
Mvmt Flow	0	28	0	269	343	28
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	WIIIIOIZ	357	372	0	Iviajoiz	0
Stage 1	<u>-</u>	337	312	-	-	
Stage 1 Stage 2	-	<u>-</u>	-	-	-	-
Critical Hdwy	-	6.26	4.16	-	-	-
Critical Hdwy Stg 1	-	0.20	4.10	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
	-	3.354	2.254	-	-	-
Follow-up Hdwy	-	3.354 678	1165	-	-	-
Pot Cap-1 Maneuver	0	0/0	1105	-	-	-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Platoon blocked, %		670	1105	-	-	-
Mov Cap-1 Maneuver	-	678	1165	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	10.5		0		0	
HCM LOS	В					
	_					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1165	- 678				
HCM Lane V/C Ratio	-	- 0.042				
HCM Control Delay (s)	0	- 10.5				
HCM Lane LOS	A	- 10.5				
HCM 95th %tile Q(veh)	0	- 0.1				
HOW JOHN /OHIE W(VEII)	U	- 0.1	-			

Synchro 9 Report Page 1 Fortuna Interchanges

Intersection						
Int Delay, s/veh	1.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1		↑	f	
Traffic Vol, veh/h	0	122	0	521	316	47
Future Vol, veh/h	0	122	0	521	316	47
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- -	None	-			None
Storage Length	<u>-</u>	0	_	-	-	-
Veh in Median Storage, #	0	-	_	0	0	_
Grade, %	0	_	<u>-</u>	0	0	_
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	128	0	548	333	49
WWW.T IOW	U	120	0	U+U	300	73
Major/Minor	Minor2		Major4		MajorQ	
Major/Minor	WIIIIUIZ	257	Major1	^	Major2	0
Conflicting Flow All	-	357	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.22	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	- 0.40	-	-	-	-
Follow-up Hdwy	-	3.318	-	-	-	-
Pot Cap-1 Maneuver	0	687	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	_
Mov Cap-1 Maneuver	-	687	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	11.4		0		0	
HCM LOS	В					
Minor Lane/Major Mvmt	NBT EBLn1	SBT	SBR			
Capacity (veh/h)	- 687		-			
HCM Lane V/C Ratio	- 0.187	_	_			
HCM Control Delay (s)	- 11.4	_	_			
HCM Lane LOS	- B	_	<u>-</u>			
HCM 95th %tile Q(veh)	- 0.7	_	<u>-</u>			
HOW JULY AUTO CALABOTA	- 0.7	-	<u>-</u>			

Fortuna Interchange Synchro 9 Report Page 1

LEVEL OF SERVICE

Site: Riverwalk Drive/SB Ramps AM

12th Street Interchange Roundabout Concept - Option 1 & 2 Cumulative AM Roundabout

All Movement Classes

	South	North	West	Intersection
LOS	Α	Α	Α	Α

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

LANE SUMMARY

Site: Riverwalk Drive/SB Ramps AM

12th Street Interchange Roundabout Concept - Option 1 & 2 Cumulative AM Roundabout

Lane Use a	nd Perforr	nance)										
	Demand F		_	Deg.	Lane	Average	Level of	95% Back of	Queue	Lane	Lane	Сар.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: Rivery	walk Drive												
Lane 1 ^a	292	3.0	1120	0.261	100	10.0	LOS A	1.5	38.7	Full	1600	0.0	0.0
Approach	292	3.0		0.261		10.0	LOS A	1.5	38.7				
North: 101 SI	B Off-Ramp												
Lane 1	175	3.0	1051	0.167	100	5.7	LOSA	0.9	22.8	Full	1600	0.0	0.0
Lane 2 ^d	331	3.0	1323	0.250	100	5.5	LOSA	1.5	38.6	Short	200	0.0	NA
Approach	506	3.0		0.250		5.5	LOS A	1.5	38.6				
West: 12th S	treet												
Lane 1 ^d	384	3.0	1172	0.328	100	5.3	LOSA	2.1	52.7	Full	1600	0.0	0.0
Approach	384	3.0		0.328		5.3	LOSA	2.1	52.7				
Intersection	1182	3.0		0.328		6.6	LOSA	2.1	52.7				

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:21:58 PM Project: O:\PRJ\2132\T2132\Sidra\12th St Cumulative.sip6

LEVEL OF SERVICE

Site: Riverwalk Drive/SB Ramps PM

12th Street Interchange Roundabout Concept - Option 1 & 2 Cumulative PM Roundabout

All Movement Classes

	South	North	West	Intersection
LOS	В	В	Α	В

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

LANE SUMMARY

Site: Riverwalk Drive/SB Ramps PM

12th Street Interchange Roundabout Concept - Option 1 & 2 Cumulative PM Roundabout

Lane Use a	nd Perfori	nance)										
	Demand F Total veh/h	Flows HV %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Average Delay sec	Level of Service	95% Back of Veh	Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. %	Prob. Block. %
South: Rivery	walk Drive												
Lane 1 ^d	726	3.0	1126	0.645	100	11.2	LOS B	6.1	157.4	Full	1600	0.0	0.0
Approach	726	3.0		0.645		11.2	LOS B	6.1	157.4				
North: 101 SI	B Off-Ramp												
Lane 1	242	3.0	647	0.374	100	9.2	LOS A	2.5	64.3	Full	1600	0.0	0.0
Lane 2 ^d	685	3.0	909	0.754	100	14.7	LOS B	10.9	278.0	Short	200	0.0	NA
Approach	927	3.0		0.754		13.2	LOS B	10.9	278.0				
West: 12th S	treet												
Lane 1 ^d	544	3.0	1083	0.503	100	5.9	LOS A	4.0	102.0	Full	1600	0.0	0.0
Approach	544	3.0		0.503		5.9	LOSA	4.0	102.0				
Intersection	2198	3.0		0.754		10.7	LOS B	10.9	278.0				

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:22:58 PM Project: O:\PRJ\2132\T2132\Sidra\12th St Cumulative.sip6

LEVEL OF SERVICE

Site: 12th Street/NB Ramps/Newburg Road AM

12th Street Interchange Roundabout Concept Cumulative AM Roundabout

All Movement Classes

	South	Southeast	East	North	Intersection
LOS	Α	A	Α	В	Α

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

LANE SUMMARY

Site: 12th Street/NB Ramps/Newburg Road AM

12th Street Interchange Roundabout Concept Cumulative AM Roundabout

Lane Use a	ınd Perfori	mance	•										
	Demand F			Deg.	Lane	Average	Level of	95% Back of	Queue	Lane	Lane	Сар.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: 12th S													
Lane 1 ^d	348	3.0	1416	0.246	100	6.8	LOS A	1.7	42.6	Full	1600	0.0	0.0
Lane 2	253	3.0	1141	0.222	100	5.3	LOS A	1.4	35.4	Full	1600	0.0	0.0
Approach	601	3.0		0.246		6.2	LOSA	1.7	42.6				
SouthEast: N	IB Off-Ramp)											
Lane 1 ^d	273	3.0	971	0.281	100	6.1	LOSA	1.3	32.4	Full	1600	0.0	0.0
Lane 2	143	3.0	742	0.193	100	7.1	LOS A	0.8	19.8	Full	1600	0.0	0.0
Approach	416	3.0		0.281		6.5	LOSA	1.3	32.4				
East: Newbu	rg Road Re	alignm	ent										
Lane 1 ^d	553	3.0	1174	0.472	100	9.2	LOSA	3.7	93.9	Full	1600	0.0	0.0
Lane 2	535	3.0	893	0.599	100	10.5	LOS B	5.7	147.0	Short	200	0.0	NA
Approach	1089	3.0		0.599		9.9	LOSA	5.7	147.0				
North: 12th S	Street												
Lane 1	261	3.0	732	0.357	100	14.3	LOS B	2.5	63.4	Full	1600	0.0	0.0
Lane 2 ^d	280	3.0	936	0.299	100	7.7	LOS A	2.2	57.3	Full	1600	0.0	0.0
Approach	541	3.0		0.357		10.9	LOS B	2.5	63.4				
Intersection	2647	3.0		0.599		8.7	LOSA	5.7	147.0				

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:24:32 PM Project: O:\PRJ\2132\T2132\Sidra\12th St Cumulative.sip6

LEVEL OF SERVICE

Site: 12th Street/NB Ramps/Newburg Road PM

12th Street Interchange Roundabout Concept Cumulative PM Roundabout

All Movement Classes

	South	Southeast	East	North	Intersection
LOS	В	В	В	D	В

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

LANE SUMMARY

Site: 12th Street/NB Ramps/Newburg Road PM

12th Street Interchange Roundabout Concept Cumulative PM Roundabout

Lane Use a			;										
	Demand F Total veh/h	Flows HV %	Cap.	Deg. Satn v/c	Lane Util. %	Average Delay sec	Level of Service	95% Back of Veh	f Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. %	Prob. Block. %
South: 12th S		, ,										, ,	
Lane 1	566	3.0	823	0.688	100	14.3	LOS B	8.1	206.2	Full	1600	0.0	0.0
Lane 2 ^d	795	3.0	1078	0.737	100	10.6	LOS B	10.5	269.9	Short	200	0.0	NA
Approach	1361	3.0		0.737		12.1	LOS B	10.5	269.9				
SouthEast: N	IB Off-Ramp)											
Lane 1	106	3.0	270	0.394	100	20.4	LOS C	2.3	57.7	Full	1600	0.0	0.0
Lane 2 ^d	137	3.0	388	0.353	100	14.8	LOS B	2.3	59.0	Full	1600	0.0	0.0
Approach	243	3.0		0.394		17.3	LOS B	2.3	59.0				
East: Newbu	rg Road Rea	alignm	ent										
Lane 1 ^d	691	3.0	984	0.702	100	13.9	LOS B	9.5	242.5	Full	1600	0.0	0.0
Lane 2	400	3.0	731	0.547	100	10.3	LOS B	5.0	128.6	Short	200	0.0	NA
Approach	1091	3.0		0.702		12.6	LOS B	9.5	242.5				
North: 12th S	Street												
Lane 1 ^d	552	3.0	611	0.902	100	48.5	LOS D	19.8	507.6	Full	1600	0.0	0.0
Lane 2	337	3.0	445	0.756	100	30.2	LOS C	9.4	240.1	Full	1600	0.0	0.0
Approach	888	3.0		0.902		41.6	LOS D	19.8	507.6				
Intersection	3583	3.0		0.902		19.9	LOS B	19.8	507.6				

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:25:29 PM Project: O:\PRJ\2132\T2132\Sidra\12th St Cumulative.sip6

Attachment C - Review of	Geometric Design Stand	ards

Memorandum

June 22, 2016

Project:	Fortuna Highway 101/Riverwalk Connectivity Study		
Subject:	Review of Safety and Design Standards		
Client:	Humboldt County Association of Governments	Job no	.: 11109149
Prepared by:	David Caisse, P.E and Josh Wolf, P.E.	Tel:	(707) 443-8326

Introduction / Objective

This memo is intended to provide a brief summary of the existing conditions and identify potential non-standard features for the Highway 101 interchanges at 12th Street and Kenmar Road. Existing facilities were compared against the applicable standards and guidelines for the roadway being analyzed. For example, standards for the Highway 101 on and off ramps and other State owned facilities are based on the Caltrans Highway Design Manual. Local facilities are based on the local agency or Federal guidance or standards (generally whichever are more stringent). Local facilities located within the State right-of-way crossing over or under a freeway or expressway and connecting to the state facility are based on the State's design standards. Below is a list of public standards which are commonly used.

Common Public Design Standards and Guidelines

State of California

Caltrans Highway Design Manual – This manual was developed by the California Department of Transportation (Caltrans) to establish uniform policies and procedures to carry out the State highway design functions of the department. Design standards include items such as roadway geometry, pavement engineering, drainage, bicycle transportation and other miscellaneous design standards.

California Manual on Uniform Traffic Control Devices (CA MUTCD) – This manual provides uniform standards and specifications for all official traffic control devices in California. Design standards include items such as signs, markings, signal and temporary traffic control for vehicular, rail and bicycle facilities. The CA MUTCD is based on Federal Highway Administrations (FHWA) 2009 National Manual on Uniform Traffic Control Devices with California revisions and amendments.

<u>Federal</u>

AASHTO Geometric Design of Highways and Streets – Similar to the Highway Design Manual, these guidelines are intended to provide roadway design standards with operational efficiency, comfort, safety and convenience of the motorist in mind. Design standards include items such as highway function, design controls and elements of design for various functional classifications of roadways (freeways, arterials, collectors, local roads, etc.).

T 1 707 443 8326 F 1 707 444 8330 E eureka@ghd.com W www.ghd.com

US Department of Justice's ADA Standards for Accessible Design – These standards are based on the Americans with Disabilities Act of 1990 (ADA) and provide standards to prohibit discrimination and ensure equal opportunity for persons with disabilities. Design elements include standards for accessible routes, general site and building elements (residential and commercial) and recreational facilities.

AASHTO Guide for the Development of Bicycle Facilities – This manual was developed to provide an overview of planning and design considerations, as well as recommendations for operation and maintenance of various types of bicycle facilities.

NACTO Urban Bikeway Design Guide – Similar to the AASHTO Guide for the Development of Bicycle Facilities, this manual was developed to provide guidance for the planning and design of bicycle facilities. This manual however, was developed by cities for cities based on the experience of the best cycling cities in the world.

As discussed later in this memo, there are currently no pedestrian or bicycle facilities in the immediate vicinity of the interchanges, therefore the later three of the manuals identified above were not used when evaluating the existing conditions.

Condition Assessment

A reconnaissance level condition assessment was performed and used to identify fundamental deficiencies as compared to the current design standards. The results presented below are based on a preliminary level characterization to provide background information and guidance for evaluating the existing conditions. For example, the characterization is based on notable qualitative characteristics visually observed and/or measured during a site walk, rather than a detailed investigation or survey of the existing conditions.

The characteristics noted are based on observable features that are relevant to the evaluation of the current layout. The characterization is intended to serve as a planning tool to provide additional information to be considered when recommending improvement alternatives. The primary factors being investigated are items such as horizontal alignment, geometric cross section, design vehicles, clearances, and sight distance.

Results

The results of the condition assessment for each segment of roadway can be found on the following pages.

12th Street and US Highway 101 Interchange

12th Street/Riverwalk Drive

Roadway Segment: Riverwalk Dr	12th St					
	Existing Roadway Characteristics					
Facility Type	Local Facility					
Functional Classification	Minor Arterial / Major Collector			12		
No. of Lanes	2					
Rural/Urban	Rural	Design	Meets			
Bike Facilities (Y/N)	N	Standards	Standards	Reference to Standard		
Pedestrian Facilities (Y/N)	N	Standards	$(\sqrt{=} yes)$	2		
Posted Speed/Design Speed (mph)	30/35	45 ¹		HDM Index 101.1		
Lane Width (ft)	12	12	J	HDM Index 301.1 / AASHTO		
Overcrossing Width (ft)	28	32		HDM Index 308.1		
Right Shoulder Width (ft)	Var. 2' - 8' (between NB and SB ramps)	4		HDM Index 302.1 & 308.1 / AASHTO		
Curve Radii (ft)	300+/-	425		HDM Index 203.2		
Decision Sight Distance (ft)	400 2	525		HDM Index 201.7		
Intersection Spacing (ft)	0' (Between SB ramps and Dinsmore Dr) & 300' (between NB ramps and Newburg Rd)	500		HDM Index 504.3		
Horizontal Clearance (ft)	4'+ (w/out curb) & 1.5'+ (w/ curb)	4' (w/out curb) & 1.5' (w/ curb)	J	HDM Index 309.1		
Vertical Clearance (ft - in)	15' - 5" ³	16' - 6"		HDM Index 309.2		
Stopping Sight Distance (ft)	250+	250	J	HDM Index 201.1		
Design Vehicle	Cal Legal - 50 4	Cal Legal - 50		HDM Index 404.4		

¹ Design Standard applies to connections to freeways or expressways

- Posted Speed/Design Speed When feasible, the design speed of local facilities connecting to a freeway or expressway should be 45 mph, but shall be a minimum of 35 mph.
- Overcrossing Width The adjacent sections of roadway approaching the overcrossing are urban in nature and contain 12' travel lanes with 8' shoulders. At the overcrossing, the section narrows to 12' travel lanes, 2' paved shoulders and a concrete curb/vehicular railing which begins at the edge of the shoulder.

² The roadway geometry could probably accommodate the minimum Decision Sight Distance, but some trees might need trimming or be removed.

³ This location is an overcrossing so the vertical clearance shown here is for US Hwy 101.

⁴ A Cal Legal - 50 Truck could probably navigate the turns, but may be required to travel outside the lane slightly and use the gore area or adjacent shoulder.

- Right Shoulder Width The shoulder width decreases to only 2' within the overcrossing area and again on the Strongs Creek Bridge (which is located at the southern extents of this segment). All other portions of this segment have shoulders which meet the minimum design standard of 4' wide. The widths vary, but are generally around 8' in width.
- Intersection Spacing -
 - At the southern extent of this segment, Dinsmore Road intersects Riverwalk Drive immediately adjacent to the SB ramps. Due to its proximity and configuration, Dinsmore Road appears more like a 5th leg of the Riverwalk Drive and SB ramp intersection rather than its own. Drivers appear to be confused and have been observed traveling directly from Dinsmore Drive to the SB ramp or northward towards the downtown area.
 - At the northern extent of the segment, the NB on and off ramps are located approximately 300' south of the Newburg Road and 12th Street intersection. The preferred distance between intersections (from curb return to curb return) is 500', but shall be a minimum of 400'.
- Curve Radii 12th Street is a relatively straight section of road, but contains a few curves near the interchange. The first curve heading south towards Highway 101 is slightly smaller than recommended based on the speed of the roadway through that section.
- Decision Sight Distance Near the overcrossing, there are a number of large conifers that restrict visibility. The sight distance could be improved and would likely meet the standards if the trees were trimmed or removed.
- Vertical Clearance Since this is an overcrossing, the vertical clearance described here is for the vehicles on Highway 101.
- Design Vehicle In all cases, it appears as though a Cal Legal-50 truck could navigate the turns
 and stay within the paved roadway area; however, due to the tight radii entering and exiting the
 ramps and turning on and off the side streets (Dinsmore Drive and Newburg Road), large trucks
 would need to encroach slightly into the oncoming travel lane and or gore area.

Newburg Road

Roadway Segment: Newburg Rd	Existing Roadway			
	Characteristics			
Facility Type	Local Facility			
Functional Classification	Major Collector			
No. of Lanes	2			7 2
Rural/Urban	Rural		Meets	
Bike Facilities (Y/N)	N	Design Standards	Standards	Reference to Standard
Pedestrian Facilities (Y/N)	Y (north side only)	The same	$(\sqrt{=} yes)$	
Posted Speed/Design Speed (mph)	25/30	25	J	AASHTO
Lane Width (ft)	12	12	1	HDM Index 301.1 / AASHTO
Right Shoulder Width (ft)	8 / 4	2	J	HDM Index 302.1 & 308.1 / AASHTO
Curve Radii (ft)	300+	300	J	HDM Index 203.2
Decision Sight Distance (ft)	450+	450	J	HDM Index 201.7
Angle of Intersection (Degree)	45	75		HDM Index 403.3
Horizontal Clearance (ft)	3'+/- (in areas w/out curb)	4' (w/out curb) & 1.5' (w/ curb)		HDM Index 309.1
Stopping Sight Distance (ft)	200+	200	J	HDM Index 201.1
Design Vehicle	Cal Legal - 50 1	Cal Legal - 50		HDM Index 404.4

- A Cal Legal 50 Truck could probably navigate the turns, but would be required travel outside its lane.
 - Angle of Intersection Newberg Intersects 12th Street at a 45 degree angle. Provided there are
 no physical constraints, the interior angle should be 90 degrees or as close to 90 degrees as
 practical, but should not be less than 75 degrees.
 - Horizontal Clearance The southern half of the roadway contains a number of utility poles that are very close to the edge of the travel lane.
 - Design Vehicle Newberg Road intersects 12th Street at an acute angle. Due to the angle and tight radii, large trucks need to encroach into oncoming travel lane to navigate the turns and stay within the existing pavement.

Dinsmore Drive

Roadway Segment: Dinsmore Dr		-		
	Existing Roadway Characteristics			31/8/10/10
Facility Type	Local Facility			
Functional Classification	Local Road			
No. of Lanes	2			
Rural/Urban	Rural	Design Standards	Meets	
Bike Facilities (Y/N)	N		Standards	Reference to Standard
Pedestrian Facilities (Y/N)	N	Standards	$(\sqrt{=} yes)$	1.000.000.000.000.000
Posted Speed/Design Speed (mph)	25/30	25	1	AASHTO
Lane Width (ft)	12	12	1	HDM Index 301.1 / AASHTO
Right Shoulder Width (ft)	2	2	J	HDM Index 302.1 & 308.1 / AASHTO
Curve Radii (ft)	300+	300	1	HDM Index 203.2
Decision Sight Distance (ft)	450+	450	1	HDM Index 201.7
Horizontal Clearance (ft)	4'+/_ 1	4'	J	HDM Index 309.1
Stopping Sight Distance (ft)	200+	200	1	HDM Index 201.1
Design Vehicle	Cal Legal - 50 ²	Cal Legal - 50		HDM Index 404.4

¹ Power poles are very close to the edge of the pavement.

Design Vehicle – Dinsmore Drive intersects 12th Street as one of the five legs of this intersection.
 As a result, the intersection is tight and confusing. Due to the tight radius and close proximity of the bridge to the intersection, large trucks heading or coming from the south leg of the intersection are required to swing wide and encroach into oncoming travel lanes.

² A Cal Legal - 50 Truck could probably navigate the turns, but would be required travel outside its lane.

US Highway 101 Northbound Ramp

Roadway Segment: US Hwy 101 No	Existing Roadway Characteristics	ps)		
Facility Type	Freeway / Expressway			
Functional Classification	Freeway / Expressway			
No. of Lanes	1			
Rural/Urban	Rural	Docien	Meets	
Bike Facilities (Y/N)	N	Design Standards	Standards $(\sqrt{=} \text{yes})$	Reference to Standard
Pedestrian Facilities (Y/N)	N	Standards		
Posted Speed/Design Speed (mph)	35/40	25/50 ¹		HDM Index 504.3
Lane Width (ft)	12	12	1	HDM Index 301.1
Right Shoulder Width (ft)	8	8	1	HDM Index 302.1 & 308.1 / AASHTO
Curve Radii (ft)	400 / 600	550		HDM Index 203.2
Decision Sight Distance (ft)	425+/-	600		HDM Index 201.7
Horizontal Clearance (ft)	4'+ (w/out curb) & 1.5'+ (w/ curb)	4' (w/out curb) & 1.5' (w/ curb)	Ţ	HDM Index 309.1
Stopping Sight Distance (ft)	300+	300	1	HDM Index 201.1
Design Vehicle	STAA ²	STAA		HDM Index 404.4

¹ Design speed should be 25 mph when traffic is expected to make a turning movement at the terminus and 50 mph when entering, exiting a ramp or when a "through" movement is provided at the terminus.

- Posted Speed/Design Speed The design speed of ramp can vary depending on the alignment and controls at each end. An acceptable approach is to set 25 mph and 50 mph design speeds for the ramp terminus and exit nose, respectively. The NB off ramp terminates at an intersection where traffic is expected to make a turning movement; therefore, the design speed should be 25 mph nearing this portion of the ramp.
- Curve Radii The design standard for the minimum curve radius of the northbound on and off
 ramps are based on the posted speed limit entering the on ramp from Highway 101. The curve
 radius identified below as not meeting the standard are is located on the northbound on ramp just
 before entering Highway 101. This particular section of road has no posted speed limit, but traffic
 entering Highway 101 at this location is accelerating and approaching speeds in excess of 40
 mph. If considerations are made for improvements to this interchange, this radius should be
 increased to meet the current design standards.
- Decision Sight Distance Similar to the 12th Street overcrossing, there are a number of large

² An STAA truck could probably navigate the turns, but would be required travel outside its lane.

conifers (Redwoods) along the right side of the off ramp that restrict visibility. The sight distance could be improved and would likely meet the standards if the trees were trimmed or removed.

 Design Vehicle – In all cases, it appears as though an STAA truck could navigate the turns and stay within the pavement; however, due to the tight radii entering and exiting the ramps and turning on and off 12th Street, large trucks would need to encroach slightly into the oncoming travel lane or gore area.

US Highway 101 Southbound Ramp

Roadway Segment: US Hwy 101 Sc	outhbound (On and off ramp	os) 1		
	Existing Roadway Characteristics			
Facility Type	Freeway / Expressway			
Functional Classification	Freeway / Expressway			
No. of Lanes	1	V		
Rural/Urban	Rural	Design Standards	Meets	
Bike Facilities (Y/N)	N		Standards	Reference to Standard
Pedestrian Facilities (Y/N)	N	Standards	$(\sqrt{=yes})$	I Markware and
Posted Speed/Design Speed (mph)	25/30	25/50 ¹		HDM Index 504.3
Lane Width (ft)	12	12	1	HDM Index 301.1
Right Shoulder Width (ft)	8	8	J	HDM Index 302.1 & 308.1 / AASHTO
Curve Radii (ft)	300 / 650	300	1	HDM Index 203.2
Decision Sight Distance (ft)	450+	450	1	HDM Index 201.7
Horizontal Clearance (ft)	4'+ (w/out curb) & 1.5'+ (w/ curb)	4' (w/out curb) & 1.5' (w/ curb)	J	HDM Index 309.1
Stopping Sight Distance (ft)	200+	200	1	HDM Index 201.1
Design Vehicle	STAA ²	STAA		HDM Index 404.4

¹ Design speed should be 25 mph when traffic is expected to make a turning movement at the terminus and 50 mph when entering, exiting a ramp or when a "through" movement is provided at the terminus.

- Posted Speed/Design Speed The design speed of ramp can vary depending on the alignment and controls at each end. An acceptable approach is to set 25 mph and 50 mph design speeds for the ramp terminus and exit nose, respectively. The SB off ramp terminates at an intersection where traffic is expected to make a turning movement; therefore, the design speed should be 25 mph nearing this portion of the ramp.
- Design Vehicle In all cases, it appears as though an STAA truck could navigate the turns and stay within the pavement; however, due to the tight radii entering and exiting the ramps and turning on and off 12th Street or Dinsmore Drive, large trucks would need to encroach slightly into the oncoming travel lanes or gore area.

² An STAA truck could probably navigate the turns, but would be required travel outside its lane.

Kenmar Road and US Highway 101 Interchange

Kenmar Road

Roadway Segment: Kenmar Rd	1	1		
	Existing Roadway Characteristics			
Facility Type	Local Facility			
Functional Classification	Other Principal Arterial / Major Collector			
No. of Lanes	2			
Rural/Urban	Rural		Meets	
Bike Facilities (Y/N)	N	Design Standards	Standards	Reference to Standard
Pedestrian Facilities (Y/N)	N		$(\sqrt{=} \text{yes})$	
Posted Speed/Design Speed (mph)	35/40	45 1		HDM Index 101.1
Lane Width (ft)	12	12	1	HDM Index 301.1 / AASHTO
Right Shoulder Width (ft)	8	4	J	HDM Index 302.1 & 308.1 / AASHTO
Curve Radii (ft)	600 / 75	550	11	HDM Index 203.2
Decision Sight Distance (ft)	230+/-	600		HDM Index 201.7
Horizontal Clearance (ft)	4'+ (w/out curb) & 1.5'+ (w/ curb) or shielded	4 (w/out curb) & 1.5' (w/ curb)	J	HDM Index 309.1
Vertical Clearance (ft - in)	14' - 10" 2	15		HDM Index 309.2
Stopping Sight Distance (ft)	125+/-	300		HDM Index 201.1
Design Vehicle	Cal Legal - 50 ³	Cal Legal - 50		HDM Index 404.4

Design Standard applies to connections to freeways or expressways

- Posted Speed/Design Speed When feasible, the design speed of local facilities connecting to a
 freeway or expressway should be 45 mph, but shall be a minimum of 35 mph.
- Curve Radii Most of Kenmar is relatively straight, but near the southern portion of the interchange there is a tight radius. The curve radius here is significantly smaller than recommended based on the speed of the readway through that section.
- Decision Sight Distance As a result of the tight radius identified above and dense vegetation growing outside of the right of way, visibility is obstructed.
- Vertical Clearance Kenmar Road is an undercrossing at this location so the vertical clearance described here is for the vehicles on Kenmar Road.
- Stopping Sight Distance Similar to Decision Sight Distance, the tight radius and densevegetation obstructs visibility reducing the available stopping sight distance.

² This location is an undercrossing so the vertical clearance shown here is for Kenmar Rd.

³ A Cal Legal - 50 Truck could probably navigate the turns, but would be required travel outside its lane.

 Design Vehicle – In all cases, it appears as though a Cal Legal-50 truck could navigate the turns and stay within the paved roadway area; however, due to the tight radii entering and exiting the ramps and small curve radius identified above, large trucks would need to make wide turns and encroach slightly into the oncoming travel lane or gore area.

Eel River Drive

Roadway Segment: Ec River Dr				
	Existing Roadway Characteristics			
Facility Type	Local Facility	1		111
Functional Classification	Major Collector			
No. of Lanes	2			
Rural/Urban	Rural		Meets	
Bike Facilities (Y/N)	N	Design Standards	Standards	Reference to Standard
Pedestrian Facilities (Y/N)	N		$(\sqrt{=} yes)$	
Posted Speed/Design Speed (mph)	30/35	30	J	AASHTO
Lane Width (ft)	11	9	1	HDM Index 301.1 / AASHTO
		X		HDM Index 302.1 & 308.1 /
Right Shoulder Width (ft)	2+	2	J	AASHTO
Curve Radii (ft)	85	425		HDM Index 203.2
Decision Sight Distance (ft)	525+	525	1	HDM Index 201.7
Intersection Spacing (ft)	150' (Between NB ramps and Eel River Dr)	500'		HDM Index 504.3
Horizontal Clearance (ft)	4'+/-	4' (w/out curb) & 1.5' (w/ curb)	J	HDM Index 309.1
Stopping Sight Distance (ft)	250+	250	1	HDM Index 201.1
Design Vehicle	Cal Legal - 50 1	Cal Legal - 50		HDM Index 404.4

- Curve Radii Mest of Eel River Drive is relatively straight, but near its intersection with Kenmar-Road there is a tight radius. The curve radius here is significantly smaller than recommended based on the speed of the roadway through that section; however, at this point the road is approaching the STOP sign so speeds would be lower. If considerations are made for improvements to this interchange, the curve radius or approach angle should be evaluated.
- Intersection Spacing The SB on and off ramps are located approximately 150' south of the Eel-River Drive and Kenmar Road intersection. The preferred distance between intersections (from eurb return to curb return) is 500', but shall be a minimum of 400'.
- Design Vehicle—Eel River Drive intersects Kenmar Road at an acute angle. Due to the angle
 and tight radii, large trucks need to encroach into the oncoming travel lane to navigate the turns
 and stay within the existing paved roadway.

US Highway 101 Northbound Ramp

Roadway Segment US Hwy 101 No	orthbound (On and off ramp	s)	/	
	Existing Roadway Characteristics			
Facility Type	Freeway / Expressway			1 4
Functional Classification	Freeway / Expressway			4111
No. of Lanes	1			
Rural/Urban	Rural		Meets	
Bike Facilities (Y/N)	N	Design Standards	Standards	Reference to Standard
Pedestrian Facilities (Y/N)	N		$(\sqrt{=} \text{yes})$	
Posted Speed/Design Speed (mph)	35/40	25/50 ¹		HDM Index 504.3
Lane Width (ft)	12	12	J	HDM Index 301.1
Right Shoulder Width (ft)	8	8	j	HDM Index 302.1 & 308.1 / AASHTO
Curve Radii (ft)	N/A	550	1	HDM Index 203.2
Decision Sight Distance (ft)	600+	600	J	HDM Index 201.7
Horizontal Clearance (ft)	4'+ (w/out curb) & 1.5'+ (w/ curb)	4' (w/out curb) & 1.5' (w/ curb)	J	HDM Index 309.1
Stopping Sight Distance (ft)	300+	300	J	HDM Index 201.1
Design Vehicle	STAA ²	STAA		HDM Index 404.4

¹ Design speed should be 25 mph when traffic is expected to make a turning movement at the terminus and 50 mph when entering, exiting a ramp or when a "through" movement is provided at the terminus.

- Posted Speed/Design Speed The design speed of ramp can vary depending on the alignment
 and controls at each end. An acceptable approach is to set 25 mph and 50 mph design speeds
 for the ramp terminus and exit nose, respectively. The NB off ramp terminates at an intersection
 where traffic is expected to make a turning movement; therefore, the design speed should be 25
 mph nearing this portion of the ramp.
- Design Vehicle In all cases, it appears as though an STAA truck could navigate the turns and stay within the pavement; however, due to the tight radii entering and exiting the ramps and turning on and off Kenmar Road, large trucks would need to encroach slightly into the encoming travel lane or gore area.

² An STAA truck could probably navigate the turns, but would be required travel outside its lane.

US Highway 101 Southbound Ramp

Roadway Segment: US Hwy 101 So	outhbound (On and off ramp Existing Roadway	s)	,	
	Characteristics	11		
Facility Type	Freeway / Expressway			136
Functional Classification	Freeway / Expressway	/		
No. of Lanes	1			
Rural/Urban	Ruxal		Meets	
Bike Facilities (Y/N)	N	Design Standards	Standards	Reference to Standard
Pedestrian Facilities (Y/N)	N		$(\sqrt{=} yes)$	
Posted Speed/Design Speed (mph)	35/40 1	25/50 ²		HDM Index 504.3
Lane Width (ft)	12	12	J	HDM Index 301.1
Right Shoulder Width (ft)	8	8	J	HDM Index 302.1 & 308.1 / AASHTO
Curve Radii (ft)	N/A	550	J	HDM Index 203.2
Decision Sight Distance (ft)	600+	600	J	HDM Index 201.7
Horizontal Clearance (ft)	4'+ (w/out curb) & 1.5'+ (w/curb)	4' (w/out curb) & 1.5' (w/ curb)	J	HDM Index 309.1
Stopping Sight Distance (ft)	300+	300	J	HDM Index 201.1
Design Vehicle	STAA 3	STAA		HDM Index 404.4

¹ The southbound on ramp didn't have a speed limit sign, but was assumed to be 35 mph based on the northbound on ramp and ramp geometry.

- Posted Speed/Design Speed The design speed of ramp can vary depending on the alignment
 and controls at each end. An acceptable approach is to set 25 mph and 50 mph design speeds
 for the ramp terminus and exit nose, respectively. The SB off ramp terminates at an intersection
 where traffic is expected to make a turning movement; therefore, the design speed should be 25
 mph nearing this portion of the ramp.
- Design Vehicle—In all cases, it appears as though an STAA truck could navigate the turns and stay within the pavement; however, due to the tight radii entering and exiting the ramps and turning on and off Kenmar Road, large trucks would need to encroach into the oncoming travel lane or gore area.

² Design speed should be 25 mph when traffic is expected to make a turning movement at the terminus and 50 mph when entering exiting a ramp or when a "through" movement is provided at the terminus.

³ An STAA truck could probably navigate the turns, but would be required travel outside its lane.

12th Street INTERCHANGE TRAFFIC SIGNAL CONCEPT

US 101/RIVERWALK AREA CONNECTIVITY PROJECT Figure 7.2

12th St. NORTH INTERCHANGE ROUNDABOUT CONCEPT

US 101/RIVERWALK AREA CONNECTIVITY PROJECT Figure 7.11

12th St. SOUTH INTERCHANGE ROUNDABOUT CONCEPT-Option 1

US 101/RIVERWALK AREA CONNECTIVITY PROJECT Figure 7.7

12th St. SOUTH INTERCHANGE ROUNDABOUT CONCEPT - Option 2a

US 101/RIVERWALK AREA CONNECTIVITY PROJECT Figure 7.8

12th St. SOUTH INTERCHANGE ROUNDABOUT CONCEPT - Option 2b

US 101/RIVERWALK AREA CONNECTIVITY PROJECT Figure 7.9

12th St. SOUTH INTERCHANGE ROUNDABOUT CONCEPT - Option 2c

US 101/RIVERWALK AREA CONNECTIVITY PROJECT Figure 7.10

12th Street STAA (THROUGH MOVEMENT ONLY)

12th Street STAA (LEFT-TURN MOVEMENT ONLY)

US 101/RIVERWALK AREA CONNECTIVITY PROJECT Figure B23

12th Street STAA (RIGHT-TURN MOVEMENT ONLY)

12th Street CA LEGAL (LEFT-TURN MOVEMENT ONLY)

US 101/RIVERWALK AREA CONNECTIVITY PROJECT Figure B25

12th Street CA LEGAL (RIGHT-TURN MOVEMENT ONLY)

US 101/RIVERWALK AREA CONNECTIVITY PROJECT Figure B26

12th St. SOUTH Opt. 1 STAA (THROUGH MOVEMENT ONLY)

12th St. SOUTH Opt. 1 STAA (LEFT-TURN MOVEMENT ONLY)

12th St. SOUTH Opt. 1 STAA (RIGHT-TURN MOVEMENT ONLY)

12th St. SOUTH Opt. 1 CA LEGAL (THROUGH MOVEMENT ONLY)

12th St. SOUTH Opt. 1 CA LEGAL (LEFT-TURN MOVEMENT ONLY)

12th St. SOUTH Opt. 1 CA LEGAL (RIGHT-TURN MOVEMENT ONLY)

12th St. SOUTH Opt. 2 STAA (THROUGH MOVEMENT ONLY)

12th St. SOUTH Opt. 2 STAA (LEFT-TURN MOVEMENT ONLY)

12th St. SOUTH Opt. 2 STAA (RIGHT-TURN MOVEMENT ONLY)

12th St. SOUTH Opt. 2 CA LEGAL (THROUGH MOVEMENT ONLY)

12th St. SOUTH Opt. 2 CA LEGAL (LEFT-TURN MOVEMENT ONLY)

12th St. SOUTH Opt. 2 CA LEGAL (RIGHT-TURN MOVEMENT ONLY)

US 101/RIVERWALK AREA CONNECTIVITY PROJECT Figure B38

12th St. NORTH STAA (THROUGH MOVEMENT ONLY)

US 101/RIVERWALK AREA CONNECTIVITY PROJECT Figure B39

12th St. NORTH STAA (LEFT-TURN MOVEMENT ONLY)

US 101/RIVERWALK AREA CONNECTIVITY PROJECT Figure B40

12th St. NORTH STAA (RIGHT-TURN MOVEMENT ONLY)

US 101/RIVERWALK AREA CONNECTIVITY PROJECT Figure B41

12th Street SOUTH Opt. 1 FASTEST PATH

12th Street SOUTH Opt. 2 FASTEST PATH

US 101/RIVERWALK AREA CONNECTIVITY PROJECT Figure C5

12th Street NORTH FASTEST PATH

US 101/RIVERWALK AREA CONNECTIVITY PROJECT Figure C6

Morrison Structures

1890 Park Marina Drive, Ste 104 Redding, CA 96001

Structure Memorandum

From: Bob Morrison, Jr., S.E., Morrison Structures, Redding, California

To: Josh Wolf, P.E, GHD, Eureka, California

Date: September 15, 2016

Re: Highway 101 Fortuna Downtown and Riverwalk Area Complete Streets and Connectivity

Planning Study

U.S. 101/12th Street Interchange – Signal Concept

HUM-101-60.49

General

The purpose of this memorandum is to provide structure information for the proposed alternatives for the Signal Concept for Fortuna-12th Street Overcrossing Interchange Improvements. The level of study we have conducted is a Project Study Report-Project Development Support (PSR-PDS) Cost Estimate. The purpose of our study was to determine preliminary scope, feasibility, rough cost range, and a list of potential project risks for the proposed structures work.

The proposed Signal Concept improvement intends to add traffic signals and improve 12th Street in the City of Fortuna by re-aligning and widening 12th Street, removing the existing and constructing a new 12th Street Overcrossing (Br. No. 04-0130) and widening or replacing Strongs Creek Bridge (Br. No. 04C-0085) on Riverwalk Drive west of the interchange. Also necessary would be realignment of Dinsmore Drive northwest of the interchange; construction of a new Strongs Creek Bridge on the realignment of Dinsmore Drive; widening of the northbound U.S. 101 on-ramp and widening the Rohner Creek Bridge (Br. No. 04-0108) on U.S. 101 to accommodate the northbound on-ramp widening.

The new 12th Street roadway alignment and 12th Street Overcrossing will be located south of the existing Overcrossing and will be on tangent alignment connecting to Riverwalk Drive west of Strongs Creek. Traffic signals will be located at a new interchange intersection east of Strongs Creek, and at a new intersection of Dinsmore Drive with Riverwalk Drive west of Strongs Creek. The new Overcrossing on 12th Street will accommodate four 12-foot traffic-lanes, with 5-foot shoulders and 8-foot sidewalk barriers on each side for an overall width of approximately 74 feet including the sidewalk barriers. The proposed alignment is skewed approximately 35 degrees to Highway 101.

New 12th Street Overcrossing Br. No. 04-0130 at US 101/12th Street OC Interchange

Based on the conditions at the site and the interchange geometrics, the new 12th Street Overcrossing will be approximately 200 feet in length. The most economical structure type will likely be a 4-span, precast, prestressed, concrete girder structure with a 4.3 foot structure depth. Approximate span configuration will be 58 feet, 82 feet, 82 feet, and 58 feet. End supports will be short-seat concrete abutments and interior supports will be 5-column bents. All supports will be pile supported. Clear roadway width will be 58 feet between 8-foot-wide Type 732SW barriers. Chain link railing will be mounted on the barrier walls above the interior spans and tubular handrailing will be mounted to the barrier wall above the end spans. Falsework is not necessary to erect this type of girder structure. Girders would be set in place from U.S. 101 using traffic closures.

The anticipated structure cost is \$4,500,000, not including costs for mobilization or contingencies. Bridge removal costs to remove the existing 12th Street Overcrossing represent \$170,000 of this figure.

Strongs Creek Bridge (Br. No. 04C-0085) on Riverwalk Drive

The existing Strongs Creek Bridge on Riverwalk Drive (Br. No. 04C-0085) is a County-owned, 99-footlong, continuous 3-span, concrete flat slab structure constructed in 1962 with a clear roadway width of 28 feet. The roadway is classified as an urban collector and current average daily traffic (ADT) is approximately 2300 vehicles per day. The structure is in fair condition with a health index of 100, but the sufficiency rating (SR) is 72.4 because of the bridge's narrow width and ADT. When originally built, the ADT was much lower and the 28 feet width was adequate.

The Highway Bridge Program funding from Federal Highways may be available to assist in the costs of widening or replacing the bridge. Structures with sufficiency ratings below 80 are eligible for rehabilitation and widening. However, the necessary bridge width is 74 feet to accommodate the improvements, which is 46 feet wider than the existing structure. Because the necessary bridge widening is 46 feet and amounts to 62% of the required overall proposed bridge width (74 feet), it will be most economical to replace the entire structure rather than to widen it.

Based on the conditions at the site and the proposed roadway geometrics, the new bridge will be approximately 99 feet in length. The most economical structure type will likely be a continuous 3-span, concrete flat slab structure with a 1.5 foot structure depth. Approximate span configuration will be 33.5 feet, 32 feet, and 33.5 feet. End supports will be concrete diaphragm abutments supported on concrete piles and interior supports will be concrete pile bents. Clear roadway width will be 58 feet between 8-foot-wide Type 732SW barriers. Tubular handrailing will be mounted to the barrier walls. Falsework is necessary to erect this type of slab structure.

The anticipated structure cost is \$1,500,000 not including costs for mobilization or contingencies. Bridge removal costs to remove the existing Strongs Creek Bridge represent \$50,000 of this figure.

The estimate assumes that Riverwalk Drive can be closed to traffic during construction.

Strongs Creek Bridge (New Bridge) on Dinsmore Drive

Based on the conditions at the site and the proposed roadway geometrics, the new Strongs Creek Bridge on Dinsmore Drive will be approximately 157 feet in length and 38-feet-wide. The most economical structure type will likely be a continuous 5-span, concrete flat slab structure with a 1.5 foot structure depth. Approximate span configuration will be 27.5 feet, 34 feet, 34 feet, 34 feet, and 27.5 feet. End supports will be concrete diaphragm abutments supported on concrete piles and interior supports will be concrete pile bents. Supports will be parallel to the channel and skewed approximately 60 degrees from normal to the roadway. Clear roadway width will be 24 feet between 7-foot-wide Type 732SW barriers. Tubular handrailing will be mounted to the barrier walls. Falsework is necessary to erect this type of slab structure.

The anticipated structure cost is \$1,200,000 not including costs for mobilization or contingencies.

Rohner Creek Bridge (Br. No. 04-0108) on U.S. Highway 101

The existing Rohner Creek Bridge on U.S. 101 (Br. No. 04-0108) is a pile supported, 87-foot-long, 74-feet-wide, continuous 3-span, concrete flat slab structure constructed in 1962. The structure is in good condition with a sufficiency rating (SR) of 95.9.

Based on the conditions at the site and the proposed roadway geometrics, the existing bridge will need to be widened on its right edge (east edge) approximately 16 feet to accommodate the proposed 12th

Street/U.S. 101 IC northbound on-ramp widening. The widening will match the existing bridge type and will be a continuous 3-span, concrete flat slab structure with a 1.33 foot structure depth. Approximate span configuration will be 29.5 feet, 28 feet, and 29.5 feet. End supports will be concrete diaphragm abutments supported on concrete piles and interior supports will be concrete pile bents. Supports will be parallel to the channel and skewed approximately 20 degrees from normal to the roadway. A Type 742 concrete barrier will be mounted along the new right edge of deck. Falsework is necessary to erect this type of slab structure.

The anticipated structure cost is \$550,000 not including costs for mobilization or contingencies.

	MORRISO	N STRI	UCTURES, IN	C.			
		Marina Dr lding, CA	ive, Suite 104				
	RIDGE GENERAL PLAN ESTIMAT			AINIINIC E	STIMATE	v	
	12th St OC/US 101 IC NEW ALIGN		COUNTY HUM	INIVING E	RCVD. BY	LX.	
TYPE	PC PS I-GIRDER DIST.	1	ROUTE 101 P.M.				
LENGTH		=	20720 SF		EST. NO.		1
PROJECT	INCLUDES 1 STRUCTURE	S	QUANTITIES BY	RLM	DATE		9/2/2016
	AND \$ ROADWORK		CHECKED BY		DATE		
			•				
	CONTRACT ITEMS	UNIT	QUANTITY		RICE		AMOUNT
	NTROL SYSTEM	LS	0	<u> </u>	72,000.00	\$	-
	RAILING (TYPE K)	LF	2000	\$	40.50	\$	81,000.00
	IOVAL (PORTION)	LS	0 939	\$	- 157.50	\$	4 47 000 50
	EXCAVATION (BRIDGE)	CY	622	\$	112.50	\$	147,892.50 69,975.00
	BACKFILL (BRIDGE) ING (CLASS 90) (ALT "V")	LF	3810	\$	40.50	\$	154,305.00
	G (CLASS 90) (ALT "V")	EA	127	\$	1,620.00	\$	205,740.00
	L CONCRETE, BRIDGE FOOTING	CY	213	\$	540.00	\$	115,020.00
	L CONCRETE, BRIDGE	CY	1228	\$	1,400.00	\$	1,719,200.00
10 FRACTURE F		SF	7500	\$	13.50	\$	101,250.00
11 DRILL & BON	D DOWEL	LF	0	\$	36.90	\$	-
12 FURNISH PC	PS CONC GIRDER (50-60')	EA	26	\$ '	16,200.00	\$	421,200.00
13 FURNISH PC	PS CONC GIRDER (80-90')	EA	13	\$ 2	20,700.00	\$	269,100.00
	PS CONC GIRDER (80-90')	EA	13	<u> </u>	20,700.00	\$	269,100.00
15 ERECT PC PS	· · · · ·	EA	52	\$	4,500.00	\$	234,000.00
	S COINC GIRDER			 		·	•
16 JOINT SEAL	RCING STEEL (BRIDGE)	LF LB	260 260000	\$	108.00 1.31	\$	28,080.00 340,600.00
	NC BARRIER (MOD)	LF	620	\$	202.50	\$	125,550.00
19 CHAIN LINK F	· /	LF	280	\$	81.00	\$	22,680.00
20 TUBULAR HA		I F	340	\$	76.50	\$	26,010.00
20 TOBOLAR HA	AND RAILING	LI	340	\$	-	\$	20,010.00
				\$		\$	_
				\$	-	\$	-
				\$	-	\$	-
				\$	-	\$	-
				\$	-	\$	-
				\$	-	\$	-
				\$	-	\$	-
				\$	-	\$	-
				\$	-	\$	-
				\$	-	\$	-
				\$	<u> </u>	\$	
				\$	-	\$	<u> </u>
				\$		\$	
				\$		\$	
				\$	-	\$	-
				\$	-	\$	-
				\$	-	\$	-
				\$	-	\$	-
				\$	-	\$	-
				\$	-	\$	-
		0::===		\$	-	\$	
COMMENTS		SUBTO		- 10	0/ \		4,330,702.50
COMMENTS:		MOBILIZA	, ,	10	%)		481,189.17
			AL STRUCTURE ITEMS GENCIES (0/_\		4,811,891.67 1,202,972.92
COSTS ESTIM FOR	R 2016 CONSTRUCTION		TOTAL (_	6,014,864.58
SSS IS LOTINIT OF	123.3 CONCINCOTION		REMOVAL (CONTINGEN				170,000.00
			Y RAILROAD OR UTILIT			\$	
		GRAND		. 2			6,184,864.58
			DGET PURPOSES -	USE			6,185,000.00
							
		CO	MMENTS:				
I							

MORRISON STRUCTURES, INC.										
1890 Park M	arina Dr	rive, Suite 104								
	Redding, CA 96001									
BRIDGE GENERAL PLAN ESTIMATE			NNING E	STIMATE	Y					
STRUCTURE Strongs Cr Br on Riverwalk Replace	4C-085			RCVD. BY						
TYPE Signal Concept - CIP SLAB DIST.	1	ROUTE DINSMOR		P.M.						
LENGTH 99 X WIDTH 74	=	7326 SF		EST. NO.		1				
PROJECT INCLUDES 1 STRUCTURES		QUANTITIES BY	RLM	DATE		8/29/2016				
AND \$ ROADWORK		CHECKED BY		DATE						
CONTRACT ITEMS	UNIT	QUANTITY		ICE		AMOUNT				
1 STRUCTURE EXCAVATION (BRIDGE)	CY	430	\$	157.50	\$	67,725.00				
2 STRUCTURE BACKFILL (BRIDGE)	CY	320	\$	112.50	\$	36,000.00				
3 FURNISH CLASS 90 PILING ALT "V"	LF	3832	\$	46.00	\$	176,272.00				
4 DRIVE CLASS 90 PILING ALT "V"	EA	32		1,625.00	\$	52,000.00				
5 STRUCTURAL CONCRETE, BRIDGE	CY	800		1,050.00	\$	840,000.00				
6 JOINT SEAL (MR=1 ")	LF	148	\$	70.00	\$	10,360.00				
7 BAR REINFORCING STEEL (BRIDGE)	LB	123000	\$	1.40	\$	172,200.00				
8 CONCRETE BARRIER (TYPE 732 SW)	LF LF	280	\$	280.00	\$ \$	78,400.00				
9 TUBULAR HANDRAILING	LF	280	\$	70.00	\$	19,600.00				
			\$	<u>-</u>	<u>φ</u>	-				
			\$		\$	-				
			\$		\$					
			\$		\$					
			\$	_	\$	-				
			\$	_	\$	_				
			\$	-	\$	-				
			\$	-	\$	-				
			\$	-	\$	-				
			\$	-	\$	-				
			\$	-	\$	-				
			\$	-	\$	-				
			\$	-	\$	-				
			\$	-	\$	-				
			\$	-	\$	-				
			\$	-	\$	-				
			\$	-	\$	-				
			\$	-	\$	-				
			\$	-	\$	-				
			\$	-	\$	-				
			\$	-	\$	-				
	SUBTO	<u> </u> TAI	\$	-	\$ \$	1,452,557.00				
	MOBILIZA		10	%)	\$	161,395.22				
		AL STRUCTURE ITEMS	10	70)		1,613,952.22				
		GENCIES (25	%)	\$	403,488.06				
		TOTAL (,		2,017,440.28				
		REMOVAL (CONTINGE)			\$	50,000.00				
		RAILROAD OR UTILIT			\$	-				
	GRAND				_	2,067,440.28				
	FOR BU	DGET PURPOSES - I	JSE		\$	2,068,000.00				
						·				
	CON	MMENTS:	· · · · · · · · · · · · · · · · · · ·							
			 							

MORRISO	MORRISON STRUCTURES, INC.								
1890 Park	Marina Dr	ive, Suite 104							
Redding, CA 96001									
BRIDGE GENERAL PLAN ESTIMATE OR PLANNING ESTIMATE X									
STRUCTURE Dinsmore Dr. Strongs Cr Traffic Signal	New	COUNTY HUM		RCVD. BY					
TYPE CIP SLAB DIST.	1	ROUTE DINSMOR	RE DR	P.M.					
LENGTH 157 X WIDTH 38	=	5966 SF		EST. NO.		1			
PROJECT INCLUDES 1 STRUCTURE	S	QUANTITIES BY	RLM	DATE		8/29/2016			
AND \$ ROADWORK		CHECKED BY		DATE					
CONTRACT ITEMS	UNIT	QUANTITY		RICE		AMOUNT			
1 STRUCTURE EXCAVATION (BRIDGE)	CY	210	\$	157.50	\$	33,075.00			
2 STRUCTURE BACKFILL (BRIDGE)	CY	158	\$	112.50	\$	17,775.00			
3 FURNISH CLASS 90 PILING ALT "V"	LF EA	3120 26	\$	49.50	\$	154,440.00			
4 DRIVE CLASS 90 PILING ALT "V"	CY	650	\$	1,800.00 1,050.00	\$	46,800.00			
5 STRUCTURAL CONCRETE, BRIDGE	-			-	_	682,500.00			
6 JOINT SEAL (MR=1")	LF	152	\$	63.00	\$	9,576.00			
7 BAR REINFORCING STEEL (BRIDGE) 8 CONCRETE BARRIER (TYPE 732 SW)	LB LF	100000 394	\$	1.33 248.00	\$	133,000.00 97,712.00			
9 TUBULAR HANDRAILING	LF	394	\$	63.00	\$	24,822.00			
9 TOBOLAR HANDRAILING	LI	394	\$	-	\$	24,022.00			
			\$	_	\$	_			
			\$	_	\$	_			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$ \$		\$	<u>-</u>			
			\$		\$				
			\$		\$				
			\$	_	\$	_			
			\$	-	\$	_			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
	SUBTO	TAL			\$	1,199,700.00			
COMMENTS:	MOBILIZA	ATION (10	%)	\$	133,300.00			
		AL STRUCTURE ITEMS				1,333,000.00			
			25	%)	\$	333,250.00			
COSTS ESTIM FOR 2016 CONSTRUCTION	BRIDGE T	,				1,666,250.00			
<u> </u>		REMOVAL (CONTINGE)			\$	-			
		Y RAILROAD OR UTILIT	1 FURUES	•		1,666,250.00			
						1,667,000.00			
	. 511 50	DOLLI OIN OOLO			Ψ	1,007,000.00			
	CON	MMENTS:							
		- 							

MORRISON	STR	UCTURES, IN	C.			
1890 Park M	arina Di	rive, Suite 104				
	ing, CA					
BRIDGE GENERAL PLAN ESTIMATE	This, Ch		NNING E	STIMATE	Y	
STRUCTURE Rohner Cr US101 Br Widen (04-0108)		COUNTY HUM		RCVD. BY		
TYPE CIP SLAB DIST.	1	ROUTE DINSMOR		P.M.		
LENGTH 87 X WIDTH 16	=	1392 SF		EST. NO.		1
PROJECT INCLUDES 1 STRUCTURES		QUANTITIES BY	RLM	DATE		8/29/2016
AND \$ ROADWORK		CHECKED BY		DATE		
CONTRACT ITEMS	UNIT	QUANTITY		ICE		AMOUNT
1 STRUCTURE EXCAVATION (BRIDGE)	CY	49	\$	305.00	\$	14,945.00
2 STRUCTURE BACKFILL (BRIDGE)	CY	37	\$	218.00	\$	8,066.00
3 FURNISH CLASS 90 PILING ALT "V"	LF	560	\$	96.00	\$	53,760.00
4 DRIVE CLASS 90 PILING ALT "V"	EA	8		3,400.00	\$	27,200.00
5 STRUCTURAL CONCRETE, BRIDGE	CY	150		2,030.00	\$	304,500.00
6 JOINT SEAL (MR=1 ")	LF	32	\$	122.00	\$	3,904.00
7 BAR REINFORCING STEEL (BRIDGE)	LB	23400	\$	2.60	\$	60,840.00
8 CONCRETE BARRIER (TYPE 742)	LF	125	\$	475.00	\$	59,375.00
9 TEMPORARY RAILING (TYPE K)	LF	400	\$	42.00	\$	16,800.00
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	
			\$		\$	-
			\$	_	\$	_
			\$	_	\$	_
			\$	_	\$	_
			\$	_	\$	_
			\$	-	\$	_
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
			\$	-	\$	-
	SUBTO	TAL			\$	549,390.00
COMMENTS:	MOBILIZA	ATION (10	%)	\$	61,043.33
		AL STRUCTURE ITEMS			\$	610,433.33
		GENCIES (25	%)	\$	152,608.33
COSTS ESTIM FOR 2016 CONSTRUCTION		TOTAL (\$	763,041.67
		REMOVAL (CONTINGE)			\$	-
		Y RAILROAD OR UTILIT	Y FORCES		\$	-
	GRAND		105		\$	763,041.67
	FOR BU	DGET PURPOSES - I	JSE		\$	764,000.00
	001	AMENTO				
	CON	MMENTS:	 			
						· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·

Morrison Structures

1890 Park Marina Drive, Ste 104 Redding, CA 96001

Structure Memorandum

From: Bob Morrison, Jr., S.E., Morrison Structures, Redding, California

To: Josh Wolf, P.E, GHD, Eureka, California

Date: September 15, 2016

Re: Highway 101 Fortuna Downtown and Riverwalk Area Complete Streets and Connectivity

Planning Study

U.S. 101/12th Street Interchange – Roundabout Concept 2c

HUM-101-60.49

General

The purpose of this memorandum is to provide structure information for the proposed alternatives for the Roundabout Concept 2c for Fortuna-12th Street Overcrossing Interchange Improvements. The level of study we have conducted is a Project Study Report-Project Development Support (PSR-PDS) Cost Estimate. The purpose of our study was to determine preliminary scope, feasibility, rough cost range, and a list of potential project risks for the proposed structures work.

The proposed Roundabout Concept 2c improvement intends to improve 12th Street and the 12th Street/U.S. 101 interchange in the City of Fortuna by widening 12th Street, widening or replacing the existing 12th Street Overcrossing (Br. No. 04-0130), adding a roundabout at the south interchange and widening or replacing Strongs Creek Bridge (Br. No. 04C-0085) on Riverwalk Drive west of the interchange. Also necessary would be realignment of Dinsmore Drive northwest of the interchange and the construction of a new Strongs Creek Bridge on the realignment of Dinsmore Drive.

The existing 12th Street roadway alignment east of U.S. 101 and 12th Street Overcrossing will be widened to accommodate a new 10-foot-wide pedestrian/bicycle trail along the north side of the roadway. The existing 12th Street Overcrossing bridge will be widened to accommodate the new 10-foot-wide pedestrian/bicycle facility, separated from the two-way vehicle traffic. West of the overcrossing a roundabout will be constructed at the intersection of Riverwalk Drive, 12th Street, and U.S. 101 southbound on and off ramps. The realignment of Dinsmore Drive will cross Strongs Creek northwest from the interchange and intersect with Riverwalk Drive further west from Strongs Creek.

12th Street Overcrossing Br. No. 04-0130 at US 101/12th Street OC Interchange

The 12th Street Overcrossing Bridge (Br. No. 04-0130) spans over Route U.S. 101 at the interchange. The bridge is on curved alignment with supports skewed and parallel to Highway 101. The structure is a 34-foot-wide, 4-span, 197-foot-long, concrete tee-beam structure, with a span arrangement of 44, 65, 53, and 35 feet. The structure was constructed in 1962. End supports are short seat abutments on concrete pile foundations, and intermediate supports are 2-column bents on concrete pile foundations. Highway 101 currently passes under the spans 2 and 3 with a 15-foot 5-inch vertical clearance over northbound lanes and 15-foot 6-inch vertical clearance over southbound lanes. The 34-foot-width currently carries two 12-foot travel lanes, two 2-foot shoulders, and two 3-foot-wide Type 2 Barrier railings. The clear width between barrier railings is 28 feet.

12th Street Overcrossing - Looking East

The Overcrossing is State-owned, on the National Highway System, and rated adequate for permit loads. The structure is in good condition with a health index of 100, but the sufficiency rating (SR) is 80.1 because of the bridge's narrow width and ADT. When originally built, the ADT was much lower and the 28 feet width was adequate. Based on our discussions with Caltrans, this structure is not eligible for funding under the Federal Highways Bridge Program. Structures with sufficiency ratings below 80 are eligible for rehabilitation and must have a structurally deficient status. This structure does not have any structural deficient status and the sufficiency rating is above 80. However, funds from the U.S. Department of Transportation surface transportation funding programs may be available to assist with costs of widening depending on program and eligibility requirements. Two alternatives to provide for the pedestrian/bicycle facility at 12 Street Overcrossing are to widen the existing bridge or to construct a new independent pedestrian/bicycle overcrossing close to the existing bridge along the north side.

Bridge Widening Alternative

The proposed bridge widening consists of constructing a 197-foot-long, 9.7-foot-wide, 4-span, precast, prestressed concrete girder addition along the north side of the existing Overcrossing. The widening will provide a clear width of 10'-0" between barriers and match the existing bridge structure depth, structure type, profile, and pile foundation supports. Both the east and west approaches to the bridge would be on widened fill embankment closely matching existing conditions. Vertical clearance from the soffit of the widened bridge to the surface of U.S. 101 below will not be affected.

The existing barrier and deck slab along the north side of the Overcrossing will need to be removed and replaced. Traffic control and temporary barriers along the 12th Street roadway will be required to construct the widening. Additionally, traffic control systems will be required on U.S. 101 to construct pile foundations and widen the existing column bents. Falsework is not necessary to erect this type of girder structure. Girders would be set in place from U.S. 101 using traffic closures.

Overall width of the widened structure will be 43-feet 8-inches. Clear vehicular roadway width will be 28 feet between the existing Type 3 concrete barrier along the south edge of the existing bridge and a new Type ST-30 bridge rail located to separate the 10-foot-wide pedestrian/bicycle facility from the vehicular traffic. A Type 732SW (modified) barrier with chain link railing mounted on the barrier wall will bound the pedestrian/bicycle facility along the north edge of the widened structure.

The anticipated structure cost is \$950,000. This cost does not include mobilization or any contingencies.

Construct New Pedestrian/Bicycle Overcrossing

The proposed new pedestrian/bicycle overcrossing consists of constructing a 203-foot-long, 12-foot-wide, 4-span, precast, prestressed concrete girder structure along the north side and close to the existing

Overcrossing. The new structure will provide a clear width of 10'-0" between barriers and match the existing bridge structure depth, structure type, profile, and pile foundation supports. Both the east and west approaches to the bridge would be on widened fill embankment closely matching existing conditions. Vertical clearance from the soffit of the new bridge to the surface of U.S. 101 below should maintain approximately 16 feet.

The existing barrier and deck slab along the north side of the Overcrossing will need to be removed and replaced. Traffic control and temporary barriers along the 12th Street roadway will be required to construct the new structure. Additionally, traffic control systems will be required on U.S. 101 to construct pile foundations and column bents. Falsework is not necessary to erect this type of girder structure. Girders would be set in place from U.S. 101 using traffic closures.

Type 732SW (modified) barriers with chain link railing mounted on the barrier wall will bound the pedestrian/bicycle facility along both edges of the new structure.

The anticipated structure cost is also \$950,000. This cost does not include mobilization or any contingencies.

Strongs Creek Bridge (Br. No. 04C-0085) on Riverwalk Drive

The existing Strongs Creek Bridge on Riverwalk Drive (Br. No. 04C-0085) is a County-owned, 99-footlong, continuous 3-span, concrete flat slab structure constructed in 1962 with a clear roadway width of 28 feet. The roadway is classified as an urban collector and current average daily traffic (ADT) is approximately 2300 vehicles per day. Two steel pipelines are carried on the bridge, one on each edge. The structure is in fair condition with a health index of 100, but the sufficiency rating (SR) is 72.4 because of the bridge's narrow width and ADT. When originally built, the ADT was much lower and the 28 feet width was adequate.

Strongs Creek Bridge on Riverwalk Drive - Looking East

Based on our discussions with Caltrans, the Highway Bridge Program funding from Federal Highways may be available to assist in the costs of widening or replacing the bridge. Structures with sufficiency ratings below 80 are eligible for rehabilitation and widening. Additionally, the U.S. Department of Transportaion has programs that can assist with costs of widening as discussed above. If cost of total bridge replacement is expected to be less than 50 percent of cost associated with widening, then total replacement of the bridge is usually the preferred option.

Based on the conditions at the site and the proposed roadway geometrics, the bridge width required at Strongs Creek on Riverwalk Drive will need to vary from about 58 feet at the west abutment (west creek bank) to about 76 feet at the east abutment (east creek bank). The existing 99-foot-long bridge length is adequate. Because proposed bridge width is more than twice the existing 28 feet, it will be most economical to replace the entire structure rather than to widen it.

The most economical replacement structure type will likely be a continuous 3-span, concrete flat slab structure with a 1.5 foot structure depth. Approximate span configuration will be 33.5 feet, 32 feet, and 33.5 feet. End supports will be concrete diaphragm abutments supported on concrete piles and interior supports will be concrete pile bents. Bridge width varies, (58 feet at the west abutment to 76 feet at the east abutment) and the bridge carries Type 732SW (modified) barriers, a 10-foot-wide pedestrian/bicycle facility, and 12-foot eastbound and westbound travel lanes, shoulders, and edge and road medians of varying widths. Tubular handrailing will be mounted to the barrier walls. Falsework is necessary to erect this type of slab structure. The pipeline utilities will be have to be relocated and supported on the new bridge or buried in the stream bottom.

The anticipated structure cost is \$1,375,000 excluding costs for mobilization and contingencies. Bridge removal costs to remove the existing Strongs Creek Bridge represent \$50,000 of this figure.

The estimate assumes that Riverwalk Drive can be closed to traffic during construction.

Strongs Creek Bridge (New Bridge) on Dinsmore Drive

Based on the conditions at the site and the proposed roadway geometrics, the new Strongs Creek Bridge on Dinsmore Drive will be approximately 157 feet in length and 38-feet-wide. The most economical structure type will likely be a continuous 5-span, concrete flat slab structure with a 1.5 foot structure depth. Approximate span configuration will be 27.5 feet, 34 feet, 34 feet, 34 feet, and 27.5 feet. End supports will be concrete diaphragm abutments supported on concrete piles and interior supports will be concrete pile bents. Supports will be parallel to the channel and skewed approximately 60 degrees from normal to the roadway. Clear roadway width will be 24 feet between 7-foot-wide Type 732SW barriers. Tubular handrailing will be mounted to the barrier walls. Falsework is necessary to erect this type of slab structure.

The anticipated structure cost, excluding mobilization and contingencies, is \$1,200,000.

MORRISON STRUCTURES, INC. 1890 Park Marina Drive, Suite 104 Redding, CA 96001 BRIDGE GENERAL PLAN ESTIMATE OR PLANNING ESTIMATE X STRUCTURE 12th St OC/US 101 IC Widen(04-0130) COUNTY HUM RCVD. BY PC PS I-GIRDER DIST. TYPF ROUTE 101 ΡМ 1 197 EST. NO. LENGTH X WIDTH 1911 SF 9.7 PROJECT INCLUDES **STRUCTURES QUANTITIES BY** DATE 9/2/2016 **ROADWORK** CHECKED BY DATE AND \$ **CONTRACT ITEMS** QUANTITY PRICE **AMOUNT** 72,000.00 \$ 72,000.00 1 TRAFFIC CONTROL SYSTEM LS \$ LF 2000 40.50 \$ 81,000.00 2 TEMPORARY RAILING (TYPE K) \$ 27,000.00 \$ 27,000.00 3 BRIDGE REMOVAL (PORTION) LS 1 \$ 4 STRUCTURE EXCAVATION (BRIDGE) 155 157.50 \$ 24,412.50 CY 112.50 \$ 5 STRUCTURE BACKFILL (BRIDGE) 114 \$ 12,825.00 LF 650 45.00 \$ 29,250.00 6 FURNISH PILING (CLASS 90) (ALT "V") \$ 7 DRIVE PILING (CLASS 90) (ALT "V") EΑ 21 \$ 3,150.00 \$ 66,150.00 8 STRUCTURAL CONCRETE, BRIDGE FOOTING CY 28 \$ 675.00 \$ 18,900.00 145 228,375.00 CY 9 STRUCTURAL CONCRETE, BRIDGE \$ 1,575.00 \$ 13.50 \$ 10 FRACTURE RIB TEXTURE SF 576 \$ 7,776.00 11 DRILL & BOND DOWEL LF 324 36.90 \$ 11,955.60 \$ 12 FURNISH PC PS CONC GIRDER (30-40') EΑ 4 \$ 12,510.00 \$ 50,040.00 2 35,100.00 13 FURNISH PC PS CONC GIRDER (50-60') EΑ \$ 17,550.00 \$ 14 FURNISH PC PS CONC GIRDER (60-70') EΑ 2 \$ 20,700.00 \$ 41,400.00 36,000.00 EΑ 4,500.00 \$ 15 ERECT PC PS CONC GIRDER 8 \$ 16 JOINT SEAL LF \$ 36.00 \$ 864.00 LB 17 BAR REINFORCING STEEL (BRIDGE) 34620 59,200.20 \$ 1.71 \$ 18 TYPE 732 CONC BARRIER (MOD) LF 227 \$ 202.50 \$ 45,967.50 ΙF 200 \$ 81.00 \$ 16,200.00 19 CHAIN LINK RAILING (TYPE 7) 247.50 \$ 20 CALIFORNIA ST-10 BRIDGE RAIL LF 318 78,705.00 \$ \$ \$ \$ \$ \$ \$ \$ -\$ **SUBTOTAL** 943,120.80 COMMENTS: MOBILIZATION 10 %) \$ 104,791.20 SUBTOTAL STRUCTURE ITEMS 1,047,912.00 \$ 261,978.00 CONTINGENCIES 25 1,309,890.00 COSTS ESTIM FOR 2016 CONSTRUCTION BRIDGE TOTAL 685 / SF \$ BRIDGE REMOVAL (CONTINGENCIES INCL) \$ WORK BY RAILROAD OR UTILITY FORCES GRAND TOTAL \$ 1,309,890.00 FOR BUDGET PURPOSES - USE \$ 1,310,000.00 COMMENTS: _

MORRISON STRUCTURES, INC. 1890 Park Marina Drive, Suite 104								
	Marina Di dding, CA							
BRIDGE GENERAL PLAN ESTIMAT	O,		NNING F	STIMATE	V			
STRUCTURE 12th St PED OC/US 101 IC (New)		COUNTY HUM		RCVD. BY				
TYPE PC PS I-GIRDER DIST.	1	ROUTE 101	P.M.					
LENGTH 203 X WIDTH 12	=	2436 SF		EST. NO.		1		
PROJECT INCLUDES 1 STRUCTURE	S	QUANTITIES BY	RLM	DATE		9/15/2016		
AND \$ ROADWORK		CHECKED BY		DATE				
CONTRACT ITEMS		OLIANITITY		105		****		
CONTRACT ITEMS	UNIT	QUANTITY		RICE	•	AMOUNT		
1 TRAFFIC CONTROL SYSTEM 2 TEMPORARY RAILING (TYPE K)	LS LF	2000	\$ 7 \$	72,000.00 40.50	\$	72,000.00 81,000.00		
3 BRIDGE REMOVAL (PORTION)	LS	0		27,000.00	\$	61,000.00		
4 STRUCTURE EXCAVATION (BRIDGE)	CY	198	\$	157.50	\$	31,185.00		
5 STRUCTURE BACKFILL (BRIDGE)	CY	124	\$	112.50	\$	13,950.00		
6 FURNISH PILING (CLASS 90) (ALT "V")	LF	870	\$	45.00	\$	39,150.00		
7 DRIVE PILING (CLASS 90) (ALT "V")	EA	29	\$	3,150.00	\$	91,350.00		
8 STRUCTURAL CONCRETE, BRIDGE FOOTING	CY	32	\$	675.00	\$	21,600.00		
9 STRUCTURAL CONCRETE, BRIDGE	CY	148	\$	1,575.00	\$	233,100.00		
10 FRACTURE RIB TEXTURE	SF	460	\$	13.50	\$	6,210.00		
11 DRILL & BOND DOWEL	LF	0	\$	36.90	\$	-		
12 FURNISH PC PS CONC GIRDER (30-40')	EA	2		3,050.00	\$	26,100.00		
13 FURNISH PC PS CONC GIRDER (40-50')	EA	2	\$ 1	3,050.00	\$	26,100.00		
14 FURNISH PC PS CONC GIRDER (50-60')	EA	2	\$ 1	7,550.00	\$	35,100.00		
15 FURNISH PC PS CONC GIRDER (60-70')	EA	2	\$ 2	20,700.00	\$	41,400.00		
16 ERECT PC PS CONC GIRDER	EA	8	\$	4,500.00	\$	36,000.00		
17 JOINT SEAL	LF	50	\$	36.00	\$	1,800.00		
17 BAR REINFORCING STEEL (BRIDGE)	LB	35870	\$	1.71	\$	61,337.70		
19 TYPE 732 CONC BARRIER (MOD)	LF	466	\$	202.50	\$	94,365.00		
20 CHAIN LINK RAILING (TYPE 7)	LF	400	\$	81.00	\$	32,400.00		
			\$	-	\$	-		
			\$	-	\$	-		
			\$	-	\$	-		
			\$	-	\$	-		
			\$	-	\$	-		
			\$	-	\$	-		
			\$		\$			
			\$	_	\$			
			\$	-	\$	-		
			\$	-	\$	-		
			\$	-	\$	-		
			\$	-	\$	-		
			\$	-	\$	-		
			\$	-	\$	-		
			\$	-	\$	-		
			\$	<u> </u>	\$			
			\$		\$	<u>-</u>		
			\$	-	\$			
			\$	_	\$	_		
			\$	-	\$	-		
			\$		\$			
	SUBTO	TAL			\$	944,147.70		
COMMENTS:	MOBILIZA	ATION (10	%)	_	104,905.30		
		AL STRUCTURE ITEMS			\$	1,049,053.00		
COSTS FSTIM FOR 2045 CONSTRUCTION		GENCIES (TOTAL (\$	262,263.25		
COSTS ESTIM FOR 2016 CONSTRUCTION		·			\$	1,311,316.25		
		REMOVAL (CONTINGEN Y RAILROAD OR UTILIT			_	<u> </u>		
	GRAND		1 I ORGES			1,311,316.25		
		DGET PURPOSES - U	JSE			1,312,000.00		
			-			, = _, = 00.00		
	COI	MMENTS:						

MORRISON	MORRISON STRUCTURES, INC.								
1890 Park M	Iarina Dr	ive, Suite 104							
Redd	ling, CA	96001							
BRIDGE GENERAL PLAN ESTIMATE		OR PLA	NNING E	STIMATE	X				
STRUCTURE Strongs Cr Br on Riverwalk Replace	4C-085	COUNTY HUM		RCVD. BY					
TYPE Concept 2C - CIP SLAB DIST.	1	ROUTE DINSMOF		P.M.					
LENGTH 99 X WIDTH 67	=	6633 SF		EST. NO.		1			
PROJECT INCLUDES 1 STRUCTURES		QUANTITIES BY		DATE		8/29/2016			
AND \$ ROADWORK		CHECKED BY		DATE					
CONTRACT ITEMS	UNIT	QUANTITY		ICE		AMOUNT			
1 STRUCTURE EXCAVATION (BRIDGE)	CY	385	\$	157.50	\$	60,637.50			
2 STRUCTURE BACKFILL (BRIDGE)	CY	290	\$	112.50		32,625.00			
3 FURNISH CLASS 90 PILING ALT "V"	LF	3312	\$	49.50	\$	163,944.00			
4 DRIVE CLASS 90 PILING ALT "V"	EA	28	\$	1,800.00	\$	50,400.00			
5 STRUCTURAL CONCRETE, BRIDGE	CY	690		1,100.00	\$	759,000.00			
6 JOINT SEAL (MR=1 ")	LF	134	\$	70.00	\$	9,380.00			
7 BAR REINFORCING STEEL (BRIDGE)	LB	106150	\$	1.40	\$	148,610.00			
8 CONCRETE BARRIER (TYPE 732 SW)	LF	280	\$	280.00	\$	78,400.00			
9 TUBULAR HANDRAILING	LF	280	\$	70.00	\$	19,600.00			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$ \$	-	\$	-			
			\$	-	\$	_			
			\$	-	\$				
			\$	-	\$				
			\$	-	\$	-			
			\$	-	\$	-			
			\$		\$				
			\$		\$				
			\$	_	\$	_			
			\$	_	\$	_			
			\$	_	\$	_			
			\$	_	\$	_			
			\$	-	\$	_			
			\$	-	\$	_			
	SUBTO	TAL			\$	1,322,596.50			
COMMENTS:	MOBILIZA		10	%)	\$	146,955.17			
Width of Bridge varies from 58' at BB	SUBTOTA	AL STRUCTURE ITEMS		,	\$	1,469,551.67			
to 76' at EB (average = 67')	CONTING	SENCIES (25	%)	\$	367,387.92			
COSTS ESTIM FOR 2016 CONSTRUCTION	BRIDGE T	TOTAL (\$ 277	/ SF	\$	1,836,939.58			
	BRIDGE I	REMOVAL (CONTINGE	NCIES INCL	.)	\$	50,000.00			
	WORK B'	Y RAILROAD OR UTILIT	Y FORCES		\$	-			
	GRAND	TOTAL			\$	1,886,939.58			
	FOR BU	DGET PURPOSES -	USE		\$	1,887,000.00			
	COM	MMENTS:							

MORRISO	MORRISON STRUCTURES, INC.								
1890 Park	Marina Dr	ive, Suite 104							
Redding, CA 96001									
BRIDGE GENERAL PLAN ESTIMATE OR PLANNING ESTIMATE X									
STRUCTURE Dinsmore Dr. Strongs Cr Traffic Signal	New	COUNTY HUM		RCVD. BY					
TYPE CIP SLAB DIST.	1	ROUTE DINSMOR	RE DR	P.M.					
LENGTH 157 X WIDTH 38	=	5966 SF		EST. NO.		1			
PROJECT INCLUDES 1 STRUCTURE	S	QUANTITIES BY	RLM	DATE		8/29/2016			
AND \$ ROADWORK		CHECKED BY		DATE					
CONTRACT ITEMS	UNIT	QUANTITY		RICE		AMOUNT			
1 STRUCTURE EXCAVATION (BRIDGE)	CY	210	\$	157.50	\$	33,075.00			
2 STRUCTURE BACKFILL (BRIDGE)	CY	158	\$	112.50	\$	17,775.00			
3 FURNISH CLASS 90 PILING ALT "V"	LF EA	3120 26	\$	49.50	\$	154,440.00			
4 DRIVE CLASS 90 PILING ALT "V"	CY	650	\$	1,800.00 1,050.00	\$	46,800.00			
5 STRUCTURAL CONCRETE, BRIDGE	-			-	_	682,500.00			
6 JOINT SEAL (MR=1")	LF	152	\$	63.00	\$	9,576.00			
7 BAR REINFORCING STEEL (BRIDGE) 8 CONCRETE BARRIER (TYPE 732 SW)	LB LF	100000 394	\$	1.33 248.00	\$	133,000.00 97,712.00			
9 TUBULAR HANDRAILING	LF	394	\$	63.00	\$	24,822.00			
9 TOBOLAR HANDRAILING	LI	394	\$	-	\$	24,022.00			
			\$	_	\$	_			
			\$	_	\$	_			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$ \$		\$	<u>-</u>			
			\$		\$				
			\$		\$				
			\$	_	\$	_			
			\$	-	\$	_			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
			\$	-	\$	-			
	SUBTO	TAL			\$	1,199,700.00			
COMMENTS:	MOBILIZA	ATION (10	%)	\$	133,300.00			
		AL STRUCTURE ITEMS				1,333,000.00			
			25	%)	\$	333,250.00			
COSTS ESTIM FOR 2016 CONSTRUCTION	BRIDGE T	,				1,666,250.00			
<u> </u>		REMOVAL (CONTINGE)			\$	-			
		Y RAILROAD OR UTILIT	1 FURUES	•		1,666,250.00			
						1,667,000.00			
	. 511 50	DOLLI OIN OOLO			Ψ	1,007,000.00			
	CON	MMENTS:							
		- 							

12th Street Interchange Traffic Signal Concept - Landscaping Options

12th Street Interchange North Roundabout Concept - Landscaping Options

12th Street Interchange South Roundabout Concept 1 - Landscaping Options

Preliminary Opinion of Costs (Capital & Support)

12th Street Interchange Signal Concept City of Fortuna

9/14/2021 25-3247-03/2132

Construction Costs

	Struction Costs	I India	Ourantitu.	Unit Coot		Total
No.	Item Description Traffic Control	Units	Quantity	Unit Cost		Total
2	Remove Roadside Sign	LS EA	1 35	\$672,000.00		\$672,000.00
3	Remove Concrete Sidewalk			\$102.00		\$3,570.00
4	Remove Concrete (Curb & Gutter)	SQFT LF	1970 4500	\$4.50 \$10.00		\$8,865.00 \$45,000.00
5	Roadway Excavation	CY	13950	\$67.00		\$934,650.00
6	Embankment	CY	9334	\$25.00		\$233,350.00
7	Class 2 Aggregate Base	CY	22250	\$70.00		\$1,557,500.00
8	Hot Mix Asphalt (Type A)	TON	13190	\$140.00		\$1,846,600.00
9	Bridge (12th Street Over US 101)	LS	13190	\$4,500,000.00		\$4,500,000.00
	Bridge (Riverwalk Drive Over Strong's Creek)	LS	1	\$1,500,000.00		\$1,500,000.00
	Bridge (Dinsmore Drive Realignment Over Strong's Creek		1	\$1,200,000.00		\$1,200,000.00
12	Bridge (US 101 NB On-Ramp Over Rohner Creek)	LS	1	\$550,000.00		\$550,000.00
13	Detectable Warning Surface	SQFT	192	\$35.00		\$6,720.00
	Minor Concrete (Curb and Gutter)	CY	265	\$806.00		\$213,590.00
	Minor Concrete (Sidewalk)	CY	403	\$680.00		\$274,040.00
	Storm Drain System	LS	1	\$180,000.00		\$180,000.00
	Midwest Guard Rail System (Wood Post)	LF	350	\$80.00		\$28,000.00
18	Thermoplastic Traffic Stripe	LF	27620	\$1.25		\$34,525.00
19	Thermoplastic Pavement Marking	SQFT	4101	\$6.00		\$24,606.00
20	Signs	EA	40	\$350.00		\$14,000.00
21	Signal & Lighting	LS	4	\$225,000.00		\$900,000.00
22	Lighting and Sign Illumination	LS	1	\$450,000.00		\$450,000.00
	Planting and Irrigation	SQFT	147000	\$5.00		\$735,000.00
	Mobilization	LS	1	\$1,524,100.00		\$1,524,100.00
	Minor/ Supplemental Items	%	25%	\$15,240,016.00		\$3,810,004.00
		70	2070	Ψ10,240,010.00	Φ	
	Subtotal (Construction Costs)			250/	\$	21,246,120.00
-	Construction Contingency		l .	25%	\$	5,311,530.00
	Total Construction Costs				\$	26,557,650.00
	Total Construction Budget (Rounded)				\$	26,557,700.00
Riah	t of Way (Capital) and Utility Relocation Costs:					
	Right Of Way	SQFT	215900	\$20.00		\$4,318,000.00
2	Utility Relocation	ALLOW	1	\$200,000.00		\$200,000.00
	Total Right of Way (Capital) and Utility Relocat		ts	,	\$	4,518,000.00
	Total Project Conital Cont				•	24 075 700 00
	Total Project Capital Cost				\$	31,075,700.00
Proj	ect Support Costs					
	PA&ED		Capital Costs	11%	\$	3,418,400.00
	PS&E		Capital Costs	14%	\$	4,350,600.00
	Right of Way Engineering & Acquisition		11-Parcels	\$25k/EA	\$	275,000.00
4	Construction Support and Management		Con. Costs	15%	\$	3,983,700.00
	Total Project Support Costs				\$	
	Total Estimated Project Costs				¢	43,103,400.00
	Rounded				\$	43,110,000.00

- 1. All new paving.
- 2. Only R/W costs are for private properties (not County, City, or State).
- 3. Bridge removal is included in the cost for each bridge.

Preliminary Opinion of Costs (Capital & Support)

12th Street Interchange Roundabout Concept - North City of Fortuna

9/14/2021 25-3247-03/2132

Construction Costs

	30 40001 00303					
No.	Item Description	Units	Quantity	Unit Cost		Total
1	Traffic Control	LS	1	\$266,000.00		\$266,000.00
2	Remove Roadside Sign	EA	16	\$102.00		\$1,632.00
3	Remove Asphalt Concrete Dike	LF	215	\$4.00		\$860.00
4	Remove Concrete (Curb & Gutter)	LF	2005	\$10.00		\$20,050.00
5	Remove Tree	EA	1	\$1,400.00		\$1,400.00
6	Roadway Excavation	CY	7140	\$67.00		\$478,380.00
7	Class 2 Aggregate Base	CY	9350	\$70.00		\$654,500.00
8	Hot Mix Asphalt (Type A)	TON	5290	\$140.00		\$740,600.00
9	Bridge Widening (12th Street Over US 101)	LS	1	\$950,000.00		\$950,000.00
10	Bridge Widening (NB 101 On-Ramp Over Rohner Creek	LS	1	\$550,000.00		\$550,000.00
11	Detectable Warning Surface	SQFT	660	\$35.00		\$23,100.00
12	Minor Concrete (Curb)	CY	35	\$1,320.00		\$46,200.00
13	Minor Concrete (Curb - Truck Apron)	CY	27	\$1,160.00		\$31,320.00
14	Minor Concrete (Curb and Gutter)	CY	231	\$806.00		\$186,186.00
15	Minor Concrete (Driveway)	CY	43	\$420.00		\$18,060.00
16	Minor Concrete (Stamped Concrete)	CY	7	\$820.00		\$5,740.00
17	Minor Concrete (Stamped Concrete - Truck Apron)	CY	100	\$615.00		\$61,500.00
18	Minor Concrete (Sidewalk)	CY	313	\$680.00		\$212,840.00
19	Storm Drain System	LS	1	\$120,000.00		\$120,000.00
20	Thermoplastic Traffic Stripe	LF	9610	\$1.25		\$12,012.50
21	Thermoplastic Pavement Marking	SQFT	1904	\$6.00		\$11,424.00
22	Signs	EA	40	\$350.00		\$14,000.00
23	Lighting & Electrical	LS	1	\$200,000.00		\$200,000.00
24	Planting and Irrigation	SQFT	21300	\$5.00		\$106,500.00
25	Mobilization	LS	1	\$444,700.00		\$444,700.00
26	Minor/ Supplemental Items	%	25%	\$4,446,304.50		\$1,111,576.13
	Subtotal (Construction Costs)				\$	6,268,580.63
	Construction Contingency			25%	\$	1,567,145.16
	Total Construction Costs				\$	7,835,725.78
	Total Construction Budget (Rounded)				\$	7,835,800.00
Diak	t of Way (Capital) and Utility Relocation Costs:					
1	Right Of Way	SQFT	51700	\$20.00		\$1,034,000.00
2	Utility Relocation	ALLOW	1	\$200,000.00		\$200,000.00
	Total Right of Way (Capital) and Utility Relocation		· ·	φ200,000.00	•	1,234,000.00
	Total Right of Way (Capital) and Office Relocation	on Cost	•		\$	1,234,000.00
	Total Project Capital Cost				\$	9,069,800.00
Proj	ect Support Costs					
1	PA&ED		Capital Costs	11%	\$	997,700.00
2	PS&E		Capital Costs	14%	\$	1,269,800.00
3	Right of Way Engineering & Acquisition		4-Parcels	\$25k/EA	\$	100,000.00
4	Construction Support and Management		Con. Costs	15%	\$	1,175,400.00
	Total Project Support Costs				\$	3,542,900.00
	Total Estimated Project Coats				•	40 640 700 60
	Total Estimated Project Costs				\$	12,612,700.00
	Rounded				\$	12,620,000.00

- 1. All new paving.
- 2. Only R/W costs are for private properties (not County, City, or State).
- 3. Removing railroad tracks and equipment not included.

Preliminary Opinion of Costs (Capital & Support)

12th Street Interchange Roundabout Concept - South 1 City of Fortuna

9/14/2021 25-3247-03/2132

Construction Costs

	trans Described an	11-11-	0	11-201		T-1-1
No.	Item Description	Units LS	Quantity 1	Unit Cost \$300,000.00		**Total \$300,000.00
1	Traffic Control Remove Metal Beam Guard Railing	LF	298			
		EA	14	\$16.00		\$4,768.00
3	Remove Roadside Sign Remove Asphalt Concrete Dike	LF	255	\$102.00		\$1,428.00 \$1,020.00
4		LF	941	\$4.00 \$10.00		\$1,020.00
5	Remove Concrete (Curb & Gutter) Bridge Removal	LS	1	\$140,000.00		\$140,000.00
6	Remove Tree	EA	3	\$1,400.00		\$140,000.00
7		CY	3860	\$1,400.00		\$4,200.00
<u>8</u> 9	Roadway Excavation	CY	5450	\$70.00		\$381,500.00
	Class 2 Aggregate Base Hot Mix Asphalt (Type A)	TON	3050	\$140.00		\$427,000.00
11	Structural Concrete, Bridge	LS	1	\$2,140,000.00		\$2,140,000.00
	Detectable Warning Surface	SQFT	360	\$35.00		\$12,600.00
14	Minor Concrete (Curb)	CY	50	\$1,320.00		\$66,000.00
	Minor Concrete (Curb - Truck Apron)	CY	28	\$1,160.00		\$32,480.00
16	Minor Concrete (Curb and Gutter)	CY	106	\$806.00		\$85,436.00
17	Minor Concrete (Stamped Concrete)	CY	9	\$820.00	-	\$7,380.00
	Minor Concrete (Stamped Concrete) Minor Concrete (Stamped Concrete - Truck Apron)	CY	180	\$615.00	<u> </u>	\$1,380.00
19	Minor Concrete (Stamped Concrete - Truck Apron) Minor Concrete (Sidewalk)	CY	172	\$680.00		\$116,760.00
	Storm Drain System	LS	1	\$100,000.00		\$100,000.00
21	Midwest Guard Rail System (Wood Post)	LF	300	\$100,000.00		\$24,000.00
22	Thermoplastic Traffic Stripe	LF	5070	\$1.25		\$6,337.50
23	Thermoplastic Pavement Marking	SQFT	926	\$6.00		\$5,556.00
24	Signs	EA	50	\$350.00		\$17,500.00
	Lighting & Electrical	LS	1	\$260,000.00		\$260,000.00
26	Planting and Irrigation	SQFT	12500	\$5.00		\$62,500.00
27	Mobilization	LS	1	\$438,100.00		\$438,100.00
	Minor/ Supplemental Items	%	25%	\$5,013,495.50		\$1,253,373.88
	Subtotal (Construction Costs)	70	2070	ψο,στο, ποσ.σσ		
				250/	φ	\$6,266,869.38
	Construction Contingency			25%	\$	1,566,717.34
	Total Construction Costs					\$7,833,586.72
	Total Construction Budget (Rounded)					\$7,833,600.00
Righ	t of Way (Capital) and Utility Relocation Costs:					
1	Right Of Way	SQFT	5100	\$20.00		\$102,000.00
2	Utility Relocation	ALLOW	1	\$200,000.00		\$200,000.00
_	Total Right of Way (Capital) and Utility Relocation			Ψ200,000.00		\$302.000.00
	Total Right of Way (Supital) and Stilly Relocati		, 			Ψ002,000.00
	Total Project Capital Cost					\$8,135,600.00
	TOTAL FTOJECT GAPITAL GUST					φο, ι 33,000.00
Dra:	ant Summart Conta	_				
	ect Support Costs	ļ	0 " : 0	4.407	_	00= 000
	PA&ED		Capital Costs	11%	\$	895,000.00
	PS&E		Capital Costs	14%	\$	1,139,000.00
	Right of Way Engineering & Acquisition		2-Parcels	\$25k/EA	\$	50,000.00
4	Construction Support and Management		Con. Costs	15%	\$	1,175,100.00
	Total Project Support Costs				\$	3,259,100.00
	Total Estimated Project Costs				\$	11,394,700.00
	Rounded				\$	11,400,000.00
		L	l			, ,

- 1. All new paving.
- 2. Only R/W costs are for private properties (not County, City, or State).
- 3. Removing railroad tracks and equipment not included.

Preliminary Opinion of Costs (Capital & Support)
12th Street Interchange Roundabout Concept - South 2a City of Fortuna

9/14/2021 25-3247-03/2132

Construction Costs

	struction Costs					
No.	Item Description	Units	Quantity	Unit Cost		Total
1	Traffic Control	LS	1	\$238,000.00		\$238,000.00
2	Remove Metal Beam Guard Railing	LF	550	\$16.00		\$8,800.00
3	Remove Roadside Sign	EA	16	\$102.00		\$1,632.00
4	Remove Asphalt Concrete Dike	LF	482	\$4.00		\$1,928.00
5	Remove Concrete (Curb & Gutter)	LF	910	\$10.00		\$9,100.00
6	Remove Tree	EA	1	\$1,400.00		\$1,400.00
7	Roadway Excavation	CY	4590	\$67.00		\$307,530.00
8	Class 2 Aggregate Base	CY	4170	\$70.00		\$291,900.00
9	Hot Mix Asphalt (Type A)	TON	2350	\$140.00		\$329,000.00
10	Bridge (Riverwalk Drive Over Strong's Creek)	LS	1	\$1,375,000.00		\$1,375,000.00
11	Bridge Widening (12th Street Over US 101)	LS	1	\$950,000.00		\$950,000.00
12	Minor Concrete (Curb)	CY	26	\$1,320.00		\$34,320.00
13	Minor Concrete (Curb - Truck Apron)	CY	17	\$1,160.00		\$19,720.00
14	Minor Concrete (Curb and Gutter)	CY	96	\$806.00		\$77,376.00
15	Minor Concrete (Stamped Concrete - Truck Apron)	CY	90	\$615.00		\$55,350.00
16	Minor Concrete (Sidewalk)	CY	129	\$680.00		\$87,720.00
17	Storm Drain System	LS	1	\$120,000.00		\$120,000.00
18	Midwest Guard Rail System (Wood Post)	LF	515	\$80.00		\$41,200.00
19	Thermoplastic Traffic Stripe	LF	4630	\$1.25		\$5,787.50
20	Thermoplastic Pavement Marking	SQFT	403	\$6.00		\$2,418.00
21	Signs	EA	40	\$350.00		\$14,000.00
22	Lighting & Electrical	LS	1	\$200,000.00		\$200,000.00
23	Planting and Irrigation	SQFT	8200	\$5.00		\$41,000.00
24	Dinsmore Drive Realignment (2a)	LS	1	\$2,086,000.00		\$2,086,000.00
25	Mobilization	LS	1	\$606,200.00		\$606,200.00
26	Minor/ Supplemental Items	%	25%	\$6,061,181.50		\$1,515,295.38
	Subtotal (Construction Costs)					\$8,420,676.88
	Construction Contingency			25%	\$	2,105,169.22
	Total Construction Costs					\$10,525,846.09
	Total Construction Budget (Rounded)					\$10,525,800.00
Righ	t of Way (Capital) and Utility Relocation Costs:					
1	Right Of Way	SQFT	0	\$20.00		\$0.00
2	Utility Relocation	ALLOW	1	\$200,000.00		\$200,000.00
	Total Right of Way (Capital) and Utility Relocation	on Costs	i		\$	200,000.00
	Total Project Capital Cost					\$10,725,800.00
	, , , , , , , , , , , , , , , , , , , ,					. , ,
Proj	ect Support Costs					
1	PA&ED		Capital Costs	11%	\$	1,179,900.00
2	PS&E		Capital Costs	14%	\$	1,501,700.00
3	Right of Way Engineering & Acquisition		0-Parcels	\$25k/EA	\$	-
4	Construction Support and Management		Con. Costs	15%	\$	1,578,900.00
	Total Project Support Costs				\$	4,260,500.00
					_	-,=,
	Total Estimated Project Costs				\$	14,986,300.00
	Rounded					14,990,000.00
	rounded				Þ	14,990,000.00

- 1. All new paving.
- Only R/W costs are for private properties (not County, City, or State).
 Removing railroad tracks and equipment not included.

Preliminary Opinion of Costs (Capital Only)

Dinsmore Drive Realignment Alt 2a for 12th Street Interchange Roundabout Concept - SB Option 2a City of Fortuna 9/13/2021

25-3247-03/2132

Construction Costs:

No.	Item Description	Units	Quantity	Unit Cost	Total
1	Traffic Control	LS	1	\$14,000.00	\$14,000.00
2	Remove Tree	EA	8	\$1,400.00	\$11,200.00
3	Roadway Excavation	CY	1430	\$67.00	\$95,810.00
4	Class 2 Aggregate Base	CY	3840	\$70.00	\$268,800.00
5	Hot Mix Asphalt (Type A)	TON	2310	\$140.00	\$323,400.00
6	Bridge (Dinsmore Drive Realignment Over Strong's Cr	LS	1	\$1,200,000.00	\$1,200,000.00
7	Minor Concrete (Curb and Gutter)	CY	34	\$806.00	\$27,404.00
8	Minor Concrete (Sidewalk)	CY	42	\$680.00	\$28,560.00
9	Storm Drain System	LS	1	\$50,000.00	\$50,000.00
10	Thermoplastic Traffic Stripe	LF	4740	\$1.25	\$5,925.00
11	Thermoplastic Pavement Marking	SQFT	44	\$6.00	\$264.00
12	Signs	EA	8	\$350.00	\$2,800.00
13	Lighting & Electrical	LS	1	\$50,000.00	\$50,000.00
14	Planting and Irrigation	SQFT	1450	\$5.00	\$7,250.00
15					
	Subtotal (Construction Costs)				\$2,085,413.00

9/13/2021 R2132C009.xlsx

Preliminary Opinion of Costs (Capital & Support) 12th Street Interchange Roundabout Concept - South 2b

City of Fortuna

9/14/2021 25-3247-03/2132

Construction Costs

No.	Man Description	Unito	Ouantitus	Unit Coot	1	Total
1	Item Description Traffic Control	Units LS	Quantity 1	Unit Cost \$238,000.00		\$238,000.00
2	Remove Metal Beam Guard Railing	LF	550	\$238,000.00		\$8,800.00
3	Remove Roadside Sign	EA	16	\$102.00		\$1,632.00
4	Remove Asphalt Concrete Dike	LF	482	\$4.00		\$1,928.00
5	Remove Concrete (Curb & Gutter)	LF	910	\$10.00		\$9,100.00
6	Remove Tree	EA	1	\$1,400.00		\$1,400.00
7	Roadway Excavation	CY	4590	\$67.00		\$307,530.00
8	Class 2 Aggregate Base	CY	4170	\$70.00		\$291,900.00
9	Hot Mix Asphalt (Type A)	TON	2350	\$140.00		\$329,000.00
10	Bridge (Riverwalk Drive Over Strong's Creek)	LS	1	\$1,375,000.00		\$1,375,000.00
11	Bridge Widening (12th Street Over US 101)	LS	1	\$950,000.00		\$950,000.00
12	Minor Concrete (Curb)	CY	26	\$1,320.00		\$34,320.00
	Minor Concrete (Curb - Truck Apron)	CY	17	\$1,160.00		\$19,720.00
14	Minor Concrete (Curb and Gutter)	CY	96	\$806.00		\$77,376.00
15	Minor Concrete (Stamped Concrete - Truck Apron)	CY	90	\$615.00		\$55,350.00
16	Minor Concrete (Sidewalk)	CY	129	\$680.00		\$87,720.00
17	Storm Drain System	LS	1	\$120,000.00		\$120,000.00
	Midwest Guard Rail System (Wood Post)	LF	515	\$80.00		\$41,200.00
19	Thermoplastic Traffic Stripe	LF	4630	\$1.25		\$5,787.50
20	Thermoplastic Pavement Marking	SQFT	403	\$6.00		\$2,418.00
21	Signs	EA	40	\$350.00		\$14,000.00
22	Lighting & Electrical	LS	1	\$200,000.00		\$200,000.00
	Planting and Irrigation	SQFT	8200	\$5.00		\$41,000.00
24	Dinsmore Drive Realignment (2b)	LS	1	\$643,000.00		\$643,000.00
25	Mobilization	LS	1	\$461,900.00		\$461,900.00
26	Minor/ Supplemental Items	%	25%	\$5,080,081.50		\$1,270,020.38
	Subtotal (Construction Costs)					\$6,588,101.88
	Construction Contingency			25%	\$	1,647,025.47
	Total Construction Costs					\$8,235,127.34
	Total Construction Budget (Rounded)					\$8,235,100.00
_	t of Way (Capital) and Utility Relocation Costs:					
1	Right Of Way	SQFT	0	\$20.00		\$0.00
2	Utility Relocation	ALLOW	1	\$200,000.00		\$200,000.00
	Total Right of Way (Capital) and Utility Relocati		3		\$	200,000.00
	Total Project Capital Cost					\$8,435,100.00
Dra:	ant Support Conta					
	ect Support Costs		Conital Costs	440/	r r	007 000 00
1	PA&ED		Capital Costs	11%	\$	927,900.00
2	PS&E		Capital Costs	14%	\$	1,181,000.00
3	Right of Way Engineering & Acquisition Construction Support and Management		0-Parcels Con. Costs	\$25k/EA	\$	1 225 200 00
4			CON. COSTS	15%	÷	1,235,300.00
	Total Project Support Costs				\$	3,344,200.00
	Total Estimated Project Costs				\$	11,779,300.00
	Rounded					11,780,000.00
	Nounded				Ψ	11,700,000.00

- 1. All new paving.
- Only R/W costs are for private properties (not County, City, or State).
 Removing railroad tracks and equipment not included.

Preliminary Opinion of Costs (Capital Only)

Dins	smore Drive Realignment Alt 2b for 12th S	Street Interchar	nge Round	about Conce	pt - SB Option 2b
City	of Fortuna				9/13/2021
					25-3247-03/2132
Cons	struction Costs:				
No.	Item Description	Units	Quantity	Unit Cost	Total
1	Traffic Control	LS	1	\$14,000.00	\$14,000.00
2	Remove Tree	EA	5	\$1,400.00	\$7,000.00
3	Roadway Excavation	CY	1350	\$67.00	\$90,450.00
4	Class 2 Aggregate Base	CY	1980	\$70.00	\$138,600.00
5	Hot Mix Asphalt (Type A)	TON	950	\$140.00	\$133,000.00
6	Minor Concrete (Curb and Gutter)	CY	20	\$806.00	\$16,120.00
7	Minor Concrete (Sidewalk)	CY	285	\$680.00	\$193,800.00
8	Storm Drain System	LS	1	\$20,000.00	\$20,000.00
9	Thermoplastic Traffic Stripe	LF	1400	\$1.25	\$1,750.00
10	Thermoplastic Pavement Marking	SQFT	22	\$6.00	\$132.00
11	Signs	EA	3	\$350.00	\$1,050.00
12	Lighting & Electrical	LS	1	\$20,000.00	\$20,000.00
13	Planting and Irrigation	SQFT	1400	\$5.00	\$7,000.00
	 Subtotal (Construction Costs)				\$642.902.00

9/13/2021 R2132C010.xlsx

Preliminary Opinion of Costs (Capital & Support)
12th Street Interchange Roundabout Concept - South 2c City of Fortuna

9/14/2021 25-3247-03/2132

Construction Costs

	struction Costs					
No.	Item Description	Units	Quantity	Unit Cost		Total
1	Traffic Control	LS	1	\$238,000.00		\$238,000.00
2	Remove Metal Beam Guard Railing	LF	550	\$16.00		\$8,800.00
3	Remove Roadside Sign	EA	16	\$102.00		\$1,632.00
4	Remove Asphalt Concrete Dike	LF	482	\$4.00		\$1,928.00
5	Remove Concrete (Curb & Gutter)	LF	910	\$10.00		\$9,100.00
6	Remove Tree	EA	1	\$1,400.00		\$1,400.00
7	Roadway Excavation	CY	4590	\$67.00		\$307,530.00
8	Class 2 Aggregate Base	CY	4170	\$70.00		\$291,900.00
9	Hot Mix Asphalt (Type A)	TON	2350	\$140.00		\$329,000.00
10	Bridge (Riverwalk Drive Over Strong's Creek)	LS	1	\$1,375,000.00		\$1,375,000.00
11	Bridge Widening (12th Street Over US 101)	LS	1	\$950,000.00		\$950,000.00
12	Minor Concrete (Curb)	CY	26	\$1,320.00		\$34,320.00
13	Minor Concrete (Curb - Truck Apron)	CY	17	\$1,160.00		\$19,720.00
14	Minor Concrete (Curb and Gutter)	CY	96	\$806.00		\$77,376.00
15	Minor Concrete (Stamped Concrete - Truck Apron)	CY	90	\$615.00		\$55,350.00
16	Minor Concrete (Sidewalk)	CY	129	\$680.00		\$87,720.00
17	Storm Drain System	LS	1	\$120,000.00		\$120,000.00
18	Midwest Guard Rail System (Wood Post)	LF	515	\$80.00		\$41,200.00
19	Thermoplastic Traffic Stripe	LF	4630	\$1.25		\$5,787.50
20	Thermoplastic Pavement Marking	SQFT	403	\$6.00		\$2,418.00
21	Signs	EA	40	\$350.00		\$14,000.00
22	Lighting & Electrical	LS	1	\$200,000.00		\$200,000.00
23	Planting and Irrigation	SQFT	8200	\$5.00		\$41,000.00
24	Dinsmore Drive Realignment (2c)	LS	1	\$266,000.00		\$266,000.00
25	Mobilization	LS	1	\$424,200.00		\$424,200.00
26	Minor/ Supplemental Items	%	25%	\$4,241,181.50		\$1,060,295.38
	Subtotal (Construction Costs)			•		\$5,963,676.88
	Construction Contingency			25%	\$	1,490,919.22
	Total Construction Costs			2070	Ψ	
						\$7,454,596.09
	Total Construction Budget (Rounded)					\$7,454,600.00
Diada	t of Moss (Comital) and Htility Balanction Conta					
	t of Way (Capital) and Utility Relocation Costs:	0055		# 00.00		# 0.00
1	Right Of Way	SQFT	0	\$20.00		\$0.00
2	Utility Relocation	ALLOW	1	\$200,000.00		\$200,000.00
	Total Right of Way (Capital) and Utility Relocati		3		\$	200,000.00
	Total Project Capital Cost					\$7,654,600.00
	Total Froject Capital Cost					\$1,034,000.00
Proi	ect Support Costs					
1	PA&ED		Capital Costs	11%	\$	842,100.00
2	PS&E		Capital Costs	14%	\$	1,071,700.00
	Right of Way Engineering & Acquisition		0-Parcels	\$25k/EA	\$	-,
4	Construction Support and Management		Con. Costs	15%	\$	1,118,200.00
<u> </u>	Total Project Support Costs		20 000.0	1070	\$	3,032,000.00
	Total Project Support Costs	 			Φ	3,032,000.00
	Total Fatimated Brainst Coats	-			•	40 606 600 60
	Total Estimated Project Costs				\$	10,686,600.00
	Rounded				\$	10,690,000.00

- 1. All new paving.
- Only R/W costs are for private properties (not County, City, or State).
 Removing railroad tracks and equipment not included.

Preliminary Opinion of Costs (Capital Only)
Dinsmore Drive Realignment 2c Alt for 12th Street Interchange Roundabout Concept - SB Option 2c City of Fortuna 9/13/2021

25-3247-03/2132

Construction Costs:

No.	Item Description	Units	Quantity	Unit Cost	Total
1	Traffic Control	LS	1	\$14,000.00	\$14,000.00
2	Remove Tree	EA	4	\$1,400.00	\$5,600.00
3	Roadway Excavation	CY	490	\$67.00	\$32,830.00
4	Class 2 Aggregate Base	CY	860	\$70.00	\$60,200.00
5	Hot Mix Asphalt (Type A)	TON	490	\$140.00	\$68,600.00
6	Minor Concrete (Curb and Gutter)	CY	15	\$806.00	\$12,090.00
7	Minor Concrete (Sidewalk)	CY	36	\$680.00	\$24,480.00
8	Storm Drain System	LS	1	\$20,000.00	\$20,000.00
9	Thermoplastic Traffic Stripe	LF	450	\$1.25	\$562.50
10	Thermoplastic Pavement Marking	SQFT	22	\$6.00	\$132.00
11	Signs	EA	3	\$350.00	\$1,050.00
12	Lighting & Electrical	LS	1	\$20,000.00	\$20,000.00
13	Planting and Irrigation	SQFT	1210	\$5.00	\$6,050.00
	Subtotal (Construction Costs)				\$265,594.50

9/13/2021 R2132C008.xlsx

Attachment J - Right-of-Way and Property Ownership

RIGHT OF WAY MEMORANDUM

May 25, 2016

Base Mapping

The base map consists of the Caltrans highway map 1 HUM-1-F coordinated on the California Coordinate System, Zone 1. This developed the centerline of Hwy 101 and the right of way lines through the project area. Parcels relinquished by Caltrans as part of the Hwy 101 Project are also shown on this map. The eastern Caltrans right of way line is the western line of the railroad right of way through most of this area.

12th Street Interchange

Newburg Road - Book P of Deeds, Page 428 HCR describes the width of Newburg as 50 feet wide. Multiple tract maps were prepared on the North side of Newburg, however, no map references Book P of deeds or any other documentation for Newburg Road is listed on the maps. The Beacom subdivision map, recorded in Book 12 of Maps, page 138, lists the width for Newburg as 40 feet. The south side of Newburg in this area is all under one ownership by the Town of Scotia. Ground shots of existing improvements (back of walk to fence) indicate a width of 50 feet.

12th Street south of railroad crossing and north of the overpass - the area south of the railroad right of way is owned by Caltrans, and has a width of 75 feet based on the Caltrans mapping. The Caltrans map shows the railroad crossing being relinquished to the County of Humboldt in 1978 per 1487 OR 184. The Caltrans map 1-HUM-1-F does not clearly delineate the transition from Caltrans to City of Fortuna ownership immediately south of the rail road crossing. This was at one time Sandy Prairie Road so the right of way was already existing before the Hwy 101 project. The County of Humboldt has a pavement maintenance agreement with Caltrans for the County roads carried over, under, or to the connecting freeway dated April 15th 1963. The exhibit attached to this agreement shows the County area of responsibility to be from a line approximately 50 feet south of the rail road tracks across the overpass to Dinsmore Drive on the south side of the overpass. Clendenen is the owner of the parcel to the west of 12th St., and Sequia Gas/ McWhorter owns the multiple parcels to the east of 12th St., including the abandoned Pond street.

12th Street north of the railroad right of way, Parcel Map 1828 Book 16, page 28 shows a half width of 12th street as 30 feet, and Parcel Map 2817 Book 25, page 103 shows a full width of 12th street as 60 feet.

Dinsmore Drive/North end Riverwalk Drive - Caltrans relinquished this road to Humboldt County in 1963 per Book 760 Deeds, Page 517. The configuration shown is based on the Caltrans right of way map 1-HUM-1-F. In a letter dated January 10, 2005 between the City of Fortuna and the County of Humboldt, discusses the annexation & maintenance of Strongs Creek Road (Dinsmore Drive) by the City of Fortuna. The letter does not specifically describe the limits of maintenance. The bridge located on the north end of Riverwalk drive (over Strong's Creek) is shown to be in this Caltrans relinquishment area, however, the bridge itself does not appear to be listed in the County bridge maintenance logs. The specific location of the City/County change of ownership will need to be determined.

Kenmar Road Interchange

Kenmar Road east of the Freeway - No documentation could be found for this portion of Kenmar Road. The south right of way line shown is based upon the survey for the park and ride (see key note 6), and the County's Eel River Drive overlay project #213500. The north line is based upon field ties to features and said County overlay project. The State Park and Ridelocation is based on a survey for Caltrans. However, the survey has no recorder stamp, and the book and page referenced do not refer to this survey at the recorder's office. This map was provided by Caltrans.

In general this area has a complex right of way situation due to the multiple highways and roads that were here at one time. Additional research and surveying will be needed to determine the right of way location. The County of Humboldt has a pavement maintenance agreement with Caltrans for the County roads carried over, under, or to the connecting freeway dated April 15th-1963. The exhibit attached to this agreement shows the County area of responsibility to be from the west line of the railroad tracks to west line of Hwy 101 at the intersection with Riverwalk Drive.

Eel River Drive The east line of Eel River Drive was mapped to some extent by the County during the overlay survey, however, the County surveyor's office also discusses the complexity of the right of way in the area, and the need for more surveying to determine the true location.

Riverwalk Drive — Riverwalk Drive west of Hwy 101 was relinquished to the County in 1963 per 760 OR 517. The east side of the right of way has been delineated in a survey from 1992 recorded in Book 53 surveys, page 34. There have not been any surveys filed on the west side of Riverwalk drive at this location. Ground shots indicate a distance of 50' between back of walk on the east side and top of slope on the west side.

Book P of Deeds, Page 428 Newberg Road

J.J. Mondand

Mus Individure, Meade the Sith day Board of Supervisors. of Ungust in the year of our Tord one Thousand eight bundred and seventy five Between J. I. S. Howland of Sumboldt Country State of California fronty of first part and the Board of Supervisors and their successors in office the parties of the second part, Witnesseth, that the said party of the first part for and in registeration of the sum of four hundred dollars gold coin of the United State of america, to him in hand parit by the said parties of the secondpart, the receipt whereof is hereby acknowledged, has granted bargained cand sold, conveyed and confirmed, and by these presents duct grant, bargain and tell, among and confirm, unto The said parties of the second part, all of that free or pared of land that is organized for the promises of a Bublic Stightway Lying and being in the promises deeded to party of first part by MA Robinson & swife on the 12th day of hovember 1873 said deed was resorded in Book M of Deeds page 15% and leading from the County Road that runs and leads from Robinsville to the City of Euroka to Tells () numeral springs said price of land so granted to parties of the second part strall be fifty feel in width and follow the survey and route of said road heretofine made by il. I Sterrick and filed with the Glerk of the Board this That said wood mins between Kohnewell and the City of Euretea at the place in said survey named and run at right angles with the road that runs between Kohnervill and the City of Ourka until it comes in line with the new fines of party of first part inclosing the polatoe field thence according to the survey aforesaid.

Defether with all and unquiar the tements, Levelderments and affinituanus Bureunto belonging, in the arraprice appointmening, and the weeming and reversions remainder and remainders, ments, usues profits thereof. To have and to hold, all and singularthe above mentioned and described promises, by ether with the apparetenances unto the said parties of the second part and their surveyer in office. In witness whereof, the said party of the first part has Survente set his hand and real the day and year first whove written. Signed Scaled and Pelivenet In Simunds & J.F.G. Nowlan State of Catifornia ! 11. County of Konnockell) (In this It day of august O.A. 1875 before me I.B. Simende a Hotory Luttie in and for said County duly commissioned and swim, fursionally upgrant J. F.J. Now Con. Roman to me to be the fursion relieve reason is subscribed to the commeted instonment, and who duty acknowledged to me that he created the same In witness returned I have hereunte set may Robinsoille the day and year in this Entificate first above sentling J. B. Surriorvols (Molary Sublie.
Recorded at the request of Bourds Mulle Cenne Recarles

Return to: C'ark of the Board

BOARD OF SUPERVISORS, COUNTY OF HUMBOLD, STATE OF CALIFORNIA 21

Certified copy of portion of proceedings, Meeting of June 21, 1983 Clerk

Clerk of the Board
VOI 1705 RECORDS PO 48

RESOLUTION NO. 83-86

Jun 22 9 07 AM '83

VACATING A PORTION OF POND STREET (FORTUNA AREA; COUNTY ROAD NO. 3G335)

GRACE TO THE THE PROSE

WHEREAS, a freeholders petition was filed with the Department of Public Works requesting the vacation of a portion of Pond Street in the Fortuna area; and

WHEREAS, pursuant to such filing the matter was set for a public hearing to be held on Tuesday, June 7, 1983, at the hour of 1:45 p.m. in the Supervisors' Chambers, Humboldt County Courthouse, Eureka, California; and

WHEREAS, notice of said hearing was duly published and posted as required by law; and

WHEREAS, said hearing was duly held at the time and place specified in said notice, and evidence was taken at said hearing that the portion to be vacated is not necessary for present or prospective public use;

NOW, THEREFORE, BE IT RESOLVED as follows:

- 1. This Board of Supervisors finds that all of the recitations made hereinabove are true and correct.
- 2. The portion of Pond Street proposed to be vacated is not needed for present or prospective public use.
- 3. This Board of Supervisors finds that the right-of-way proposed to be abandoned hereby is not useful as a non-motorized transportation facility, as defined in Section 156 of the Streets and Highways Code.

BOARD OF SUPERVISORS, COUNTY OF HUMBOLDT, STATE OF CALIFORNIA

June 21, 1983 Certified copy of portion of proceedings, Meeting of

- That portion of Pond Street described in Exhibit A, which is attached hereto and made a part hereof by this reference, be and the same hereby is ordered vacated.
- The Clerk of the Board of Supervisors is directed to record a certified copy of this resolution in the office of the County Recorder.

Adopted on motion by Supervisor Pritchard , seconded by Supervisor Chesbro and the following vote:

AYES:

Supervisors— Renner, Pritchard, Chesbro, Walsh, Sparks

NOES:

Supervisors- None

ABSENT:

Supervisors- None

ABSTAIN:

Supervisors— None

STATE OF CALIFORNIA

County of Humboldt

I, ROBERT E. HANLEY, Clerk of the Board of Supervisors, County of Humboldt, State of California, do hereby certify the foregoing to be a full, true and correct copy of the original made in the above entitled matter by said Board of Supervisors at a meeting held in Eureka, California as the same now appears of record in my office.

> IN WITNESS WHEREOF, I have hereunto set my hand and affixed the Seal of said Board of Supervisors

> > ROBERT E HANLEY June 21, 1983

Clerk of the Board of Supervisors of the County of Humboldt, State of California

7

(9)

"Exhibit A"

LEGAL DESCRIPTION

All that portion of Pond Street (CoRdNo 3G335) in the northwest quarter of Section 2, Township 2 North, Range 1 West, Humboldt Base and Meridian, which lies within the following described boundaries:

Commencing at a point from which the southeast corner of said Section 2 bears S. 44° 07' 45" E., 5,636.55 feet and from which point Engineer's Station "F" 323+25.76 P.O.T. of the State of California Department of Public Works' survey from Alton Grade Crossing to 0.2 mile west of West City Limits of Fortuna (State Highway I-Hum-1-F, Fta,G) bears S. 55° 13' W., 348.41 feet; thence, S. 34° 10' 55" E., 19.06 feet to the TRUE POINT OF BEGINNING; thence, S. 1° 45' 08" W., 55 feet to an intersection with course (4) described in deed to the State of California recorded May 10, 1960, in Book 586 of Official Records, page 291, Humboldt County Records, as having a bearing and length of N. 89° 52' 52" W., 187.37 feet; thence, S. 89° 52' 52" E., along said course, 109.64 feet to an intersection with course (1) described in Parcel 2 in deed to the State of California, recorded April 8, 1957 in Book 439 of Official Records, page 51, Humboldt County Records as "thence, from a tangent that bears N. 1° 01' W., along a curve to the left with a radius of 280 feet, through an angle of 5° 46'

15", a distance of 28.20 feet to the northerly line of said parcel of land"; thence, southerly, along said curve, 28.20 feet to the southerly terminus thereof; thence, S. 1° 01' E., 388.55 feet; thence, along a curve to the left, tangent to the last preceding course, with a radius of 70 feet, through an angle of 53° 29' 29", a distance of 65.35 feet to the southerly line of the parcel of land described in the Agreement of Sale between the Department of Veterans Affairs of the State of California and Henry Vernon Belisle, recorded March 3, 1950 in Book 123 of Official Records, page 123, Humboldt County Records; thence, N. 80° 25' 53" E., along said southerly line, 80 feet to the westerly line of the parcel of land described as Parcel 2 in deed to Ben A. McWhorter, recorded in Book 278 of Official Records, page 296, Humboldt County Records; thence, northerly, along said westerly line, 20 feet to the southeasterly terminus of the course described in Director's Deed to Ben A. McWhorter, recorded July 9, 1957 in Book 451 of Official Records, page 277, Humboldt County Records, as having a bearing and length of S. 70° 30' E., 68.00 feet; thence, N. 70° 30' W., along said course, 68.00 feet to the westerly terminus thereof; thence, N.1° 01' W., 416.67 feet to an intersection with course (4) described in deed to the State of California recorded May 10, 1960 in Book 586 of Official Records, page 291, Humboldt County Records, as having a bearing and length of N. 89° 52' 52" W., 187.37 feet; thence, S. 89° 52' 52" E., along said course, 19.67

feet to the westerly right of way line of the Northwestern Pacific Railroad; thence northerly, along said westerly line, 50.96 feet to a point that bears S. 86° 42' 22" E. from the TRUE POINT OF BEGINNING; thence, N. 86° 42' 22" W, 147.80 feet to the TRUE POINT OF BEGINNING.

Reserving and excepting a permanent easement and right of way to Pacific Gas and Electric Company, a California corporation, for structures and facilities enumerated in Section 959.1 of the Streets and Highways Code of the State of California.

Basis of Bearings = Same as Hursthaven, Greer and Highway Subdivisions

Scale: ! inch = 100 feet

DRAINAGE EASEMENT

I the undersigned being the owner of the lands lying North of the Beacom Subdivison as shown hereon do hereby grant to the County of Humboldt a drainage easement for waters flowing Northward from South 14th Street across my lands and into Rohner Creek.

signed fough Is Towns Dated May 20 1953

COUNTY AUDITOR'S CERTIFICATE

I certify that there are no unpaid County or Special School Taxes against any of the land shown on this map designated, BEACOM SUBDIVISION, in Humboldt County, California, except taxes due and not yet

signed
Auditor of the Country of Humboldt, State of California.

ENGINEER'S CERTIFICATE .

I hereby certify that this map designated BEACOM SUBDIVISION, in Humboldt County, California, is correctly drawn from my survey of the lands herein represented and that sufficient monuments were left on the ground being iron pipe 36 inches long with copper tags stamped R. E. 960 at the locations shown from which the Survey can be retraced. be retraced.

Signed.

Paul M. Schmook, Registered Gvil Engineer No.960

PLANNING COMMISSION'S APPROVAL

I, Wesley D. Hill Secretary of the Planning Commission of Humboldt County, State of California, hereby certify that the said Commission, at a meeting held on May 21 , 1953, recommended approval and acceptance of the atlached Dated May 25 _,/953.

Signed Weller & Hill Secretary of the Ranning Commission of the County of Humboldt, State of California.

COUNTY SURVEYORS CERTIFICATE

I, U. A. Giacomini, County Surveyor for the County of Humboldt, State of California hereby certify that I have examined the attached map, that the subdivision is substantially the same as it appeared on the Tentative Map and any approved alteration thereto; that all provisions of Part 2, Division IV of the Business and Professions Code and any local ordinances applicable of the time of approval of the Tentative Map have been complied with, and that the attached map of BEACOM SUBDIVISION, in Humboldt County, California is

technically correct.
In witness whereof I have hereunto set my Hand and affixed my seal.

signed James a Jeaconini Doted May 22, 1953

COUNTY CLERKS CERTIFICATE OF ACCEPTANCE

I FRED J. MOORE, JR., County Clerk and Ex officie Clerk of the Board of Supervisors of the County of Humboldt, State of Colifornia, hereby certify that the Board of Supervisors, at a meeting held on May 25 1953 of which a quorum was present, approved and accepted on behalf of the Public, the parcels of land offered for dedication for the uses set forth on the attached map in conformity with the terms of the dedication

Signed Treatment County cent

COUNTY CLERK'S CERTIFICATE

I hereby certify that a bond in the amount fixed by the Board of Supervisors of Humboldt County, State of California, to wit Sixty Dollars (#60.-) presented, filed and accepted by the said Board of Supervisors on the 44th day of June 1953, guaranteeing the payment of all taxes not yet payable which are a lien at the time of filing of this map designated BEACOM SUBDIVISION, in "Humboldt County California, against the lands shown thereon.

Dated June 4,1953 by order of 5-25-63

Signed Trestricio Clerk of the Board of Supervisors of Humboldt County, State of Colifornia

Know all men by these presents:
That we the undersigned being the owners of all the lands embraced within the boundaries of BEACOM SUBDIVISION, in Humboldt County, California as shown on this map, do hereby consent to the making and filing of this map and to the dedication of road as shown thereon and release all claims to said road thereby designated.

Dated 1953 signed James H. Beacom

OWNER'S

State of California County of Hambeld SS County of Hambeld SS On this 30 day of Capril 1953, before Will Flyng Chann a Notary Public in and for _ 1953, before me. Said County and State, personally appeared JAMES H. BEACOM and HELEN H. BEACOM known to me to be the persons whose names are subocknowledge to me that howexecuted the same

Witness my hand and Official Seal this 30 day of

1953.

CONSENT

Notary Public in and for the County of Home of California. My Commission expires January 31 1957

TRUSTEE'S AND BENEFICIARY'S CONSENT

AND WE. THE BELCHER ABSTRACT & TITLE COMPANY. A CORPORATION, and STARR A. HAMILTON and EDITH R. HAMILTON being the Trustee and Beneficiaries, respectively, named in that certain Deed of Trust made April 21 1953 recorded in Book 241 Page 275 of the official records of Humboldt County, do hereby consent to the making and Filing of this map and to the dedication of the road as shown thereon. and release all claims to said road thereby designated.

Signed Stateller Belcher Abstract & Title Company, a Corporation. By Stelleher President Janes Date Apr. 30th 1953 Signed Starr a Hamilton

State of California		
Court of The contract	SS	
On this 30 0	lay of april 1. a Notary Publi	953 , before me
George W. Wade	a Notary Publi	ic in and for said
County, residing their	ein, duly commissioned a	nd sworn, personally
appeared	1. R. Balcher	Known to me
to be the Presi	dent	of the
Corporation that ex	ecuted the within instru	ument and acknow -
ledged to me that s	uch corporation execu	ted the same. In witness
whereof, I have hered	into set my hand and affi	ixed my official seal at
my office in the said	County of Humbo	14+ ,the day
and year in this certi	ficate first above writte	27.

Notary Public inland for the County of Humbolg, State of Colifornia.

State of California
County of Humbold & S
On this 30 day of Capril 1953, before me
Will 4 Down Carry a Notary Public in and for said
Thum bold County, STARR A. HAMILTON and EDITH R. HAMILTON Known to me to be the persons whose name are subscribed to the within instrument and acknowledged that they executed the same. In witness whereof, I have hereunto set my hand and affixed my official seal of my office in the said County of Themstold , the day and year in this certificate

first above written.

Notary Public in and for Country the bolds
State of California. My Commission expires January 31 1957

MAP OF BEACOM SUBDIVISION

IN SECTION 2 TOWNSHIP 2 NORTH RANGE ! WEST HUMBOLDT MERIDIAN

ONE SHEET.

Filed at the request of James 2. Beacom
this 5th day of Jenne 1953, of 52 min, post o'clock P. M. in Book 12 of Maps, page 138.
Signed Comma Cox Aleala County Recorder, County of Humbodt, State of California.
County Recorder, County of Humbodt, State of California.
By Helin M. Barnett Deputy

OWNER'S STATEMENT

KNOW ALL MEN BY THESE PRESENTS: The undersigned, being a municipal corporation vested under the laws of the State of California and the sole party holding any record title interest to the land shown within this Subdivision, does hereby consent to the preparation and recordation of this map and offer for dedication and do hereby dedicate for public use the rights of way and public utilities as shown on this map.

Signed: 12.05 11.	Dated: 16-1-16-
Signed:	Dated:
NOTARY CERTIFICATE	
State of California County of Humboldt)z ₂)
On October 1, 1946, befor a Notary Public in and for the State	re me, <u>Unairia</u> F. Janaco
Jule 20. no	210 20
	,
be the person(s) whose name(s) is/e acknowledged to me that he/she/they capacit(y)(ies), and that by his/he	me on the basis of satisfactory evidence / t are subscribed to the within Instrument, an executed the same in his/her/their authorize r/their signature(s) on the Instrument, th of which the person(s) acted, executed th
WITNESS:	
WITNESS: Signature: Usaginia. L. Van	1960 Expires: 5-4-98

TAX COLLECTOR'S CERTIFICATE

I, Stephen A. Strawn, Tax Collector of Humboldt County, California, hereby certify that on this date according to the records of this office, there are no tax liens due against the land within this Subdivision or Parcel Map described as Assessor's Parcel No. 200 - 353 - 22.23 for unpaid State, County, Municipal or Local Taxes or Special Assessments collected as property taxes, except taxes or special assessments not yet due and payable.

> Stephen A. Strawn Humboldt County Tax Collector

10-1-96 By:_

1996-22701-2

COUNTY RECORDER'S STATEMENT

Filed this 2nd day of October 1996 at 3:32 PM in Book 39 of Parcel Maps at Page 31:32 PM Humboldt County Records at the request of Michael W. Sattel.

Cardyn Crnich Deputy

Humboldt County Recorder Deputy

Fee:

DEDICATION NOTES

The portions of the following described Parcel lying within the boundaries of this Subdivision are hereby dedicated as shown hereon, for the uses and purposes as set forth herein:

PARCEL A is dedicated to the City of Fortuna as a Public Utilities Easement along Strongs Creek and Rohner Creek appurtenant to Parcels 2 and 3, and for all purposes incidental thereto.

PARCEL B is dedicated across Parcel 2 to the owner of Parcel 1 for ingress and egress, public utilities and all purposes incidental thereto.

PARCEL C is dedicated across Parcel 3 to the owner of Parcels 2 for ingress and egress, public utilities and all other purposes incidental thereto.

CITY PLANNER'S STATEMENT

I, Lisa Shikany Meyers, City Planner for the City of Fortuna, Humboldt County, California hereby state that the tentative map for this Subdivision was approved by the City of Fortuna and that this Parcel Map is substantially the same as the approved tentative map and any approved alterations thereof and that this Parcel Map complies with the Conditions of Approval for the tentative map pursuant to Resolution 96-

CITY ENGINEER'S STATEMENT

I, Michael W. Sattel, City Engineer for the City of Fortuna, Humboldt County, California, state that I have examined this map on this <u>1st</u> day of <u>October</u>, 1996 for conformance with the requirements of Section 66410 of the State Government Code. I hereby state that all provisions of the Subdivision Map Act and all applicable local ordinances have been met and the accompanying map is technically correct.

Michael W. Sattel, Gity Engineer
R.C.E. 30,850, Expires 3/31/2000

CITY CLERK'S STATEMENT

I, Dale W. Neiman, City Clerk and Ex Officio Clerk of the City of Fortuna, Humboldt County, State of California, hereby accept this map on behalf of the City of Fortuna, including the rights of way, easements and parcels of land offered for dedication for the uses as set forth herein, and consent to the adjustment of the property lines described herein, in conformity with Resolution P96.

SURVEYOR'S STATEMENT

This map was prepared by me or under my direction and is based upon a field survey in conformance with the requirements of the Subdivision Map Act and local ordinance at the request of <u>Frage of Releivation</u> on <u>Significant Conformation</u>. I hereby state that this parcel map substantially conforms to the approved tentative

Signed : Michael W. Sattel

Dated: 10/1 196

R.C.E. 30,850 Expired 3/31/2000

PARCEL MAP NO. 312.1

CITY OF FORTUNA

IN THE NW 1/4 OF SECTION 2
T2N, R1W, HUMBOLDT MERIDIAN
HUMBOLDT COUNTY, STATE OF CALIFORNIA
SCALE 1" = 100' OCTOBER 1996

SHEET 1 OF 2

	_		_			
ACC	EP	T_{\prime}	4 /	V	C	E

The City Council of the City of Fortuna, Humboldt County California hereby opprove the accompanying AMENDED MAP OF SANDY PRAIRIE SUBDIVISION in the City of Fortuna and accept on behalf of the public the dedication of the sidewalk easement shown thereon.

All of which appears by an order duly passed and entered in minutes of the Council this The day of System 1964.

City Council of the City of Fortuna Humboldt County, California.

Carl C. Brown

Attest: Fay P. Callanna City Clerk and lex-officio Clerk of the City Council of the City of Fortuna, California.

Received and filed this____day of____

County Recorder of Humbold t County, State of California

SURVEYOR'S CERTIFICATE

I hereby certify that I made the Survey represented on this map and that the map is an accurate depiction thereof, and that there are sufficient monuments left on the ground from which the survey can be refraced, the character and location of which is shown on his sheet Witness my hand and seal this 20th day of September 1954

Paul M. Jehmork.
Paul M. Schmook, Licensed Surveyor
Nº 1282 for State of California.

CITY CLERK'S & CITY ENGINEER'S CERTIFICATE

CITY CLERKS & CITY ENGINEERS CERTIFICATE

We, R.M. Schmook City Engineer, and Fay M. Callarman City Clerk of the
City of Fortuna in Humboldt County, Call fornia, hereby certify that
this AMENDED MAP OF SANDY PRAIRIE SUBDIVISION in the City of Fortuna
consisting of one sheet has been examined by us; that the land
Subdivided is within the limits of said City of Fortuna; that the City
Planning Commission did recommend that the City Council of the
City of Fortuna approve the accompanying AMENDED MAP OF SANDY
PRAIRIE SUBDIVISION that we have examined the map, and the data given
thereon and the consent certificates and other parts thereof, and
find the same correct and suitable and conformable to the provisions
of the State laws regarding subdivision maps; and we approve the
Same and recommend to the Council of the City of Fortuna
that they approve the map and accept the dedications thereon. that they approve the map and accept the dedications thereon.

Tay P. Dallaman City Cletk of City of Fortuna, Humboldt County, Colifornia.

On, Shunk, City Engineer of City of Fortuna, Humbold County, California.

TAX AND ASSESSMENT CERTIFICATE

I hereby certify that the lands subdivided upon this AMENDED MAP OF SANDY PRAIRIE SUBDIVISION in the City of Fortuna are in Humboldt County, California, and are within the limits of the incorporated City of Fortuna, that there are no liens for unpaid State or County taxes against the lands thereon subdivided. I further certify that I am the officer in charge of special assessments in unincorporated territory in said County and that the lands subdivided upon this map are not subject to any special assessments which have not been paid in full.

County Auditor of Humboldt County, State of Colifornia.

I estimate that the taxes now a lien but not yet payable will amount to \$______

Mell M. Dich But Antor of Humbold + County, State of California.

Acertified check in the amount of \$-0- has been deposited with the Humboldt County Board of Supervisors to guarantee payment of taxes not yet payable. Tax Bond poid by Brockside Addition on Sept 20, 1954

Clerk of the Board of Supervisors Humboldt County, State of California.

We hereby certify that the lands subdivided upon this AMENDED MAPOF SANDY PRAIRIE SUBDIVISION in the City of Fortung are in Humboldt County, California, and are within the limits of the incorporated City of Fortung; that there are no liens for unpaid taxes levied by said City of Fortung against the lands thereon subdivided except taxes not yet payable. We further certify that we are the officers in charge of special assessment districts within the said City of Fortung or special assessment districts within the said City of Fortuna and that there are no special assessment districts within said City of Fortuna which would include the lands subdivided upon this map and that the lands subdivided upon this map are not subject to any special assessments which have not been paid in full.

Dated this 20th day of September 1954.

Fay P. Sallama. City Clerk of the City of Fortuna, State of California.

Jay P. Sollarman City Tox Collector of the City of Fortuna, State of California.

I hereby certify that a certified check in the amount of \$39.21 has been deposited with the City Assessor of the City of Fortuna to cover the current years taxes on the lands embraced on this map belonging to Wilbur T. Greer and Amy L. Greer, husband and wife, for the fiscal year ending year 36 1955

City Assessor of the City of Fortuna, State of California

OWNER'S CONSENT AND DEDICATION

We, Wilbur T. Greer and Amy L. Greer, husband and wife, declare that we are the sole owners of the land subdivided on this map consisting of one sheet; that there is no person other than ourselves except the holder of the outstanding Deed of Trust whose consent is necessary to pass a clear title to the subdivided lands shown upon this map; that we caused this land to be surveyed and laid out as shown and consent to and approve this map, and we hereby dedicate to the public use the sidewalk easement shown hereon.

State of California 355 County of Humboldt 35

On this 20th day of September 1954, before me, frague B. Sucre a Notary Public in and for the above County and State, personally appeared Wilbur T. Greer and Amy L. Greer, husband and wife, personally known to me to be the persons whose names are subscribed to the above consent and dedication, and acknowledged to me that they executed the same. In witness whereof I have hereunto subscribed my name and affixed my official seal.

No tary Public in and for the County of Humboldt, State of California. My Commission expires april 3 1956

AMENDED MAP OF SANDY PRAIRIE SUBDIVISION IN THE

CITY OF FORTUNA HUMBOLDT COUNTY, CALIFORNIA ONE SHEET

N89°50'E 450.0	4005054405	
8 N.89°50E N.89°50E N.	ACCEPTANCE The City Council of the City of Fortuna, Humboldt County, California hereby approve the accompanying map of BROOKSIDE ADDITION to the City of Fortuna and accept on behalf of the public the dedication of the streets and alley shown thereon. All of which appears by an order duly passed andentered in minutes of the Council this 1th day of specimine 1954.	A certified check in the amount of \$400 m has been deposited with the Humboldt County Board of Supervisors to guarantee poyment of taxes not yet payable. Daled: Sept 20.1954 Clerk of the Board of Supervisors
13 59 52'E	City Coursel Fred Kries	We hereby certify that the lands subdivided upon this map of BROOKSIDE ADDITION to the City of Fortuna are in Humboldt County, California and are within the limits of the incorporated City of Fortuna, that there are no liens for unpaid taxes levied by said City of Fortuna against the lands thereon subdivided, except taxes not yet payable. We further certify that we are the officers in charge of special assessment districts within the said City of Fortuna and that there are no special assessment districts within said City of Fortuna which would include the lands subdivided upon this map and that the lands subdivided upon this map and that the lands subdivided upon this map are not subject to any special assessments which have not been paid in full. Dated this 20th day of september 1954 Tay I bellarman City Clerk of the City of Fortuna, City Tax Collector of the City of
Radius of curve 1084.78 feet	Received and filed thisday of	I hereby certify that a certified check in the amount of \$9.21 has been deposited with the City Assessor of the City of Fortuna to cover the current years taxes on the lands embraced on this map belonging to Wilbur T. Greer and Amy L. Greer, husband and wife, for the fiscal year ending function 1965
Scale: I inch = 100 feet o Indicate Iron Pipe monuments. Note: Arc and Chord distances along Newburg Road are to points of intersection of tangent lines of intersecting streets, and the distance shown along the East line of Lot 8 of Black One is to the same point of intersection on the arc of Newburg Road.	I hereby certify that I made the Survey represented on this map and that the map is an accurate depiction thereof, and that there are sufficient monuments left on the ground from which the survey can be retraced the character and location of which is shown on this sheet. Witness my hand and seal this 20th day of September 1954 Paul M. Schmook, Licensed Surveyor Nº 1282 for State of California.	City Assessor of the City of Fortuna, State of California OWNER'S CONSENT AND DEDICATION We, Wilbur T. Greer and Amy L. Greer, husband and wife, declare that we are the sole owners of the land subdivided on this map consisting of one sheet; that there is no person other than ourselves except the holder of the outstanding Deed of Trust whose consent is necessary to pass a clear title to the subdivided lands, shown upon this map;
TRUSTEE'S AND BENEFICIARY'S CONSENT The BELCHER ABSTRACT & TITLE COMPANY, A CORPORATION and Starr A. Hamilton and Edith R. Hamilton being the Trustee and Beneficiaries, respectively, named in that certain Deed of Trust made September. 6th. 1954 recorded in Book 307 of Official Records: Page 199 of the Humbold County Records, observed to the making and filing of this map and to the dedication of roads as shown thereon, and release all claims to said roads thereby designated. Signed	CITY CLERK'S & CITY ENGINEER'S CERTIFICATE We, P. M. Schmook City Engineer, and Fa. Callarman City Clerk of the City of Fortuna in Humboldt County, California, hereby certify that this map of BROOKSIDE ADDITION to the City of Fortuna consisting of one sheet has been examined by us; that the land subdivided is within the limits of said City of Fortuna; that the City Planning Commission did recommend that the City Council of the	that we caused this land to be surveyed and laid out as shown, and consent to and approve this map, and we hereby dedicate to the public use the sidewalk easement shown hereon, and the streets shown thereon.
By Davis Signed Star a. Hamilton Signed Star a. Hamilton State of Colifornia so ACKNOWLEDGEMENT	City of Fortuna approve the accompanying map of BROOKSIDE ADDITION, that we have examined the map, and the data given thereon and the consent certificates and other parts thereof and find the same correct and suitable and conformable to the provisions of the State laws regarding subdivision maps: and we approve the same and recommend to the Council of the City of Fortuna that they approve the map and accept the dedications thereon.	State of California County of Humboldt SS On this 20th day of September 1954, before me,
County of Humboldt On this Zethday of Sept 1954, before me, H.W. Lambert a Notary Rublic in and for said County, residing therein, duly commissioned and syporn, personally appeared of the Corporation that executed the within instrument and acknowledged to me that such corporation executed the same. In witness, whereof, I have hereunto set my hand and offixed my official seal at my office in the said County of Humboldt, the day and year in this certificate first above written. My Commission Expires	Dated this 20 th day of September 1954 Tay 8. ballarman PM Schwork City Clerk of City of Fortuna, thumboldt County, California. TAY AND ACCEPTATION OF FORTUNA THUMBOLDT COUNTY, California.	Leugene B. Luce above County and State, personally appeared Wilbur T. Greer and Amy L. Greer, husband and wife, personally known to me to be the persons whose names are subscribed to the above consent and dedication, and acknowledged to me that they executed the same. In witness whereof I have hereunto subscribed my name and affixed my official seal.
Notary Public in and for the County of Humboldt, State of California December 22 nd 1957 ACKNOWLEDGEMENT	TAX AND ASSESSMENT CERTIFICATE I hereby certify that the lands subdivided upon this map of BROOKSIDE ADDITION to the City of Fortuna are in Humboldt County, California, and are within the limits of the incorporated City of Fortuna that there are no liens for unpaid State or County taxes against the lands thereon subdivided. I further certify that I am the officer in charge of special assessments in	Notary Public in and for the County of Humboldt, State of California My Commission expires April 3 1956
appeared Start A damilion and Edith K. tamilion from the or the prisons whose numes are subscribed to the within instrument and acknowledged that they executed the same. In witness whereof, I have hereun to set my hand and affixed my official seal at my office in the said County of Humboldt , the day and year in this certificate first above written.	I further certify that I am the officer in charge of special assessments in unincorporated territory in said County and that the lands subdivided upon this map are not subject to any special assessments which have not been paid in full. County Auditor of Humboldt County, State of California.	BROOKSIDE ADDITION
Notary Public in and for the County of Humbold state of California. 1275 8 Filed at the request of Belener Abstract & Title Company this 21st day of September 1954, at 21 min, past 3 o'clock P. M., IN Book 13 of Maps page 16. Signed Emme Cor Alcale By Famy Keeling Deputy County Recorder, County of Humbold, State of Colifornia	I estimate that the taxes now a lien but not yet payable will amount to \$ 2.4522 Mell March Gounty, State of California. By Summing Supuly	TO THE CITY OF FORTUNA HUMBOLDT COUNTY, CALIFORNIA ONE SHEET
County Recorder, County of Humboldt, State of California //	<u> </u>	<u> </u>

ARCATA-EUREKA AIRPORT TERMINAL McKINLEYVILLE

AVIATION

839-5401

DEPARTMENT OF PUBLIC WORKS

COUNTY OF HUMBOLDT

MAILING ADDRESS: 1106 SECOND STREET, EUREKA, CA 95501-0579 AREA CODE 707/FAX 445-7409

> PUBLIC WORKS BUILDING SECOND & L ST., EUREKA

ADMINISTRATION BUSINESS ENGINEERING 445-7491 445-7652 445-7377 ARCHITECT

NATURAL RESOURCES
PARKS
ROADS & EQUIPMENT MAINT.
CT 445-7493

445-7741 445-7651 CLARK COMPLEX HARRIS & H ST., EUREKA

LAND USE 445-7205

January 10, 2005

Duane Rigge, City Manager City of Fortuna POB 545 Fortuna CA 95540

RE: ANNEXATION BY THE CITY OF FORTUNA OF COUNTY ROADS ADJACENT TO THE CITY OF FORTUNA

Allen Campbell, Director, Humboldt County Department of Public Works, has requested that I provide you some information. It is in response to a request by you associated with roads proposed for annexation that were discussed in our previous letters. The previous letters discussed the annexation of Strongs Creek Road (known by the City as Dinsmore Drive), Twelfth Street, a portion of Rohnerville Road, a portion of Eel River Drive, and Drake Hill Road.

The information requested was regarding the County's cost of maintenance of the roads over the last five years and what it would cost if the County was to perform the desired future maintenance of the surface of the roads. The following is a description of the road, the County's past cost of the maintenance of the road, and an estimate of the cost to maintain the roads to the desired standard. The desired standard of maintenance consists of sealing the roads at a 12 to 14 year period and resurfacing the roads every 25 years. The County cost for sealing a road is estimated to be \$0.12 per square foot and a \$1.30 per square foot for resurfacing a road. These are the prices used currently by the County in the estimation of costs for maintenance of new subdivision roads.

STRONGS CREEK ROAD

This portion of road lies south of the city limits of Fortuna to the intersection of Riverwalk Drive. The County has not spent any funds on this road for the last 5 years or longer. When the City annexed the portion of land at the end of the road, the then city manager of Fortuna provided a letter to LAFCO and the County indicating that they would maintain this portion of Strongs Creek Road for the County as consideration of approval of the annexation.

The portion of Strongs Creek Road in the County is approximately 640 feet in length and has an average width of 26 feet. The cost of sealing the road would be estimated at \$2,000 and \$21,632 for resurfacing the road at today's cost.

TWELFTH STREET

This portion of road lies within the limits of the CalTrans right of way for State Highway 101. It lies between the railroad tracks, over the overpass, to the intersection of Strongs Creek Road and Riverwalk Drive. The County entered into an agreement with CalTrans to be responsible for the surface of the road. CalTrans is responsible for the overpass structure.

The County has spent \$37 over the last five years on this portion of road. The length of road is approximately 1,530 feet and has an average width of 30 feet. The cost of resealing the road is estimated at \$5,500 and \$69,670 for resurfacing the road.

ROHNERVILLE ROAD

This portion of road lies north of Loop Road to the south line of the park. The road has been presumed by the City to be located in the City. The Campton Heights and Fortuna High School annexations by the City appear to have not included this portion of road. The County has not been providing maintenance of the road. The road was presumed by the City to be within the city limits of Fortuna and has been maintained by the City for a number of years.

EEL RIVER DRIVE

This portion of road lies between Drake Hill Road and Kenmar Road. It does not front any developable property located in the County. CalTrans and NWP Railroad front the west side of the road. The entire east side of the road serves lands located in the City. It is approximately 0.93 mile in length and has an average width of 24 feet. The County has spent approximately \$26,000 on this road in the last 5 years. The majority of the cost was associated with clean up of the movement of earth off of property owned by the City. The slide occurred in 2002.

The cost of resealing the road is estimated to be approximately \$14,142 and \$153,205 for resurfacing the road.

DRAKE HILL ROAD

This portion of road is located between Rohnerville Road and Eel River Drive. The City is located along the entire north side of the road. The north side of the road is zoned and planned for residential development. The south side of the road located in the County is mainly zoned and planned for agricultural use. The road is 1.25 miles in length and is approximately 22 feet in width. The County has spent approximately \$79,000 in maintenance of this road in the last 5 years. Approximately \$67,000 of the maintenance cost was associated with resurfacing Drake Hill Road between Thelma Drive and Rohnerville Road in 2002. This stretch of road is where the heaviest density of residential property is located within the City.

The cost of resealing the road is estimated to be approximately \$17,424 and \$188,760 is estimated for resurfacing the road.

If you have any additional questions regarding the roads or this letter, please don't hesitate to contact this office.

Sincerely,

Harless McKinley Land Use Division

445-7205

FREEWAY MAINTENANCE AGREEMENT

WHEREAS, on November 6, 1958, a Freeway Agreement was executed between the County and the State relating to the development of that portion of State Highway Route 1 in the County of Humboldt between 0.6 mile north of Route 35 and 0.3 mile north of Fortuna as a freeway, and

WHEREAS, under the provisions of said Freeway
Agreement, the County agreed to certain adjustments in the
County road system, and for the carrying of certain County
roads over or under or to a connection with the freeway, and

WHEREAS, said freeway has now been completed or is nearing completion, and the parties mutually desire to clarify the division of maintenance responsibility as to separation structures, and County roads or portions thereof, within the freeway limits.

NOW, THEREFORE, IT IS AGREED:

1. ROADWAY SECTIONS

The County will maintain, at County expense, all portions of County roads and appurtenant structures and bordering areas, colored in yellow on the attached map marked Exhibit "A" and made a part hereof by this reference.

2. VEHICULAR OVERCROSSINGS

The State will maintain, at State expense, the entire structure below the top of the concrete deck surface, exclusive of any bituminous surface treatment thereof. The County will maintain, at County expense, the top of the concrete deck surface, together with any bituminous surface treatment thereon, and all portions of the structure above the concrete deck surface, and shall perform such other work as may be necessary to insure an impervious and otherwise suitable surface. The County will also maintain all traffic service facilities provided for the benefit or control of County road traffic.

3. VEHICULAR UNDERCROSSINGS

The State will maintain the structure proper. The roadway section, including the traveled way, shoulders, curbs, sidewalks, walls, drainage installations and traffic service facilities, will be maintained by the County.

4. EFFECTIVE DATE

This agreement shall be effective upon the date of its execution by the State; it being understood and agreed, however, that the execution of this agreement shall not affect any pre-existing obligations of the County to maintain designated areas pursuant to prior written notice from the State that work in such areas, which the County has agreed to maintain pursuant to the terms of the Freeway Agreement, has been completed.

STATE OF CALIFORNIA DEPARTMENT OF PUBLIC WORKS DIVISION OF HIGHWAYS

J. C. WOMACK STATE HIGHWAY ENGINEER

Approval Recommended

SAM HELWER District Engineer

EDWARD L. TINNEY
Maintenance Engineer

Approved as to form:

RICHARD C. EAST
Attorney for Department

Attorney

By CHAS. E. WAITE
Deputy State Highway Engineer

APR 15 1963

COUNTY OF HUMBOLDT

By NORMAN R. ROBERTSON
Chairman, Board of Supervisors

FRED J. MOORE, Jr. (SEAL)
County Clerk

By W. E. SCHUSSMAN

In Humboldt County between 0.4 mile north of Route 35 and 0.3 mile north of Fortuna

Road I-Huss-3.-P.6

Station 20+00 12th Street Overcrossing Br. No. 4-130 0 RILLER LOCATION Rohnerville Undercrossing Bp. No. 4-128 Sheet #2, Exhibit "A" 733 Station 194+00

Sheet #3, Exhibit "A"

VICINITY MAP SHEET I OF 3

AREA TO BE MAIN'IMINED BY COUNTY

Location #2 12th Street Overcrossing

TRUSTEE'S AND BENEFICIARY'S CONSENT

The Continental Auxiliary Company, a Corporation and Bank of America National Trust & Savings Association being the Frustee and Beneficiary, respectively, named in that certain Deed of Trust made Nov. 4 1954 1955 recorded in Book Diff of O.R. 9age 609 of the Humboldt County Records, do hereby consent to the maxing and filing of this man and to the dedication of roads as shown thereon, and release all claims to said roads thereby designated.

Signed

Signed Continental Auxiliary Company, a Componation 3. lone

Newburg Road.

Signed Bank of America National Trust & Savings association Z conser

ACKNOWLEDGEMENT

State of California } SS County of Humboldt

On this 2 day of Alle 1955, before me EUGENEB LIKAS a Rotary Dublic in and for said County, residing therein, duly commissioned and sworn, personally appeared F TONER whow to me to be the OFFICER of the Conporation, that executed the within instrument and acunowledged to me that such comporation executed the same. In witness whe sect I have hereunto set my hand and affixed my official sed at my office in the said County of Himboldt, the day and year in this certificate first above written.

Evane Baucas notary Dublic in and for the County of Rumboldt, State of California.

My Commission Expires apr 3 1956

ACKNOWLEDGEMENT

State of California \ SS
County of Hymboldt \ SS
On this 27 day of Aug. 1955, before me EUGENE B. LUCAS
a Notary Dublic in and for said County, residing duly commissioned and swonn, personally d F. TONER known to me to be the the within instrument and acknowledged to me that such association executed the same. In witness men ussociation executed the same. In witness whereaf, I have hereinto set my hand and affixed my office in the said lounty of Humboldt, the day and year in this certificate first above written.

Lugue BSucar Notang Dublic in and for the County of Humbolett, state of California

my Commission Expires 1956

SURVEYOR'S CERTIFICATE

I hereby certify that I made the Survey represented on this map and that the map is an accurate depiction thereof, and that there are Sufficient monuments left on the ground from which the Survey can be retraced, the character and location of which the shown on this short hown on this sheet. Witness my hand and seal this 25th day of August 1955.

Paul M. Schmook, Licensed Surveyor No. 1282 for the State of California

CITY CLERKS & CITY ENGINEERS CERTIFICATE

We, Paul M. Schmook, City Engineer, and Fay F. Callarman, City Clerk of the City of Fortuna in Humboldt County California hereby Certify that this SECOND AMENDED MAP OF SANDY PRAIRIE SUBDIV CEPT. TY that This SECOND AMENDED AND OF SAINT THANKE CONSISTING OF ONE Sheet has been examined by us, that the land subdivided is within the limits of said City of Fortuna, that the City Planning Commission did recommend that the City Council of the City of Fortuna approve the accompanying Second AMENDED MAP OF SAMPY PRAIRIE SUBDIVISION, that we have examined the map and the data given thereon and the consent certificates and other parts thereof, and find the same correct and suitable and conformable to the provisions of the State Laws regarding subdiv. ision maps, and we approve the same and recommend to the Council of the City of Fortuna that they approve the map. Dated this 27th day of August 1955.

BY FAY P. CALLARMAN

Deputy Par Machaster Paul M. Schwook City Clerk of the City of Fortuna City Engineer of the City of Fortuna Humboldt County, California Humboldt County California

ACCEPTANCE

The City Council of the City of Fortuna, Hamboldt County, California hereby approve the accompanying SECOND AMENDED MAP OF SANDY PRAIRIE SUBJIVISION in the City of Fortuna, and accept on behalf of the public the Street dedication shown thereon. shown thereon.
All of which appears by an order duly passed and entered in minutes of the council this 27 day of August 1955.

Carl C. Brown City Council. of the Fred Krieg City of Fortuna Humboldt County California

Attest: FAY P. CALLARMAN Deputy Pat Machado City Council of the City of Fortuna, California.

I HEREBY CERTIFY THAT A CERTIFIED CHECK IN THE AMOUNT OF G. NONE. HAS BEEN DE-POSITED WITH THE CITY ASSESSOR OF THE CITY OF FORTUNA TO COVER THE CURRENT YEARS TAXES ON THE LANDS EMBRACED ON THIS MAP BELONGING TO WILBUR T. GREER AND AMY L. GREER, NUSBAND AND WIFE, FRED W. SCHOLES AND CLEO L. SCHOLES, HUS-BAND AND WIFE AND JAMES R. STEWART AND BETTY L. STEWART, HUSBAND AND WIFE, FOR THE FISCAL YEAR ENDING

FAY P. CALLARMAN Pat Machado Deputy CITY ASSESSOR OF THE CITY OF FORTUNA, STATE OF CALIFORNIA.

TAX AND ASSESSMENT CERTIFICATE

I HEREBY CERTIFY THAT THE LANDS SUBDIVIDED UPON THIS SECOND AMENDED MAP OF SANDY PRAIRIE SUBDIVISION IN THE CITY OF FORTUNA ARE IN HUMBOLDT COUNTY, CALIFORNIA, AND ARE WITHIN THE LIMITS OF THE INCORPORATED CITY OF FORTUNA, THAT THERE ARE NO LIENS FOR UNPAID STATE OR COUNTY TAXES AGAINS THE LANDS THEREON SUBDIVIDED .

I FURTHER CERTIFY THAT I AM THE OFFICER IN CHARGE OF SPECIAL ASSESS MENTS IN UNINCORPORATED TERRITORY IN SAID COUNTY AND THAT THE LANDS SUBDIVIDED UPON THIS MAP ARE NOT SUBJECT TO ANY SPECIAL ASSESSMENTS WHICH HAVE NOT BEEN PAID IN FULL.

> Joseph 65 umaning COUNTY AUDITOR OF HUMBOLDT COUNTY, STATE OF CALIFORNIA.

I ESTIMATE THAT THE TAXES NOW A LIEN BUT NOT YET PAYABLE WILL AMOUNT TO \$ 23.47

> COUNTY AUDITOR OF HUMBOLDT COUNTY, STATE OF CALIFORNIA

A CERTIFIED CHECK IN THE AMOUNT OF & 30 -HAS BEEN DEPOSITED WITH THE HUMBOLDT COUNTY BOARD OF SUPERVISORS TO GUARANTEE PAYMENT OF TAXES NOT YET PAYABLE. TAX BOND PAID BY BROOKSIDE ADDITION ON 8-29 Frank mooreb

CLERK OF THE BOARD OF SUPER-VISOKS, HUMBOLDT COUNTY, STATE OF CALIFORNIA

WE HEREBY CERTIFY THAT THE LANDS SUBDIVIDED UPON THIS SECOND AMENDED MAP OF SANDY PRAIRIE SUBDIVISION IN THE CITY OF FORTUNA ARE IN HUMBOLDY COUNTY, CALIFORNIA, AND ARE WITHIN THE LIMITS OF THE INCORPORATED CITY OF FOR-TUNA; THAT THERE ARE NO LIENS EOR UNPAID TAXES LEVIED BY SAID CITY OF FORTUNA AGAINST THE LANDS THEREON SUBDIVIDED, EXCEPT TAXES NOT YET PAYABLE. WE FURTHER CERTIFY THAT WE ARE THE OFFICERS IN CHARGE OF SPECIAL ASSESS-MENT DISTRICTS WITHIN THE SAID CITY OF FORTUNA AND THAT THERE ARE NO SPECIAL ASSESSMENT DISTRICTS WITHIN SAID CITY OF FORTUNA WHICH WOULD INCLUDE THE LANDS SUBDIVIDED UPON THIS MAP AND THAT THE LANDS SUBDIVIDED UPON THIS MAP ARE NOT SUBJECT TO ANY SPECIAL ASSESSMENTS WHICH HAVE NOT BEEN PAID

BY DEPUTY TALL STATE OF CAUGACHA.

BY NEAVEY AT MACHAGO

FAX BY STATE OF CAUGACHA.

BY NEAVEY

BY NEAVEY

ATT CAUGACHAGO

FAX BY SALLARMAN

BY NEAVEY

ATT CAUGACHAGO

BY NEAVEY

BY NEAV

CITY TAX COLLECTOR OF THE CITY OF FORTUNA, STATE OF CALIFORNIA.

OWNER'S CONSENT AND DEDICATION

WE, WILBUR T. GREER AND AMY L. GREER HUSBAND AND WIFE, FRED W. SCHOLES AND CLE L. SCHOLES, HUSBAND AND WIFE AND JAMES R. STEWART AND BETTY L. STEWART, HUSBAND AND WIFE, DECLARE THAT WE ARE THE OWNERS OF THE LAND SUBDIVIDED ON THIS MAP CONSISTING OF ONE SHEET THAT THERE IS NO PERSON OTHER THAN OURSELVES EXCEPT THE HOLDER OF THE OUTSTANDING DEED OF TRUST WHOSE CONSENT IS NECESSARY TO PASS A CLEAR TITLE TO THE SUBDIVIDED LANDS SHOWN UPON THIS MAP; THAT WE CONSENT TO AND APPROVE THIS MAP, AND WE HEREBY DEDICATE TO THE PUBLIC USE THE STREET SHOWN HEREON. JUNEW W. Scholer

Cles & Scholes Homes A Stewart
Betty J. Stewart
William T. Stewart

STATE OF CALIFORNIA 55 COUNTY OF HUMBOLDT

ON THIS 27th DAY OF August 1965, BEFORE ME, EUGENE BLUCAS A NOTARY PUBLIC IN AND FOR THE ABO. VE COUNTY AND STATE, PERSONALLY AP-PEARED WILBUR T. GREER AND AMY L GREER, HUSBAND AND WIFE, FRED W. SCHOLES AND CLEO L. SCHOLES, HUSBAND AND WIFE AND JAMES R. STEWART AND BETTY L. STEWART, HUSBAND AND WIFE, PERSONALLY KNOWN TO ME TO BE THE PERSONS WHOSE NAMES ARE SUB-SCRIBED TO THE ABOVE CONSENT AND DEDICATION, AND ACKNOWLEDGED TO ME THA THEY EXECUTED THE SAME. IN WITNESS WHEREOF I HAVE WERE UNTO SUBSCRIBED MY NAME AND AF-FIXED MY OFFICIAL SEAL.

Leugue BLuces NOTARY PUBLIC IN AND FOR COUNTY OF HUMBOLDT, STATE OF CALIFORNIA. My COMMISSION EXPIRES UPV3

13778 FILED AT THE REQUEST OF Humbolat hand Titlale. THIS PAST 3 O'CLOCK P. M. SIGNED Emma lox alcala COUNTY RECORDER, COUNTY OF HUMBOLDT, STATE OF CALIFORNIA Fee \$1.00 BY fancy Keeler DEPUT

Second Amended Map of Lots 182 SANDY PRAIRIE SUBDIVISION in the CITY OF FORTUNA HUMBOLDT COUNTY, CALIFORNIA ONE SHEET

RECORDING REQUESTED BY: HUMBOLDT COUNTY DEPARTMENT OF PUBLIC WORKS

AFTER RECORDING RETURN TO: DEPARTMENT OF PUBLIC WORKS 3033 H STREET EUREKA CA 95501 1999-8138-4

Recorded — Official Records
Humboldt County, California
Carolyn Crnich, Recorder
Recorded by HUMBOLDT CNTY
Exempt from payment of fees
Clerk: MM Total: 0.00
Mar 16, 1999 at 13:01

RE: NEWBURG ROAD, CO. RD. 3H115 APN 200-411-43

EASEMENT DEED

DONALD R. SCHOENHOFER and STACEY S. SCHOENHOFER, husband and wife, convey to the COUNTY OF HUMBOLDT, a political subdivision of the State of California, an easement for public highway purposes and incidents thereto over the following described land in the unincorporated area of the County of Humboldt, State of California, described as:

(SEE ATTACHED EXHIBIT "A")

Dated this 5th day of February, 1999.

OWNERS:

DONALD R. SCHOENHOFER

STACEY-C. SCHOENHOFER

5

NOTARY ACKNOWLEDGMENT

STATE OF California)	
:S	S
COUNTY OF Humbolat)	
Capacity claimed by signer:	
□Individual; □Trustee(s); □Attorney-in-Fact; □Gu	ardian/Conservator;
□Corporate Officer(s)	Title(s);
□Partner(s) □Limited, □General	
□Other	
On february 5, 1999 before me, S. Holcon	nb a Notary Public in
and for said State, personally appeared Donald R	. Schoenhoter and Stacey S. Schoenhoter
Personally known to meor proved to me of	on the basis of satisfactory evidence to be the person(s)
whose name(s) is/are subscribed to the within instru	ment and acknowledged to me that he/she/they executed
the same in his/her/their authorized capacity(ies), and	d that by his/her/their signature(s) on the instrument the
person(s), or the entity upon behalf of which the person	on(s) acted, executed the instrument.
WITNESS my hand and official seal.	
αm .	2000-200000000000000000000000000000000
S.MM	S. HOLCOMB M
(Signature of Notary)	Comm. #1149935
County of Humbold t	NOTARY PUBLIC HUMBOLDT COUNTY, CALIFORNIA ()
My commission expires 8-30-01	My commission expires Aug. 30, 2001_
	PORTERIO DE LA TORINA DEL TORINA DE LA TORINA DELLA DE LA TORINA DELLA DE LA TORINA DELLA DE LA TORINA DELLA DEL

f:pwrk\agg&deed\schoenhofer\20041143.ded

EXHIBIT A

That real property situated in the County Of Humboldt, State of California, described as follows:

That portion of the Southeast Quarter of Section 36, Township 3 North, Range 1 West, Humboldt Meridian, more particularly described as follows:

Beginning on the South Line of the Southeast Quarter of said Section 36 at a point thereon South 89 Degrees 52 minutes, 36 seconds East, 1543.99 Feet from the Southwest corner of said Southeast Quarter.

Thence North 25 Degrees, 27 minutes, West, 1861.03 Feet;

Thence North 19 Degrees, 52 minutes, West, 50.93 Feet;

Thence North 33 Degrees, 52 minutes, 21 seconds, West, 77.67 Feet;

Thence North 36 Degrees, 26 minutes, West, 41.50 Feet

Thence North 26 Degrees, 50 minutes, 12 seconds, West, 30.0 Feet

Thence North 36 Degrees, 26 minutes, West, 137.34 Feet to the Southerly line of the county road known as Newburg Road and the **True Point Of Beginning**.

Thence North 36 Degrees, 31 minutes, 11 seconds, West, 23.52 Feet;

Thence North 53 Degrees, 48 minutes, 46 seconds, East, 179.73 Feet;

Thence South 36 Degrees, 31 minutes, 58 seconds, East, 25.00 Feet;

Thence South 53 Degrees, 48 minutes, 46 seconds, West, 179.73 Feet;

Thence North 36 Degrees, 31 minutes, 11 seconds, West, 1.48 Feet to the **True Point**Of Beginning.

Basis Of Bearing From Book 58 Of Surveys, Page 93, Humboldt County Records

RAYMOND G.
HABERSTOCK
No. 3431
FXQ. 6 2000

1999-8138-4

This is to certify that the interest in real property conveyed by the EASEMENT DEED dated February 5, 1999, from DONALD R. SCHOENHOFER and STACEY S. SCHOENHOFER, husband and wife, to the COUNTY OF HUMBOLDT, a political subdivision of the State of California, is hereby accepted by the Grantee. The Grantee consents to recordation thereof. Such acceptance and consent to recordation are made pursuant to Resolution No. 99-1, dated January 5, 1999, and Board Order No. C-15, dated March 9, 1999.

STAN DIXON, Chair of the Humboldt County Board of Supervisors

ATTEST:

LORA CANZONERI Clerk of the Board of Supervisors

March 9 1999

 C_{i}

 \mathcal{L}

1731

(,)

HIGHWAY MAPS #3, PAGE 152

HIGHWAY MAPS #3, PAGE 153

16)

HIGHWAY MAPS #3, PAGE 154

BOARD OF SUPERVISORS, COUNTY OF HUMBOLDT, S.ATE OF CALIFORNIA

Certified copy of portion of proceedings, Meetings of June 8, 1948

IN THE MATTER OF EXECUTING INDESTURE WITH MORTHWEITERS PACIFIC BAILSOAD COMPANY CONCERNING NEWBURG DRAINAGE STRUCTURE.

Upon the cration of Supervisor Barcillas, seconded by Supervisor Beberison, Sam B. Merryman, Sr., Chairman of this Board of Supervisors, is hereby antherized to exercise on behalf of the County of Humbeldt an Indenture, dated this date, by and between the County of Rumbeldt and the Merthwestern Pucific Antirond Company. Said indenture greats to the County the right to construct, reconstruct, maintain and operate a drainage structure beneath that certain property of said Saitrond as referred to therein and related to the Newburg drainage structure in accordance with the terms and conditions of said indenture. The Auditor is hereby authorized and directed to draw a warrant payable to the Nerthwestern Pacific Sailroad Company in the amount of fifty dethers (\$50.06) as consideration in full for the signing of said indenture.

AYES: Supervisors— Lindley, Bereliles, Robertson, Petterson, Merryman

NOES: Supervisors— Kone
ABSENT: Supervisors— Kone

STATE OF CALIFORNIA, County of Humboldt

I, FRED J. MOORE, JR., County Clerk of the County of Humboldt, State of California, and exofficio Clerk of the Board of Supervisors of the County of Humboldt, do hereby certify the foregoing to be full, true and correct copies of the original orders made in the above entitled matters by said Board of Supervisors, at a meeting held in Eureka, California, on and as the same now appears of record in my office.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed the Seal of said Board of Supervisors this

day of	June,	1560		
	POST	2 14012012	IV.	

County Clerk and ex-officio Clerk of the Board of Supervisors of the

By Humboldt, State of Camor

Deputy Clerk.

121	HIS INDENTURE, made this _	day of	, 1959,
by and	d between NORTHWESTERN PAC	CIFIC RAILROAD CON	MPANY, a corporation
of the	e State of California, her	ein termed "Rail:	road", and COUNTY OF
HUMBUI	LDT, a political subdivisi	on of the State	of California, herein
termed	d "Grantee".		

WITNESSETH:

l. Railroad, for and in consideration of the faithful performance by Grantee of all the terms, covenants and conditions herein contained, hereby grants to Grantee the right to construct, reconstruct, maintain and operate a 42-inch reinforced concrete drainage pipe, hereinafter termed "structure" beneath the property of Railroad, at or near Fortuna, in the County of Humboldt, State of California, in the location shown enclosed within red lines upon the print of Railroad's San Rafael Drawing X-6778, revised October 23, 1959, hereto attached and made a part hereof.

This indenture will be supplemented to include a legal description of the property if requested by either party in writing.

use all the property describe herein in the performance of its duty as a common carrier, and, for that purpose, there is reserved unto Railroad, its successors and assigns, the right (consistent with the rights herein granted) to construct, reconstruct, maintain and use existing and future railroad tracks, facilities and appurtenances and existing and future transportation, communication and pipe line facilities and appurtenances in, upon, over, under, across and along said property.

- 3. This grant is made subject to all licenses, leases, easements, restrictions, conditions, covenants, encumbrances, liens and claims of title which may affect said property and the word GRANT as used herein shall not be construed as a covenant against the existence of any thereof.
- 4. The rights nevern granted to brantse shall lapse and become vold if the construction of said structure upon said property is not commenced within one (1) year from the date first herein written.
- 5. Grantee shall bear the entire cost and expense of constructing, reconstructing and maintaining said structure upon said property. Grantee agrees that all work upon or in connection with said structure shall be done at such times and in such manner as not to interfere in any way whatsoever with the operations of Railroad. The plans for and the construction of said structure shall be subject to the approval of Railroad.

Grantee agrees to reimburse Ratiroad for the cost and expense to Railroad of furnishing any materials or performing any labor in connection with the construction, reconstruction, maintenance and removal of said structure, including, but not limited to, the installation and removal of such falsework and other protection beneath or along Railroad's tracks, and the furnishing of such watchmen, flagmen and inspectors as Railroad deems necessary.

Tomation appears the interest or let be united the feather of the contract of

- 6. Communications are a strong and a strong and the strong and a stron
- 7. Grantee, its agents and employees, shall have the privilege of ontry on said property for the purpose of constructing, reconstructing, maintaining and making necessary repairs to said structure. Grantee agrees to keep said property in a good and safe condition free from waste, so far as affected by Grantee's operations, to the satisfaction of Railroad. If irantee fails to keep said property in a good and safe condition free from waste, then Railroad may perform the necessary work at the expense of irantee, which expense Grantee agrees to pay to Railroad upon demand.
- 8. In the event any work upon or in connection with said structure or its appurtenances, to be done upon or adjacent to the tracks and property of Railroad, should be let to a contractor by Grantee, such work shall not be begun until such contractor in the contractor of the contractor of the said company where the contractor of the said company and independent of the contractor of the co

Such contractor shall lurns , as the option of and without exmense to Railroad, a reliable sureby land, in so ement and in a form satisfactory to said company. guarantees to the following reason of all the terms, covenants and conditions contained in said agreement, and a certified copy of a policy of Public Liability and Property Damage Insurance, within limits specified by, and in a form satisfactory to, said company, covering the contractual liability assumed by contractor in said agreement to be entered into with said company by such contractors.

5. Should Grantee, its successors or assigns, at any time abandon the use of said property or any part thereof, or fail at any time to use the same for the purpose contemplated herein for a continuous period of one (1) year, the right hereby given shall cease to the extent of the use so abandoned or discontinued, and Railroad shall at once have the right, in addition to but not in qualification of the rights hereinabove reserved, to resume exclusive possession of said property or the part thereof the use of which is so discontinued or abandoned.

Upon termination of the rights and privileges hereby granted, Grantee, at its own cost and expense, agrees to remove said structure from said property and restore said property as nearly as practicable to the same state and condition in which it existed prior to the construction of said structure. Should Grantee in such event fail, neglect or refuse to remove said structure and restore said property, such removal and restoration may be performed by Railroad at the expense of Grantee, which expense Grantee agrees to pay to Railroad upon demand

- 10. This indenture shall inure to the benefit of and be binding upon the successors and assigns of the parties hereto.
- ll. For the rights herein given, Grantee shall pay to Railroad the sum of Fifty (50) Dollars.

IN WITNESS WHEREOF, the parties hereto have caused these presents to be executed as of the day and year first herein written. (In duplicate)

tics		
	Assistant	Secretary)
OUNTY OF	HUMBOLDT	
Chairm	n Roard	of Supervisors

RECORD OF SURVEY CONTROL MONUMENTATION MAP

LOCATED WITHIN SECTIONS 29 & 32, T4N, R1W, SECTIONS 5,8,17,20, 28 & 29, T3N, R1W, **SECTIONS 2 & 11, T2N, R1W,** HUMBOLDT MERIDIAN, HUMBOLDT COUNTY, CALIFORNIA

AUGUST 2007

LOCATION MAP NO SCALE

SURVEYOR'S NOTES

- 1. THE PURPOSE OF THIS SURVEY IS TO DOCUMENT NEWLY ESTABLISHED CONTROL AND TO PERPETUATE THE LOCATIONS OF EXISTING CENTERLINE REFERENCE MONUMENTS WHICH WERE DESTROYED IN 2007 DURING THE CALTRANS MEDIAN PROJECT ON HIGHWAY 101 BETWEEN POST MILES 58.9 60.5 AND 63.2 70.0.
- 2. HORIZONTAL CONTROL FOR THIS SURVEY WAS CONSTRAINED TO THE FOLLOWING CCS83(1991.35), ZONE 1, (METRIC) GEODETIC CONTROL MONUMENTS AS PUBLISHED BY THE NATIONAL GEODETIC SURVEY. COMBINED GRID FACTOR FOR THIS PROJECT IS 0.999893228 AT "HUM 101 66.42 GPS" WITH A CONVERGENCE ANGLE OF 01°26'39".

ELLIP HEIGHT ELEVATION -22.10 9.0 -18.71 12.0

- * = ESTABLISHED BY DIGITAL LEVELS IN JANUARY 2004
- 3. NGS CONTROL MONUMENT "ROHNPORT" WAS OCCUPIED DURING THIS SURVEY. ANY ATTEMPT TO HOLD THE PUBLISHED VALUES FOR THIS POINT RESULTED IN UNSATISFACTORY RESULTS AND WAS THEREFORE ALLOWED TO FLOAT. COORDINATES SHOWN FOR THIS MONUMENT ARE THE "UPDATED" VALUES ESTABLISHED BY THIS SURVEY.
- 4. STATIC GPS OBSERVATIONS PERFORMED IN JANUARY 2004 USING TRIMBLE 4700 AND 5700 DUAL FREQUENCY RECEIVERS WITH FIXED HEIGHT TRIPODS. BASELINE PROCESSING AND LEAST SQUARES ADJUSTMENT WAS PERFORMED USING TRIMBLE GEOMATICS OFFICE VERSION 1.63,
- 5. GPS AND CONVENTIONAL CONTROL MONUMENTS WERE SET IN NOVEMBER 2003.
- DIFFERENTIAL LEVELS WERE PERFORMED IN JANUARY 2004 USING A TOPCON DL-102C DIGITAL LEVEL. THE FOLLOWING NAVD88 BENCHMARKS PUBLISHED BY THE NATIONAL GEODETIC SURVEY WERE USED DURING THIS SURVEY.

STATION ELEVATION (METRIC)
M 1401 (PID LV0660) 15.783
W 1086 (PID LV0234) 15.573
X 1086 (PID LV0236) 14.841
C 1087 RESET (PID LV0243) 32.909
L 1401 (PID LV0243) 62.416
F 1087 RESET (PID LV0248) 72.145
G 1087 RESET (PID LV0250) 85.838
K 1087 (PID LV0250) 85.838
K 1087 (PID LV0255) 1.695 * (1.652)
K 1401 (PID LV0257) 1.741 * (1.729)
L 1087 (PID LV0259) 1.657 * (1.631)
M 1087 RESET (PID LV0258) 6.657

- * DENOTES SETTLEMENT (ELEVATION ESTABLISHED BY THIS SURVEY)
- 7. CONVENTIONAL CONTROL AND RECOVERY OF CENTERLINE MONUMENTS WAS PERFORMED BETWEEN NOVEMBER 2003 AND JUNE 2004 USING A LEICA TCRA 1103-PLUS TOTAL STATION AND A TRIMBLE TSCE DATA COLLECTOR WITH SURVEY CONTROLLER VER 10.70. THE FINAL LEAST SQUARES ADJUSTMENT WAS PROCESSED USING TRIMBLE GEOMATICS OFFICE VER 1.63.
- A PROJECT REPORT IS AVAILABLE AT THE CALTRANS DISTRICT OFFICE LOCATED AT 1656 UNION STREET, EUREKA, CA 95501. REFERENCE EA IS 43840 SR 03175 & 03187.

BASIS OF BEARINGS

THE BASIS OF BEARINGS FOR THIS SURVEY IS THE NORTH AMERICAN DATUM OF 1983, CALIFORNIA COORDINATE SYSTEM, ZONE 1, HOLDING THE PUBLISHED VALUES FOR MONUMENTS HPGN D CA 01 PA, HPGN D CA 01 PB ND HPGN D CA 01 QB AS PUBLISHED BY THE NATIONAL GEODETIC SURVEY USING A COMBINED GRID FACTOR OF 0.999893228 AND CONVERGENCE ANGLE OF -1°26'39" AT 66.42 GPS. HAVING AN ELEVATION OF 80.127 M.

SURVEYOR'S STATEMENT

THIS MAP CORRECTLY REPRESENTS A SURVEY MADE BY ME OR UNDER MY DIRECTION IN CONFORMANCE WITH THE REQUIREMENTS OF THE PROFESSIONAL LAND SURVEYORS' ACT AT THE REQUEST OF THE STATE OF CALIFORNIA, DEPARTMENT OF TRANSPORTATION (CALTRANS) IN AUGUST 2007.

RICHARD EARL BEALE

NORTH REGION OFFICE OF SURVEYORS DISTRICT 1 SURVEY SUPPORT, EUREKA

DATE RICHARD SIND EARL BEALE Exp. 12/31/10

COUNTY SURVEYOR'S STATEMENT

THIS MAP HAS BEEN EXAMINED IN ACCORDANCE WITH SECTION 8766 OF THE PROFESSIONAL LAND SURVEYORS' ACT THIS ST. DAY OF COUNTY SURVEYOR

BY:

DAVID J. RYAN ES 6212 COUNTY SURVEYOR

RECORDER'S STATEMENT

FILED THIS 1 ST DAY OF October , 2010
AT 1:32 P.M.
IN BOOK 48 OF SURVEYS AT PAGES 25,26,27.28
AT THE REQUEST OF CALTRANS.

BY: CAROLYN CRNICH, HUMBOLDT COUNTY RECORDER FILE # 2010-21578-4

BY: DEPUTY COUNTY RECORDER

NO FEE REQUIRED PER GOVERNMENT CODE 6103

STATE OF CALIFORNIA
BUSINESS, TRANSPORTATION AND HOUSING AGENCY
DEPARTMENT OF TRANSPORTATION (CALTRANS)

NORTH REGION OFFICE OF SURVEYORS

ALONG HIGHWAY 101 BETWEEN ALTON AND FIELDS LANDING IN THE UNINCORPORATED AREA OF HUMBOLDT COUNTY AND THE CITY OF FORTUNA

DIST COUNTY ROUTE POST MILES 01 101 58.9/70.1

	CCS83(1991	.35), ZONE 1, N	AVD88, METRIC	FOU	ND GEODETIC CONTROL
POINT	STATION	NORTHING	EASTING	ELEVATION	DESCRIPTION
100	HPGN D CA 01 PA	641878.612	1819091.350		3.25" ALUMINUM SURVEY DISK ON ALUMINUM ALLOY ROD ENCASED IN PVC IN CONCRETE STAMPED "CA HPGN DENSIFICATION STA 01 PA 1993".
101	HPGN D CA 01 QB	659032.849	1814283.820	12.03	3.25" ALUMINUM SURVEY DISK ON ALUMINUM ALLOY ROD ENCASED IN PVC IN CONCRETE STAMPED "CA HPGN DENSIFICATION STA 01 QB 1993".
102	HPGN D CA 01 PB	647345.625	1813656.529	110.85	3.25" ALUMINUM SURVEY DISK ON ALUMINUM ALLOY ROD ENCASED IN PVC IN CONCRETE STAMPED "CA HPGN DENSIFICATION STA 01 PB 1993".
103	ROHNPORT	637731.965 637732.002*	1819470.277 1819470.423*	112.753×	ROD ENCASED IN PYC IN CONCRETE STAMPED "ROHNPORT 1987", NOT HELD FOR CONTROL

^{*} AS PUBLISHED BY THE NATION GEODETIC SURVEY

#101 HPGN D CA 01 QB (PID# AC 9253)

6994 A

R1) 6366 GPS

6897 GPS

-6810

R1

ROHNPORT (PID# LV 0662)

LEGEND

FOUND GEODETIC CONTROL MONUMENT

A SET CALTRANS GPS MONUMENT

A FOUND CALTRANS GPS MONUMENT (R1)

(R1) BOOK 64 OF SURVEYS, PAGES 146 & 147

NOTES

1. SOME MONUMENT SYMBOLS HAVE BEEN MOVED GRAPHICALLY TO ALLOW FOR CLAIRITY.

2. NOT ALL BASELINES USED IN THE ADJUSTMENT ARE SHOWN.

STATE OF CALIFORNIA
BUSINESS, TRANSPORTATION AND HOUSING AGENCY
DEPARTMENT OF TRANSPORTATION (CALTRANS)

NORTH REGION OFFICE OF SURVEYORS

ALONG HIGHWAY 101 BETWEEN ALTON AND FIELDS LANDING IN THE UNINCORPORATED AREA OF HUMBOLDT COUNTY AND THE CITY OF FORTLINA

	THE CITT OF FORTUNA							
DIST	COUNTY	ROUTE	POST MILES	SHEET NO.	TOTAL SHEETS			
01	HUM	101	58.9/70.1	2	4			

LOCATED WITHIN SECTIONS 29 & 32, T4N, R1W, SECTIONS 5,8,17,20, 28 & 29, T3N, R1W, SECTIONS 2 & 11, T2N, R1W, HUMBOLDT MERIDIAN, HUMBOLDT COUNTY, CALIFORNIA AUGUST 2007

				DNYENTIONAL CONTROL CCS83(1991.35), ZONE 1, NAVD88, METRIC
STATION	NORTHING	EASTING	ELEVATION	DESCRIPTION
621	638760.198	1818215.300	16.628	SET %" REBAR WITH 1.5" ALUMINUM CAP STAMPED "02002-621"
623	639081.887	1818197.812	16,545	SET %" REBAR WITH 1.5" ALUMINUM CAP STAMPED "02002-623"
5890GPS	639095.408	1818084.450	16.578	SET 1" GIP WITH 2.25" WITH CONCRETE COLLAR BRASS DISK STAMPED "58.90 GPS 2003"
5914GPS	639482.457	1818104.356	16.247	SET 1" GIP WITH 2.25" WITH CONCRETE COLLAR BRASS DISK STAMPED "59.14 GPS 2003"
5950	640048.662	1818057.189	20.830	SET %" REBAR WITH 1.5" ALUMINUM CAP STAMPED "59.50 2003"
5977	640478.536	1818031.999	15.365	SET %" REBAR WITH 1.5" ALUMINUM CAP STAMPED "59.77 2003"
5994GPS	640764.725	1817916.843	15.212	FOUND ¾" REBAR WITH 1.5" ALUMINUM CAP STAMPED "HUM 101 59.94" (R1, R2)
6049GPS	641243.774	1817790.489	14.391	FOUND ¾" REBAR WITH 1.5" ALUMINUM CAP STAMPED "HUM 101 60.49" (R1, R2)
6064	641736.254	1817459.174	14.680	FOUND ¾" REBAR WITH 1.5" ALUMINUM CAP STAMPED "HUM 101 60.64" (R2)
6325	644512.521	1814456.488	29.500	FOUND ¾" REBAR WITH 1.5" ALUMINUM CAP STAMPED "HUM 101 63.25" (R2)
6348GPS	644695.261	1814161.770	36.998	FOUND ¾" REBAR WITH 1.5" ALUMINUM CAP STAMPED "HUM 101 63.48" (R1, R2)
6366GPS	644876.935	1813916.854	35.771	FOUND 34" REBAR WITH 1.5" ALUMINUM CAP STAMPED "HUM 101 63.66" (R1, R2)
6383	644976.941	1813669.003	34.172	SET %" REBAR WITH 1.5" ALUMINUM CAP STAMPED "63.83 2003"
		1813473.861	29.385	SET 🔏 IRON PIPE WITH 2.25" BRASS DISK STAMPED "SINGLEY 1 64.01 2003"
6428	645356.801	1813057.663	23.612	SET $\frac{5}{8}$ " REBAR WITH 1.5" ALUMINUM CAP STAMPED "64.28 2003"
6442	645424.222	1812834.897	26.838	SET %" REBAR WITH 1.5" ALUMINUM CAP STAMPED "64.42 2003"
6471	645764.966	1812539.414	50.614	SET % REBAR WITH 1.5" ALUMINUM CAP STAMPED "64.71 2003"
6488	646063.662	1812496.391	62.605	SET 5/8" REBAR WITH 1.5" ALUMINUM CAP STAMPED "64.88 2003"
6507	646349.960	1812601.275	63.727	SET ⅓" REBAR WITH 1.5" ALUMINUM CAP STAMPED "65.07 2003"
6531	646731.811	1812795.379	59.384	SET 5/8" REBAR WITH 1.5" ALUMINUM CAP STAMPED "65.31 2003"
6564	647206.140	1812956.764	66.069	SET % REBAR WITH 1.5" ALUMINUM CAP STAMPED "65.64 2003"
102	647345.625	1813656.529	110.85	FOUND 3.25" ALUMINUM SURVEY DISK ON ALUMINUM ALLOY ROD ENCASED IN PVC IN
				CONCRETE STAMPED "CA HPGN DENSIFICATION STA 01 PB 1993"
6593	647616.208	1813157.768	71.513	SET %" REBAR WITH 1.5" ALUMINUM CAP STAMPED "65.93 2003"
6610	647902.952	1813203.998	76.609	SET 5%" REBAR WITH 1.5" ALUMINUM CAP STAMPED "66.10 2003"
6623	648082.740	1813246.893	74.545	SET % REBAR WITH 1.5 ALUMINUM CAP STAMPED "66.23 2003"
6642GPS	648397.474	1813080.575	80.127	SET 1" GIP WITH 2.25" BRASS DISK WITH CONCRETE COLLAR STAMPED "66.42 GPS 2003"
6673	648758.842	1812970.494	87.445	SET ₹8" REBAR WITH 1.5" ALUMINUM CAP STAMPED "66.73 2003"
6687	649024.716	1813034.350	92.100	SET %" REBAR WITH 1.5" ALUMINUM CAP STAMPED "66.87 2003"
6701	649212.844	1813255.520	83.535	SET %" REBAR WITH 1.5" ALUMINUM CAP STAMPED "67.01 2003"
6728	649537.428	1813538.671	69.977	SET % REBAR WITH 1.5 ALUMINUM CAP STAMPED "67.28 2003"
6747	649783.818	1813599.732	55.484	SET %" REBAR WITH 1.5" ALUMINUM CAP STAMPED "67.47 2003"
6772	650122.442	1813716.012	33.920	SET %" REBAR WITH 1.5" ALUMINUM CAP STAMPED "67.72 2003"
6797	650551.665	1813784.699	8.606	SET % REBAR WITH 1.5" ALUMINUM CAP STAMPED "67.97 2003"
6810GPS	650807.989	1813877.982	6.095	SET 1" GIP WITH 2.25" BRASS DISK WITH CONCRETE COLLAR STAMPED "68.10 GPS 2003"
6835		1813888.458	3.709	SET %" REBAR WITH 1.5" ALUMINUM CÁP STAMPED "68.35 2003"
6858	651576.060	1813963.094	2.456	SET $\frac{5}{8}$ " REBAR WITH 1.5" ALUMINUM CAP STAMPED "68.58 2003"
6886	652014.778	1813974.406	2.186	SET ¾" REBAR WITH 1.5" ALUMINUM CAP STAMPED "68.86 2003"
		1814110.979	3.174	SET 1" GIP WITH 2.25" BRASS DISK WITH CONCRETE COLLAR STAMPED "HUM 101 68.97 GP
		1813969.742	1.621	SET %" REBAR WITH 1.5" ALUMINUM CAP STAMPED "69.10 2003"
		1813887.032	2.043	SET %" REBAR WITH 1.5" ALUMINUM CAP STAMPED "69.37 2003"
		1813869.650	1.995	SET %" REBAR WITH 1.5" ALUMINUM CAP STAMPED "69.60 2003"
		1813820.785	2.358	SET ¾ REBAR WITH 1.5 ALUMINUM CAP STAMPED "PC 69.82"
		1813795.901	3.348	SET 5/8" REBAR WITH 1.5" ALUMINUM CAP STAMPED "PC 69.94"
		1814042.416	4.149	SET 1" GIP WITH 2.25" BRASS DISK WITH CONCRETE COLLAR STAMPED "HUM 101 69.94 GP
		1813744.951	4.630	SET %" REBAR WITH 1.5" ALUMINUM CAP STAMPED "PC 70.07"

LEGEND

FOUND GEODETIC CONTROL MONUMENT

△ SET CALTRANS GPS MONUMENT

▲ FOUND CALTRANS GPS MONUMENT (R1)

△ SET CALTRANS CONTROL MONUMENT

▲ FOUND CALTRANS CONTROL MONUMENT (R2)

R1 BOOK 64 OF SURVEYS, PAGES 146 & 147

(R2) BOOK 67 OF SURVEYS, PAGES 56 - 64

(XX) SECTION NUMBER

NOTE

SOME MONUMENT SYMBOLS HAVE BEEN MOVED GRAPHICALLY TO ALLOW FOR CLAIRITY.

STATE OF CALIFORNIA
BUSINESS, TRANSPORTATION AND HOUSING AGENCY
DEPARTMENT OF TRANSPORTATION (CALTRANS)

NORTH REGION OFFICE OF SURVEYORS

ALONG HIGHWAY 101 BETWEEN
ALTON AND FIELDS LANDING
IN THE UNINCORPORATED AREA
OF HUMBOLDT COUNTY AND
THE CITY OF FORTUNA

	THE	CIT	Y OF FORTU	NA	
DIST	COUNTY	ROUTE	POST MILES	SHEET NO.	TOTAL SHEETS
01	HUM	101	58.9/70.1	3	4

LOCATED WITHIN SECTIONS 29 & 32, T4N, R1W, SECTIONS 5,8,17,20, 28 & 29, T3N, R1W, SECTIONS 2 & 11, T2N, R1W, HUMBOLDT MERIDIAN, HUMBOLDT COUNTY, CALIFORNIA AUGUST 2007

CONVENTIONAL CONTROL CCS83(1991.35), ZONE 1, NAVD88, METRIC

STATION	NORTHING	EASTING	ELEVATION	DESCRIPTION
6064	641736.254	1817459.174	14.680	FOUND 3/4" REBAR WITH 1.5" ALUMINUM CAP STAMPED "HUM 101 60.64" (R2)
708	641291.600	1817744.875	13.883	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 312+55.84 (R6)
709	641083.792	1817840.502	14.168	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 305+42.44 (R6)
710	640604.723	1817978.587	15.485	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 288+66.59/288+63.18 (RO
711	640397.864	1818028.542	16.025	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 281+65.05 (R6)
712	640167.226	1818062 .442	20.202	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION BCIC 274+00.00 (R6)
713	640000.096	1818073.112	20.116	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 268+50.24 (R6)
714	639588.754	1818085.086	16.979	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 255+00.00 (R6)
715	639237.889	1818095.334	16.858	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 243+47.30 (R6)
716	639001.751	1818111.402	17.329	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 235+70.63 (R6)
621	638760.198	1818215.300	16.628	SET %" REBAR WITH 1.5" ALUMINUM CAP STAMPED "02002-621"
6325	644512.521	1814456.488	29.50	FOUND 34" REBAR WITH 1.5" ALUMINUM CAP STAMPED "HUM 101 63.25" (R2)
721	644527.177	1814413.721	30.151	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 93+76.77 (R3)
722	644676.402	1814212.074	36.574	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 102+00.00 (R3)
723	644774.387	1814079.668	37.379	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 107+40.38 (R3)
724	644849.817	1813944.765	36.048	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 112+48.85 (R3)
725	644901.232	1813817.241	34.972	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 116+83.12 (R3)
726	644995.148	1813671.645	33.545	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 122+72.09 (R3)
727	645302.266	1813239.856	25.039	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 140+36.17 (R4)
728	645329.736	1813101.169	24.308	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 145+00.00 (R4)
738	645507.061	1812778.383	28.318	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 157+27.55 (R4)
739	645659.388	1812633.133	39.678	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 164+18.17 (R4)
740	646333.398	1812616.537	60.849	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 188+00.00 (R4)
741	646760.715	1812790.831	59.662	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 203+14.12 (R4)
742	646968.494	1812875.606	62.592	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 210+50.00 (R4)
743	647137.786	1812944.652	64.669	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 216+50.00 (R4)
744	647285.529	1813004.893	66.888	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 221+73.59 (R4)
745	647514.091	1813098.163	70,210	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 229+83.69 (R5)
102	647345.625	1813656.529	110,85	FOUND 3.25" ALUMINUM SURVEY DISK ON ALUMINUM ALLOY ROD ENCASED IN PVC
				IN CONCRETE STAMPED "CA HPGN DENSIFICATION STA 01 PB 1993"
838	647793.347	1813212.092	72.285	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 239+73.74 (R5)
839	647949.322	1813245.671	73.184	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 245+00.00 (R5)
		1813210.037	75.012	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 251+53.58 (R5)
841	648586.771	1813023.217	83.057	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 267+31.28 (R5)
	648962.741	1813027.077	89.600	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 280+00.00 (R5)
	649104.178	1813124.256	88.379	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 285+66.35 (R5)
844	649500.576	1813494.964	70.697	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 303+50.00 (R5)
	649795.949	1813623.238	54.460	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 314+12.19 (R5)
846	649955.647	1813661.017	44.469	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 319+50.38 (R5)
		1813696.018	35.514	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 324+48.68 (R5)
848	650634.437	1813821.843	6.265	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 342+38.78 (R5)
755	651346.903	1813919.944	3.736	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 366+00.00 (R5)
	652253.764	1813977.231	2.274	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 395+88.75 (R5)
		1813933.398	2.223	FOUND 2-25" BRASS DISK IN CONCRETE, CENTERLINE STATION 407+00.00 (R5)
759	653405.672	1813826.972	2.084	FOUND 2.25" BRASS DISK IN CONCRETE, CENTERLINE STATION 434+00.00 (R5)
7007	653946.755	1813744.951	4.630	SET 🔏 REBAR WITH 1.5 ALUMINUM CAP STAMPED "PC 70.07"

- BOOK 64 OF SURVEYS, PAGES 146 & 147 BOOK 67 OF SURVEYS, PAGES 56 64 CALTRANS AS-BUILTS 59-1TC7-F CALTRANS AS-BUILTS 57-1TC6 + 58-1TC5 CALTRANS AS-BUILTS 61-1T13C10-F CALTRANS AS-BUILTS 61-1T13C16-F

NOTE: ALL MONUMENTS REFERENCED BY R3, R4, R5 AND R6 WERE DESTROYED DURING CONSTRUCTION IN 2007.

LEGEND

- A FOUND GEODETIC CONTROL MONUMENT
- △ SET CALTRANS CONTROL MONUMENT
- A FOUND CALTRANS CONTROL MONUMENT
- FOUND CENTERLINE MONUMENT

SOME MONUMENT SYMBOLS HAVE BEEN MOVED GRAPHICALLY TO ALLOW FOR CLAIRITY.

STATE OF CALIFORNIA
BUSINESS, TRANSPORTATION AND HOUSING AGENCY
DEPARTMENT OF TRANSPORTATION (CALTRANS)

NORTH REGION OFFICE OF SURVEYORS

ALONG HIGHWAY 101 BETWEEN ALTON AND FIELDS LANDING IN THE UNINCORPORATED AREA OF HUMBOLDT COUNTY AND THE CITY OF FORTUNA

DIST	COUNTY	ROUTE	POST MILES	SHEET NO.	TOTAL SHEETS
01	HUM	101	58.9/70.1	4	4

RECORD OF SURVEY

CONTROL MONUMENTATION AND MONUMENT PERPETUATION MAP STATE HIGHWAY 101

IN SECTION 2, TOWNSHIP 2 NORTH, RANGE 1 WEST, AND SECTIONS 28, 29, 33, 34 & 35, TOWNSHIP 3 NORTH, RANGE 1 WEST,

HUMBOLDT MERIDIAN

CITY OF FORTUNA, COUNTY OF HUMBOLDT, STATE OF CALIFORNIA

OCTOBER 1999

BASIS OF BEARINGS

THE BASIS OF BEARING FOR THIS SURVEY IS THE NORTH AMERICAN DATUM OF 1983, EPOCH 1991.35, HOLDING THE CCS83 ZONE 1 GRID COORDINATES AS PUBLISHED BY THE NATIONAL GEODETIC SURVEY AS SHOWN IN THE "PRIMARY CONTROL" TABLE HEREON.

PURPOSE OF SURVEY

THE PURPOSE OF THIS SURVEY IS TO SHOW THE RELATIONSHIP BETWEEN THE NEW CONTROL MONUMENTS AND TO PERPETUATE THE LOCATIONS OF CENTERLINE MONUMENTS WHICH WERE SET BETWEEN 1958 AND 1962 DURING THE CONSTRUCTION OF THIS SECTION OF HIGHWAY 101 UNDER CONTRACT NUMBERS 59-1TC7 & 61-1T13C16F (SEE AS-BUILT PLANS IN DRAWERS 10-32-03 (R3) & 10-93-11 (R2) ON FILE AT THE CALTRANS DISTICT OFFICE IN EUREKA). MOST OF THESE MONUMENTS WERE DESTROYED DURING THE CONSTRUCTION OF A CONCRETE MEDIAN BARRIER THROUGH THIS PORTION OF STATE HIGHWAY 101 IN 2002.

SURVEYOR'S NOTES

1. HORIZONTAL CONTROL FOR THIS SURVEY WAS CONSTRAINED TO THE MONUMENTS AS SHOWN ON THE MAP FILED IN BOOK 64 OF SURVEYS, PAGES 146 AND 147 (A SURVEY PERFORMED USING METRIC UNITS).

STATION HUM 101 59.94	NORTHING 2102242.269	EASTING 5964282.176	ELEVATION 49.92	DESCRIPTION 1 $rac{1}{2}$ " alum cap on $rac{3}{4}$ " rebar stamped "hum 101 59.94"
HUM 101 60.49	2103813.948	5963867.629	47.21	1 $\frac{1}{2}$ " ALUM CAP ON $\frac{3}{4}$ " REBAR STAMPED "HUM 101 60.49"
HUM 101 63.48	2115137.840	5951962.519	121.34	1 $\frac{1}{2}$ " ALUM CAP ON $\frac{3}{4}$ " REBAR STAMPED "HUM 101 63.48"
HUM 101 63.66	2115733.846	5951158.983	117.35	1 $\frac{1}{2}$ " ALUM CAP ON $\frac{3}{4}$ " REBAR STAMPED "HUM 101 63.66"

- 2. COMBINED GRID FACTOR FOR THIS PROJECT IS 0.9999030 AT "HUM 101 61.68" WITH A CONVERGENCE ANGLE OF 01°25'06".
- 3. CONTROL MONUMENTS WERE SET IN DECEMBER, 1999.
- 4. FIELDWORK WAS PERFORMED UNDER THE DIRECTION OF BARTON FLOYD CREWS, PLS 6744 IN DECEMBER, 1999, USING A LEICA TCA 1103 TOTAL STATION AND HEWLETT PACKARD 200LX DATA COLLECTOR WITH CALTRANS DATA COLLECTION SOFTWARE.
- 5. LEAST SQUARES ADJUSTMENT WAS PERFORMED USING CALTRANS POST PROCESSING SOFTWARE (CTDAP, RELEASE 8).
- 6. ALL ELEVATIONS WERE ESTABLISHED USING TRIGONOMETRIC PROCEDURES.
- 7. A PROJECT REPORT IS AVAILABLE AT THE CALTRANS DISTRICT OFFICE LOCATED AT 1656 UNION STREET, EUREKA, CA 95501. THE REFERENCE E.A. IS 40270 SR 99158.

LOCATION MAP

SURVEYOR'S STATEMENT

THIS MAP CORRECTLY REPRESENTS A SURVEY MADE BY ME OR UNDER MY DIRECTION IN CONFORMANCE WITH THE REQUIREMENTS OF THE PROFESSIONAL LAND SURVEYORS' ACT AT THE REQUEST OF THE STATE OF CALIFORNIA, DEPARTMENT OF TRANSPORTATION - CALTRANS IN JANUARY 2008.

PATRICK WARD MORRILL PLS 6191
LICENSE EXPIRATION DATE: 3-31-2010
NORTH REGION OFFICE OF SURVEYORS

COUNTY SURVEYOR'S STATEMENT

THIS MAP HAS BEEN EXAMINED IN ACCORDANCE WITH SECTION 8766 OF THE PROFESSIONAL LAND SURVEYORS' ACT THIS 307H DAY OF COROLLONG, 2009.

DAVID JAMES RYAN, PLS 62/2 HUMBOLDI COUNTY SURVEYOR

DATE

LICENSE EXPIRATION DATE: MARCH 31, 2010

RECORDER'S STATEMENT

FILED THIS 2 no DAY OF November ,2009 AT 2:50 P.M. IN BOOK 67 OF SURVEYS AT PAGES 56-64 , AT THE REQUEST OF CALTRANS.

CAROLYN CRNICH

HUMBOLDT COUNTY RECORDER

FILF # 2009-24342-9

BY: L Holman
DEPUTY COUNTY RECORDER

NO FEE REQUIRED PER GOVERNMENT CODE 6103

STATE OF CALIFORNIA BUSINESS, TRANSPORTATION AND HOUSING AGENCY DEPARTMENT OF TRANSPORTATION (CALTRANS)

> NORTH REGION OFFICE OF SURVEYORS

RECORD OF SURVEY
CONTROL MONUMENTATION AND
MONUMENT PERPETUATION MAP

IN THE CITY OF FORTUNA, HUMBOLDT COUNTY STATE HIGHWAY 101

CO. RTE. P.M. SHEET NUMBER
HUM 101 59.9/63.1 1 OF 9

SURVEYS

BOOK 67 PAGE 56

RECORD OF SURVEY

CONTROL MONUMENTATION AND MONUMENT PERPETUATION MAP STATE HIGHWAY 101

IN SECTION 2, TOWNSHIP 2 NORTH, RANGE 1 WEST, AND SECTIONS 28, 29, 33, 34 & 35, TOWNSHIP 3 NORTH, RANGE 1 WEST, HUMBOLDT MERIDIAN

CITY OF FORTUNA, COUNTY OF HUMBOLDT, STATE OF CALIFORNIA

OCTOBER 1999

CONVERGENCE ANGLE -1°25′06" AT HUM 101 61.68

LEGEND

FOUND MONUMENT AS DESCRIBED

SET MONUMENT AS DESCRIBED

FOUND CENTERLINE MONUMENT AS DESCRIBED

AS BUILT PLANS FOR CONTRACT 59-1TC7 IN DRAWER 10-93-11 CALTRANS DISTRICT 1 OFFICE.

AS BUILT PLANS FOR CONTRACT 61-1T13C16F IN DRAWER 10-32-03 CALTRANS DISTRICT 1 OFFICE.

STATION	NORTHING	EASTING	ELEVATION	DESCRIPTION
HUM 101 62.79	2112636.283	5954516.260	74.65	SET 1 1/2" ALUMINUM DISK ON 3/4" REBAR STAMPED "CALTRANS HUM 101 62.79"
HUM 101 63.01	2113518.768	5953845.025	69.06	SET 1 $\frac{1}{2}$ " ALUMINUM DISK ON $\frac{3}{4}$ " REBAR STAMPED "CALTRANS HUM 101 63.01"
HUM 101 63.25	2114538.163	5952929.328	96.79	SET 1 1/2" ALUMINUM DISK ON 3/4" REBAR STAMPED "CALTRANS HUM 101 63.25"
	1	CE	NTERLINE	MONUMENTS FOUND BY THIS SURVEY
	1	CE	NTERLINE	
STATION	NORTHING	EASTING	ELEVATION	MONUMENTS FOUND BY THIS SURVEY DESCRIPTION
STATION #66	NORTHING 2112712.474			MONUMENTS FOUND BY THIS SURVEY
		EASTING	ELEVATION	MONUMENTS FOUND BY THIS SURVEY DESCRIPTION

STATE OF CALIFORNIA BUSINESS, TRANSPORTATION AND HOUSING AGENCY DEPARTMENT OF TRANSPORTATION (CALTRANS)

NORTH REGION OFFICE OF SURVEYORS

RECORD OF SURVEY CONTROL MONUMENTATION AND MONUMENT PERPETUATION MAP

IN THE CITY OF FORTUNA. HUMBOLDT COUNTY STATE HIGHWAY 101

CO. RTE. P.M. SHEET NUMBER HUM | IOI | 59.9/63.I 3 OF 9

RECORD OF SURVEY

CONTROL MONUMENTATION AND MONUMENT PERPETUATION MAP STATE HIGHWAY 101

IN SECTION 2, TOWNSHIP 2 NORTH, RANGE 1 WEST, AND SECTIONS 28, 29, 33, 34 & 35, TOWNSHIP 3 NORTH, RANGE 1 WEST,

HUMBOLDT MERIDIAN

CITY OF FORTUNA, COUNTY OF HUMBOLDT, STATE OF CALIFORNIA

OCTOBER 1999

CONVERGENCE ANGLE -1°25′06" AT HUM 101 61.68

822.57

	PROJECT CONTROL ESTABLISHED BY THIS SURVEY (CCS83 (1991.35), ZONE 1, NAVD 88, US SURVEY FEET)								
STATION	NORTHING	EASTING	ELEVATION	DESCRIPTION					
HUM 101 62.31	2111345.370	5956687.887	70.55	SET 1 1/2" ALUMINUM DISK ON 3/4" REBAR STAMPED "HUM 101 62.31"					
HUM 101 62.51	2111764.989	5955529.749	82.11	SET 1 $\frac{1}{2}$ " ALUMINUM DISK ON $\frac{3}{4}$ " REBAR STAMPED "HUM 101 62.51"					
HUM 101 62.79	2112636.283	5954516.260	74.65	SET 1 $\frac{1}{2}$ " ALUMINUM DISK ON $\frac{3}{4}$ " REBAR STAMPED "HUM 101 62.79"					
HUM 101 63.01	2113518.768	5953845.025	69.06	SET 1 $\frac{1}{2}$ " ALUMINUM DISK ON $\frac{3}{4}$ " REBAR STAMPED "HUM 101 63.01"					
			•						

CENTERLINE MONUMENTS FOUND BY THIS SURVEY

STATION	NORTHING	EASTING	ELEVATION	DESCRIPTION
#63	2111600.396	5955970.260	76.64	FOUND 2 1/4" BRASS DISK IN CONCRETE CENTERLINE STATION 45+19.47 (R2), DESTROYED 2002
#64	2111952.620	5955339.963	78.04	FOUND 2 1/4" BRASS DISK IN CONCRETE CENTERLINE STATION 57+00 (R2), DESTROYED 2002
#65	2112310.008	5954913.655	73.01	FOUND 2 1/4" BRASS DISK IN CONCRETE CENTERLINE STATION 62+57.04 EC (R2), DESTROYED 2002
#66	2112712.474	5954506.523	74.30	FOUND 2 1/4" BRASS DISK IN CONCRETE CENTERLINE STATION 68+29.78 BC (R2), DESTROYED 2002

LEGEND

FOUND MONUMENT AS DESCRIBED

-APPROXIMATE R/W

SET MONUMENT AS DESCRIBED

- FOUND CENTERLINE MONUMENT AS DESCRIBED
- AS BUILT PLANS FOR CONTRACT 59-1TC7 IN DRAWER 10-93-11 CALTRANS DISTRICT 1 OFFICE.
- AS BUILT PLANS FOR CONTRACT 61-1T13C16F IN DRAWER 10-32-03 CALTRANS DISTRICT 1 OFFICE.

STATE OF CALIFORNIA BUSINESS, TRANSPORTATION AND HOUSING AGENCY DEPARTMENT OF TRANSPORTATION (CALTRANS)

NORTH REGION OFFICE OF SURVEYORS

RECORD OF SURVEY CONTROL MONUMENTATION AND MONUMENT PERPETUATION MAP

IN THE CITY OF FORTUNA. HUMBOLDT COUNTY STATE HIGHWAY 101

CO.	RTE.	P.M.	SHEET NUMBER
HUM	101	59.9/63.1	4 OF 9

RECORD OF SURVEY **CONTROL MONUMENTATION AND MONUMENT PERPETUATION MAP** STATE HIGHWAY 101 IN SECTION 2, TOWNSHIP 2 NORTH, RANGE 1 WEST, AND

SECTIONS 28, 29, 33, 34 & 35, TOWNSHIP 3 NORTH, RANGE 1 WEST,

HUMBOLDT MERIDIAN CITY OF FORTUNA, COUNTY OF HUMBOLDT, STATE OF CALIFORNIA OCTOBER 1999 SECTION 34 TOWNSHIP 3 NORTH RANGE 1 WEST 9 SHEE U.S. HIGHWAY 101 - S46°17′19"E APPROXIMATE R/W <u>N41°06′40"W</u> HUM IOI CONTINUED LEGEND HUM IOI CENTERLINE STATIONING FROM AS-BUILT PLANS FOR CONTRACTS 59-1TC7 (R2) & 1T13C16F (R3) PROJECT CONTROL ESTABLISHED BY THIS SURVEY (CCS83 (1991.35), ZONE 1, NAVD 88, US SURVEY FEET)

STATION	NORTHING	EASTING	ELEVATION	DESCRIPTION
HUM 101 61.14	2107734.013	5961619.989	46.64	SET 1 $\frac{1}{2}$ " ALUMINUM DISK ON $\frac{3}{4}$ " REBAR STAMPED "CALTRANS HUM 101 61.14"
HUM 101 61.40	2108327.017	5960362.154	55.17	SET 1 $\frac{1}{2}$ " ALUMINUM DISK ON $\frac{3}{4}$ " REBAR STAMPED "CALTRANS HUM 101 61.40"
HUM 101 61.52	2108899.791	5959836.719	74.44	SET 1 $\frac{1}{2}$ " ALUMINUM DISK ON $\frac{3}{4}$ " REBAR STAMPED "CALTRANS HUM 101 61.52"
HUM 101 61.68	2109580.538	5959447.149	72.13	SET 1 $\frac{1}{2}$ " ALUMINUM DISK ON $\frac{3}{4}$ " REBAR STAMPED "CALTRANS HUM 101 61.68"

CENTERLINE MONUMENTS FOUND BY THIS SURVEY

STATION	NORTHING	EASTING	ELEVATION	DESCRIPTION
#54	2107721.188	5961546.220	44.20	FOUND 2 1/4" BRASS DISK IN CONCRETE "357+01.79 EC" (R3), DESTROYED 2002
#55	2108324.704	5960461.822	49.03	FOUND 2 1/4" BRASS DISK IN CONCRETE "369+42.86 BC" (R3), DESTROYED 2002
#56	2108752.223	5959991.079	68.88	FOUND 2 1/4" BRASS DISK IN CONCRETE "375+84.27 EC" (R3), DESTROYED 2002

FOUND MONUMENT AS DESCRIBED

SET MONUMENT AS DESCRIBED

FOUND CENTERLINE MONUMENT AS DESCRIBED

AS BUILT PLANS FOR CONTRACT 59-1TC7 IN DRAWER 10-93-11 CALTRANS DISTRICT 1 OFFICE.

AS BUILT PLANS FOR CONTRACT 61-1T13C16F IN DRAWER 10-32-03 CALTRANS DISTRICT 1 OFFICE.

CONVERGENCE ANGLE -1°25′06" AT HUM 101 61.68

NOTE: ROTATE GRID BEARINGS 1°25'06" COUNTER CLOCKWISE TO OBTAIN GEODETIC (TRUE) BEARINGS.

SCALE 1'' = 100'

STATE OF CALIFORNIA BUSINESS, TRANSPORTATION AND HOUSING AGENCY DEPARTMENT OF TRANSPORTATION (CALTRANS)

NORTH REGION OFFICE OF SURVEYORS

RECORD OF SURVEY CONTROL MONUMENTATION AND MONUMENT PERPETUATION MAP

IN THE CITY OF FORTUNA. HUMBOLDT COUNTY STATE HIGHWAY 101

SHEET NUMBER HUM IOI 59.9/63.I 7 OF 9

ARCATA-EUREKA AIRPORT TERMINAL McKINLEYVILLE

AVIATION

839-5401

DEPARTMENT OF PUBLIC WORKS

COUNTY OF HUMBOLDT

MAILING ADDRESS: 1106 SECOND STREET, EUREKA, CA 95501-0579 AREA CODE 707/FAX 445-7409

> PUBLIC WORKS BUILDING SECOND & L ST., EUREKA

ADMINISTRATION BUSINESS ENGINEERING 445-7491 445-7652 445-7377 ARCHITECT

NATURAL RESOURCES
PARKS
ROADS & EQUIPMENT MAINT.
CT 445-7493

445-7741 445-7651 CLARK COMPLEX HARRIS & H ST., EUREKA

LAND USE 445-7205

January 10, 2005

Duane Rigge, City Manager City of Fortuna POB 545 Fortuna CA 95540

RE: ANNEXATION BY THE CITY OF FORTUNA OF COUNTY ROADS ADJACENT TO THE CITY OF FORTUNA

Allen Campbell, Director, Humboldt County Department of Public Works, has requested that I provide you some information. It is in response to a request by you associated with roads proposed for annexation that were discussed in our previous letters. The previous letters discussed the annexation of Strongs Creek Road (known by the City as Dinsmore Drive), Twelfth Street, a portion of Rohnerville Road, a portion of Eel River Drive, and Drake Hill Road.

The information requested was regarding the County's cost of maintenance of the roads over the last five years and what it would cost if the County was to perform the desired future maintenance of the surface of the roads. The following is a description of the road, the County's past cost of the maintenance of the road, and an estimate of the cost to maintain the roads to the desired standard. The desired standard of maintenance consists of sealing the roads at a 12 to 14 year period and resurfacing the roads every 25 years. The County cost for sealing a road is estimated to be \$0.12 per square foot and a \$1.30 per square foot for resurfacing a road. These are the prices used currently by the County in the estimation of costs for maintenance of new subdivision roads.

STRONGS CREEK ROAD

This portion of road lies south of the city limits of Fortuna to the intersection of Riverwalk Drive. The County has not spent any funds on this road for the last 5 years or longer. When the City annexed the portion of land at the end of the road, the then city manager of Fortuna provided a letter to LAFCO and the County indicating that they would maintain this portion of Strongs Creek Road for the County as consideration of approval of the annexation.

The portion of Strongs Creek Road in the County is approximately 640 feet in length and has an average width of 26 feet. The cost of sealing the road would be estimated at \$2,000 and \$21,632 for resurfacing the road at today's cost.

TWELFTH STREET

This portion of road lies within the limits of the CalTrans right of way for State Highway 101. It lies between the railroad tracks, over the overpass, to the intersection of Strongs Creek Road and Riverwalk Drive. The County entered into an agreement with CalTrans to be responsible for the surface of the road. CalTrans is responsible for the overpass structure.

The County has spent \$37 over the last five years on this portion of road. The length of road is approximately 1,530 feet and has an average width of 30 feet. The cost of resealing the road is estimated at \$5,500 and \$69,670 for resurfacing the road.

ROHNERVILLE ROAD

This portion of road lies north of Loop Road to the south line of the park. The road has been presumed by the City to be located in the City. The Campton Heights and Fortuna High School annexations by the City appear to have not included this portion of road. The County has not been providing maintenance of the road. The road was presumed by the City to be within the city limits of Fortuna and has been maintained by the City for a number of years.

EEL RIVER DRIVE

This portion of road lies between Drake Hill Road and Kenmar Road. It does not front any developable property located in the County. CalTrans and NWP Railroad front the west side of the road. The entire east side of the road serves lands located in the City. It is approximately 0.93 mile in length and has an average width of 24 feet. The County has spent approximately \$26,000 on this road in the last 5 years. The majority of the cost was associated with clean up of the movement of earth off of property owned by the City. The slide occurred in 2002.

The cost of resealing the road is estimated to be approximately \$14,142 and \$153,205 for resurfacing the road.

DRAKE HILL ROAD

This portion of road is located between Rohnerville Road and Eel River Drive. The City is located along the entire north side of the road. The north side of the road is zoned and planned for residential development. The south side of the road located in the County is mainly zoned and planned for agricultural use. The road is 1.25 miles in length and is approximately 22 feet in width. The County has spent approximately \$79,000 in maintenance of this road in the last 5 years. Approximately \$67,000 of the maintenance cost was associated with resurfacing Drake Hill Road between Thelma Drive and Rohnerville Road in 2002. This stretch of road is where the heaviest density of residential property is located within the City.

The cost of resealing the road is estimated to be approximately \$17,424 and \$188,760 is estimated for resurfacing the road.

If you have any additional questions regarding the roads or this letter, please don't hesitate to contact this office.

Sincerely,

Harless McKinley Land Use Division

445-7205

FREEWAY MAINTENANCE AGREEMENT

WHEREAS, on November 6, 1958, a Freeway Agreement was executed between the County and the State relating to the development of that portion of State Highway Route 1 in the County of Humboldt between 0.6 mile north of Route 35 and 0.3 mile north of Fortuna as a freeway, and

WHEREAS, under the provisions of said Freeway
Agreement, the County agreed to certain adjustments in the
County road system, and for the carrying of certain County
roads over or under or to a connection with the freeway, and

WHEREAS, said freeway has now been completed or is nearing completion, and the parties mutually desire to clarify the division of maintenance responsibility as to separation structures, and County roads or portions thereof, within the freeway limits.

NOW, THEREFORE, IT IS AGREED:

1. ROADWAY SECTIONS

The County will maintain, at County expense, all portions of County roads and appurtenant structures and bordering areas, colored in yellow on the attached map marked Exhibit "A" and made a part hereof by this reference.

2. VEHICULAR OVERCROSSINGS

The State will maintain, at State expense, the entire structure below the top of the concrete deck surface, exclusive of any bituminous surface treatment thereof. The County will maintain, at County expense, the top of the concrete deck surface, together with any bituminous surface treatment thereon, and all portions of the structure above the concrete deck surface, and shall perform such other work as may be necessary to insure an impervious and otherwise suitable surface. The County will also maintain all traffic service facilities provided for the benefit or control of County road traffic.

3. VEHICULAR UNDERCROSSINGS

The State will maintain the structure proper. The roadway section, including the traveled way, shoulders, curbs, sidewalks, walls, drainage installations and traffic service facilities, will be maintained by the County.

4. EFFECTIVE DATE

This agreement shall be effective upon the date of its execution by the State; it being understood and agreed, however, that the execution of this agreement shall not affect any pre-existing obligations of the County to maintain designated areas pursuant to prior written notice from the State that work in such areas, which the County has agreed to maintain pursuant to the terms of the Freeway Agreement, has been completed.

STATE OF CALIFORNIA DEPARTMENT OF PUBLIC WORKS DIVISION OF HIGHWAYS

J. C. WOMACK STATE HIGHWAY ENGINEER

Approval Recommended

SAM HELWER District Engineer

EDWARD L. TINNEY
Maintenance Engineer

Approved as to form:

RICHARD C. EAST
Attorney for Department

Attorney

By <u>CHAS. E. WAITE</u> Deputy State Highway Engineer

APR 15 1963

COUNTY OF HUMBOLDT

By NORMAN R. ROBERTSON Chairman, Board of Supervisors

FRED J. MOORE, Jr. (SEAL)
County Clerk

By W. E. SCHUSSMAN

In Humboldt County between 0.4 mile north of Route 35 and 0.3 mile north of Fortuna

Road I-Hum-1-F.6

VICINITY MAP SHEET I OF 3

AREA TO BE MAINTAINED BY COUNTY

Location #2 12th Street Overcrossing

Environmental Constraints Analysis

Fortuna Highway 101/Riverwalk Area Connectivity Project

May 2016

Table of Contents

1.	Introduction					
	1.1	Project Summary				
	1.2	Purpose of the Report	1			
	1.3	Location	1			
	1.4	Overview of Study Area	4			
2.	Methods					
	2.1	Research Methods	5			
	2.2	Environmental Reconnaissance Survey Methods	5			
3.	Resu	ults	6			
	3.1	Special Status Plants, Animals, & Habitats Literature Results	6			
4.	Envi	Environmental Permits and Processes Discussion				
	4.1	California Environmental Quality Act	9			
	4.2	Other CEQA/NEPA Considerations:	9			
	4.3	Permits	10			
5.	Conclusions					
	5.1	Potential Permits and Environmental Constraints	13			
6.	References					

Table Index

Table 1 Listed/Proposed Rare, Threatened and Endangered Species

Table 2 Potential Rare Plants Occurance and Bloom Periods

Figure Index

Figure 1 Vicinity Map

Figure 2 Reconnaisssance Level Biological Investigation

Appendices

Appendix A (USFWS Listed/Proposed Threatened and Endangered Species for the Fortuna Quad)

Appendix B (CNDDB Occurrence Report)

Appendix C (Site Photographs)

1. Introduction

1.1 Project Summary

The Fortuna Highway 101/Riverwalk Connectivity Planning Study focuses on the 12th Street and Kenmar Road crossings of Highway 101, and includes an evaluation of the existing conditions, identification of deficiencies from Caltrans standards, and the development of conceptual alternatives intended to provide multi-modal mobility and accessibility for all users through both interchanges, with the goal of improving safety and ensuring the continued commercial viability of the Riverwalk Area. The results of the study will provide the foundation for future project development phases with the goal of implementation of improvement projects at the 12th Street and Kenmar Interchanges.

The overall objectives of the project are to:

- Provide improved accessibility and connectivity between the Downtown and the Riverwalk Area for all users
- Support growth of business in the Riverwalk and Downtown areas by increasing the capacity of the 12th Street and Kenmar Interchanges while considering planned commercial growth
- Support economic growth by developing strategies to improve access to the Riverwalk and Downtown areas
- Improve the safety at the Kenmar and 12th Street Interchanges

1.2 Purpose of the Report

This Environmental Constraints Analysis is intended to document the biological conditions/constraints within the Study Area. A reconnaissance-level site investigation of existing conditions was conducted throughout the study area in February 2016, to identify the presence or potential presence of biological resources listed under the Federal Endangered Species Act (ESA), the presence of wetlands and Waters of the US as regulated by the US Army Corps of Engineers (USACE), the presence or potential presence of species listed as endangered or threatened under the California Endangered Species Act (CESA) or considered a species of special concern (SSC) by the California Department of Fish and Wildlife (CDFW), or the potential for special-status plant species having a rare plant ranking as determined by the California Native Plant Society (CNPS) rare plant inventory, and to present the potential of sensitive habitats as listed by the CDFW. This report also discusses the necessary steps required for the project to comply with federal, state, and local regulatory environmental compliance requirements and provides basic permit information. No permits or environmental compliance documents were collected, initiated, or completed for this effort, nor were regulatory agencies contacted for additional information.

1.3 Location

This Environmental Constraints Analysis is being undertaken in Fortuna, Humboldt County, California. Fortuna is approximately 14 miles south of Eureka and can be accessed from Highway 101. A vicinity map is included as Figure 1.

The project study boundary (PSB) covers approximately 35 acres around the Kenmar Road and 12th Street interchanges for Highway 101. The PSB is depicted in Figures 2a and 2b and 3, and these areas were analyzed to evaluate the likeliness of environmental features and potential project constraints or likelihood of permitting requirements.

Paper Size 8.5" x 11" (ANSI A)

0 200 400 600 8001,000

Feet
Map Projection: Transverse Mercator
Horizontal Datum: North American 1983
Grid: NAD 1983 UTM Zone 10N

HCAOG

Highway 101, Fortuna Downtown and Riverwalk Area Complete Streets and Connectivity Planning Study

Job Number | 11109149 Revision

Date | 07 Apr 2016

Vicinity Map

Figure 1

Biological Investigation

Figure 2a

Map Projection: Lambert Conformal Conic Horizontal Datum: North American 1983 Grid: NAD 1983 StatePlane California I FIPS 0401 Feet

Drain Inlet; Curb Inlet Headwall

Storm Water Mains

Potential Wetland Ditch

Potential Wetland

Study Boundary

Highway 101, Fortuna Downtown and Riverwalk Area Complete Streets and Connectivity Planning Study

Job Number | 11109149 Revision Date | 07 Apr 2016

Reconnaissance Level **Biological Investigation**

Figure 3

G\111\11109149 HCAOG Hwy 101 Fortuna Downtown-Riverwalk\08-GIS\Maps\Figures\Recon_WetlandsHabitat\F3_Kenmar.mxd

718 Third Street Eureka CA 95501 USA
7 707 443 8

2016. While every care has been taken to prepare this map, GHD make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind
(whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: City of Fortuna GIS: Storm Drain, aerial imagery; GHD: wetland/habitat reconnaissance 2-29-2016 Created by:gldavidson

1.4 Overview of Study Area

The Study Areas are located in the western part of Fortuna, a city with a population of 11,926 as of the 2010 census. There are two distinct Study Areas located approximately one mile apart, and these are described in greater detail below.

The 12th Street PSB is an elongated irregularly shaped area oriented along the north-south centerline of 12th Street and Riverwalk Drive, and bisected by Highway 101 (Figure 2a and 2b). The area north of Highway 101 consists of paved roads and maintained grassy right of way with a few scattered ornamental trees, and is bordered by residential and commercial development. There are few natural feastures remaining in this section. South of Highway 101, Strong's Creek and associated riparian habitat makes up the southern end of the PSB, with a narrow area of shrubs and trees just to the north between Dinsmore Drive and 12th Street, and grassy swales with scattered Monterey cypress between the southern arc of 12th Street and Highway 101.

The Kenmar PSB is oriented generally northeast/southwest (Figure 3). The larger portion east of Highway 101 includes a steep slope with non-native eucalyptus at the extreme east end, with a parking lot immediately to the west. Continuing west, an inactive rail line runs through a series of mostly open areas of low herbaceous growth with scattered Monterey cypress. West of Highway 101 and associated ramps is an ephemeral ditch which has developed a riparian-like area dominated by dense shrub and sapling cover, and which includes a few redwoods of moderate size near the intersection of Riverwalk Drive and the Highway 101 ramps. The southwest limit of the PSB coincides with the top of a grade dropping down to the adjacent Eel River floodplain, which is not included in the PSB.

Wetland and riparian habitats are discussed in further detail below.

2. Methods

2.1 Research Methods

The initial analysis consisted of review of existing environmental literature and data results from database queries of potential on-site sensitive species which were evaluated using the Fortuna United States Geoligical Survey (USGS) 7.5 quadrangle. The database queries include the California Natural Diversity Database (CNDDB) [CDFW February 2016]; the California Native Plant Society's (CNPS) Inventory of Rare and Endangered Vascular Plants [CNPS February 2016]; and lists of special-status species and natural communities that may occur in the project area as provided by the U.S. Fish and Wildlife Service (USFWS) [USFWS, 2016].

Additional existing data was reviewed when available, such as soil and ecological maps and descriptions generated by the Natural Resources Conservation Service (NRCS) and wetlands mapping from USFWS National Wetlands Inventory (NWI) [USFWS 1987]. NWI maps are compiled using a variety of remote sensing data sources, including aerial photographs, infrared photography, and soils data. NWI maps do not necessarily represent an accurate extent of jurisdictional wetlands in the Study Area. Finally, the CalFlora database in conjunction with the Jepson Herbarium database was consulted for site specific species cross referencing for potential rare plants in the project vicinity. When available, Geographic Information System (GIS) data was overlaid with the PSB.

2.2 Environmental Reconnaissance Survey Methods

On February 20, 2016, GHD field staff performed a reconnaissance level investigation of environmental and biological resources within the two PSB's. The survey was meant to identify the potential for environmental impacts and to identify potential permits that would result from implementing the project. This field reconnaissance effort, focused on identifying the potential presence of wetland, riparian, and special-status plant species (listed as rare, threatened, endangered, or candidate for rare, threatened, or endangered species listing under the state or federal Endangered Species Acts, CNPS rare plant ranking, or of local importance) or habitats present within the proposed project trail segments. The project area topographic maps, aerial photography maps, the California Department of Fish and Wildlife CNDDB and CNPS Rare Plant Inventory were consulted using the Fortuna quadrangle prior to and during the survey to determine potential sensitive species or habitat occurrence.

Field work was conducted by walking each of the proposed PSB units and visually documenting findings through photographs and notes. Each location with a potential wetland or areas potentially containing special status species and/or habitats, was noted. These areas would then be recommended for further investigations or protocol level surveys in order to fulfill potential permit requirements as described in further detail in Section 3 of this report.

The likelihood of certain permits increases in locations in which the project intersects certain features. For instance, the likelihood of a USACE Clean Water Act 404 and CDFW 1600 permit increases in locations in which the project crosses a blue line stream. Section 4 considers each permit, discusses the nature of the permit, and identifies the threshold triggers for each permit.

3. Results

3.1 Special Status Plants, Animals, & Habitats Literature Results

A compilation of flora and fauna obtained from the literature search can be found in Table 1 below. The combined list identifies six animal species and three plant species with a moderate or high potential to be present in the PSB. A list of federal endangered, threatened and candidate species for the Fortuna USGS quadrangle was downloaded from the web site of the USFWS Arcata Field Office on March 4, 2016 (Appendix A). The USFWS lists are often of a general nature and do not indicate presence, merely the need for further review. The CNDDB Occurrence Report Rare Find 4 lists species potentially present in the project vicinity, and includes the Fortuna quadrangle (Appendix B). Several of these were subsequently excluded because of an absence of suitable habitat.

Table 1. Listed/Proposed Rare, Threatened and Endangered Species

Scientific Name	Common Name	Status	Habitat	Potential to Occur
Antrozous pallidus	Pallid bat	SSC	Dry rocky woodlands	Low, no suitable habitat
Arborimus pomo	Sonoma tree vole	SSC	Conifer forest	Low, no large stands of suitable habitat
Pekania (Martes) pennanti	Fisher	FC	Mature forest	None; no suitable habitat present
Ardea herodius	Great Blue Heron	None	Colonial nester, tall trees, marshes	Low, several miles to nearest known rookeries
Charadrius alexandrinus nivosus	Western Snowy Plover	FT	Beaches and dunes above high tide line, river gravel bars	None; no suitable habitat present
Coccyzus americanus	Yellow-billed Cuckoo	FT	Dense extensive riparian forest	Low; nearest documented recent records near Cock Robin Island
Brachyramphus marmorata	Marbled Murrelet	FT	Old-growth redwood and Douglas fir forest	None; no suitable habitat present
Riparia riparia	Bank Swallow	ST	Nests in vertical banks/cliffs along rivers	Low for nesting; known from the Eel near Fernbridge so nearby foraging

				is possible
Strix occidentalis caurina	Northern Spotted Owl	FT	Mature forest	None; no suitable habitat present
Emys (Actinymys) marmorata	Western pond turtle	SSC	Ponds, rivers, marshes	Moderate
Rana aurora	Northern Red- legged Frog	SSC	Emergent wetlands and stream margins, and nearby wet meadows and woods	High especially in riparian areas
Rana boylii	Foothill Yellow- legged Frog	SSC, federal proposed	Margins of shallow rocky streams and riffles	High; known to occur in the Eel and tributaries
Oncorhynchus kisutch	S. OR/N. CA Coho Salmon	FT	Rivers and tributaries	Moderate; historic records from Strong's Creek
Oncorhynchus mykiss	N. CA Steelhead	FT	Rivers and tributaries	High; recent records from the lower Strong's Creek watershed
Oncorhynchus tshawytscha	CA Coastal Chinook	FT	Rivers and larger tributaries	Moderate; present in Eel near Fortuna
Spirinchus thalyichthys	Longfin Smelt	FC, ST	Estuaries, may enter freshwater to spawn	Low; present in lower 4.5 miles of Eel, historic (1956) seasonal occurrence up to Van Duzen mouth

Important habitat features include Strong's Creek and an associated riparian corridor in the south and southwest portion of the 12th Street PSB, and several large individual redwoods in the western part of the Kenmar PSB. While these habitat features are not extensive, they could harbor sensitive animals or plants and have habitat and aesthetic value.

A number of plant species identified as rare by the CNPS occur in the Fortuna quadrangle; CEQA requires that these species be considered in the planning process, thus a protocol level study is recommended during the appropriate bloom period (Table 2). Appendix B contains the CNDDB occurance report. If rare species are located mitigation measures may be required. At least one of these species (Siskiyou checkerbloom) sometimes grows within maintained road right-of-way.

Table 2. Potential Rare Plant Occurrence and Bloom Periods

Scientific Name	Common Name	Rare Plant Rank	Bloom Time	Habitat	Liklihood to Occur
Fissidens pauperculus	Minute pocket moss	1B.2	n/a	Damp soil in dry stream beds and banks	Moderate
Sidalcia malviflora ssp. patula	Siskiyou checkerbloom	1B.2	May- August	Coastal scrub, coastal prairie, road cuts	Moderate
Clarkia amoena ssp. whitneyi	Whitney's farewell-to-spring	1B.1	June- August	Coastal bluff, coastal scrub	Moderate, based on a 1955 record from "west of Fortuna."
Gilia capitata ssp. pacifica	Pacific gilia	1B.2	April- August	Coastal scrub, coastal prairie	Low

4. Environmental Permits and Processes Discussion

4.1 California Environmental Quality Act

Review under the California Environmental Quality Act (CEQA) is required whenever a state or local government entity initiates a project, funds a project, or issues a permit decision. The CEQA document is prepared or overseen by a designated lead agency. An Initial Study determines the appropriate level of environmental review; for a project such as this one limited to relatively small portions of an urban fringe area but including a salmonid stream and associated riparian areas, there is a possibility that an Environmental Impact Report (EIR) would be required. However, if all identified impacts can be avoided or adequately mitigated, a Mitigated Negative Declaration (MND) may be adequate. The City of Fortuna would most likely be the CEQA lead agency for the project. Other likely agencies include the Humboldt County Association of Governments, Caltransor other non-federal agencies with permitting authority over the project.

Compliance with the National Environmental Policy Act (NEPA) is required whenever there is federal involvement in the project. If the ultimate project includes federal funding, it would trigger NEPA analysis; in addition, federal involvement may also include approval or issuance of permits. If the project does not qualify for a Categorical Exclusion (CE) or Programmatic Categorical Exclusion (PCE), additional environmental documentation under NEPA may be necessary prior to project approval of funding by a federal agency. Caltrans would most likely be the NEPA lead agency for the project.

4.2 Other CEQA/NEPA Considerations:

From a CEQA/NEPA perspective, project segmentation may occur when the project as described and analyzed in a single CEQA or NEPA process does not encompass the entire project. Segmentation can occur when portions of a project that are dependent on other portions of the project to make them functional are evaluated in separate documents. An example would be if each interchange were analyzed in separate CEQA documents but then constructed simultaneously. In this example, the "entire project" would consist of both interchanges, even though the project was analyzed in two separate documents and therefore "segmented." However, if the components could not function without the other, then these projects must be analyzed in the same document. Alternatively, if the projects are analyzed in separate documents, they must be analyzed in the cumulative impacts section of the document. Therefore, if the two interchanges are considered a single project, then the document should address all project components.

If a project has reasonably foreseeable additional components, they must be analyzed concurrently as part of a single project. The flaw of segmentation is that it can divide larger projects into smaller components, which, when viewed independently, may not lead to the identification of the full range and intensity of impacts resulting from the entire project when viewed as a whole. Linear infrastructure network projects (e.g. transmission lines, pipe networks, roads, trails) may present a special challenge when considering whether a project is in danger of being segmented, as there may be no clear cut method of determining where an individual project starts and ends - and

whether it should be analyzed as part of a larger project or as an individual action simply occurring on a larger network. Following court decisions, the standard for determining whether a road project is an individual action warranting individual CEQA/NEPA analysis is if it is: of substantial length; and is between logical termini, such as population centers or major crossroads, etc; and has independent utility.

4.2.1 Cultural Resources

Preparation of CEQA/NEPA documents would trigger a need for cultural resources studies in at least some portions of the PSB. Reconnaissance level studies and inclusion of reasonable mitigation measures would likely be suitable for most areas, unless those studies identify concentrations of cultural resources.

4.2.2 Other Special Studies for CEQA/NEPA

CEQA and NEPA require special studies for key resources that may be impacted by the project. For instance, the Protocol level surveys for special-status plants and animals would serve as special studies. Other special studies that could be required include aesthetic studies, air quality studies, geologic studies, hazardous materials studies, noise studies, and traffic studies. At this time, it is unknown if any of these studies would be required. However, it is possible that special studies could be required for parts of the project. For example, geotechnical surveys may be required in the creek crossing locations.

4.3 Permits

4.3.1 U.S. Army Corps of Engineers (USACE) Section 404 Nationwide Permit

The USACE regulates discharges of dredged or fill material into Waters of the United States under Section 404 of the Clean Water Act (CWA). The project may result in unavoidable fill of some jurisdictional wetlands or Waters of the U.S. during project implementation. There are also potential stream crossings, although the project will likely be designed to avoid or minimize impacts to wetlands or waters of the U.S. However, if filling of wetlands or waters of the U.S. are unavoidable, the project will require a USACE Section 404 Permit. The project may qualify for a streamlined USACE Nationwide Permit. Prior to authorizing wetland fill under Section 404, a wetland delineation must be submitted and verified by the USACE. Impacts that cause a loss of jurisdictional wetland will require an approved wetland mitigation and monitoring plan (MMP), accompanied by an adaptive management plan and long term maintenance plan.

A formal wetland delineation is recommended during the planning phase of any segment which crosses a potential wetland identified in this report, and for those areas where ditches (potential Waters of the U.S.) occur adjacent to the roads, in order to verify potential wetlands or Waters of the U.S. and to request a jurisdictional determination. Wherever ground disturbing work would occur below the ordinary high water mark (OHWM) of a stream crossing, a delineation and 404 permit would also be required. Potential wetlands and waters of the U.S. are shown on Figures 2a and 2b and 3, and include Strong's Creek, several drainage ditches, and a few small degraded wet depressions and swales.

4.3.2 Regional Water Quality Control Board (RWQCB)

Section 401 Water Quality Certification and National Pollutant Discharge Elimination System (NPDES) Requirements: Pursuant to section 401 of the federal CWA, projects that require a

USACE permit for discharge of dredge or fill material must obtain water quality certification to confirm compliance with state water quality requirements. If the project results in unavoidable fill of wetlands or Waters of the U.S., Section 401 Certification from the RWQCB will be required. The RWQCB may encourage a CRAM evaluation of impacted habitats and mitigation for compensation of impacts.

The CWA requires that any discharge of pollutants to waters of the United States from any point source is unlawful unless the discharge complies with a NPDES permit. These regulations require that discharges of stormwater from construction projects that cause one or more acres of soil disturbance must be in compliance with an NPDES permit. If the project disturbs more than one acre of soil, it must comply with the construction general stormwater permit issued by the State Water Resource Control Board. The construction general permit requires the development and implementation of a Storm Water Pollution Prevention Plan (SWPPP).

Additionally, the RWQCB may take jurisdiction on a variety of drainage ditches and swales identified in the PSB and a formal delineation of the features will be required throughout the PSB.

4.3.3 California Department of Fish & Wildlife Section 1602

Under Fish and Game Code Section 1602 (Streambed Alteration), the CDFW has jurisdiction over proposed activities that may substantially modify a river, stream, or lake. The PSB includes portions of Strong's Creek and several shallow ditches, and depending on final design direct or indirect impacts could occur in some of these locations. Additionally, CDFW jurisdiction extends at least to the top of bank and may sometimes include adjacent riparian zones. As a result, a 1600 Lake and Streambed Alteration Agreement including special conditions to avoid or minimize impacts is anticipated.

4.3.4 Federal Endangered Species Act Compliance (Protocol Level Surveys and Biological Assessments)

Based on available knowledge at this time, the project is not expected to result in any adverse impacts to federally threatened or endangered species or habitats, and GHD does not anticipate the need for formal Section 7 ESA consultation (this assumes no instream work). However, when a USACE permit is required for impacts to jurisdictional wetlands or other waters and the project has the potential to cause adverse impacts to federally-listed threatened or endangered species, the USACE must initiate consultation with the USFWS and/or the National Marine Fisheries Service (NMFS) pursuant to Section 7 of the ESA. Although unlikely for the proposed project, because no impacts to threatened, or endangered species are currently anticipated, if future studies determine that a listed species is present or if a species is added to the list and is present in the area, and if adverse effects are possible, then informal or formal consultation, including preparation of a Biological Assessment, may be required.

Potential issues include salmonids (steelhead, coho, chinook) which occur in the Eel River and tributaries including Strong's Creek. If project activities require dewatering of any portion of the creek, of if there is a possibility of sediment input to the stream or any other potential instream impact, then Section 7 consultation including preparation of a Biological Assessment may be necessary.

There is no documentation of terrestrial listed species in the project study boundary; however, if they are found to occur near the PSB, a variety of requirements ranging from pre-construction protocol surveys to seasonal noise and visual buffers during construction would be triggered, depending on distance to the nest.

4.3.5 California Endangered Species Act (Protocol Level Surveys and Biological Assessments):

The California Endangered Species Act (CESA) requires consultation with the CDFW when preparing CEQA documents to ensure that the lead agency actions do not jeopardize the existence of listed species.

A number of state listed or state sensitive species could potentially occur close to the PSB including bank swallow, northern red-legged frog, foothill yellow-legged frog, western pond turtle, and others. However no site-specific surveys are available at this time.

By incorporating the development of reasonable avoidance or mitigation measures in the CEQA document, such as seasonal work windows and buffer zones around bird and bat habitats and native migratory bird nests during the nesting season and pre-construction surveys for other species impacts can likely be reduced to less than significant. However, a thorough review is recommended, especially where wetland, stream, drainage ditches, or riparian impacts may occur.

4.3.6 Migratory Bird Treaty Act (Avian Surveys)

The Migratory Bird Treaty Act (MBTA) protects all native species of birds. USFWS has statutory authority to enforce the MBTA. To avoid impacts to nesting birds it is recommended that to the extent practical, construction activity occur outside the nesting season (approximately March 15 to August 15 in Humboldt County). This will be most crucial near riparian areas and large trees. If it is not possible to avoid the nesting season then avian surveys should occur within seven days prior to disturbance, and if active nests are identified then the biologist shall establish appropriate buffers. For common species typical of urban sites these are often very small, although buffers for raptors or special-status birds can be much larger (100 to 500 feet). Additional protections for birds or requirements for avoidance are found in the Fish and Game Code and are often a part of CEQA compliance and mitigation measures.

4.3.7 California Department of Transportation (Caltrans)

Encroachment Permits (EP) and/or other agreements may be required for use of or alterations to any area within a Caltrans right-of-way.

A Humboldt County EP will be required if any work encroaches into County right-of-way. Additionally, a Humboldt County grading permit will need to be obtained for grading work in the County right-of-way which exceeds the thresholds identified in the County Grading Ordinance.

4.3.8 California State Lands Commission

The State Lands Commission (SLC) has jurisdiction over sovereign public lands, including the beds of California's naturally navigable rivers, lakes and streams, as well as the state's tide and submerged lands along the state's more than 1,100 miles of coastline, extending from the shoreline to three miles offshore. The location and extent of sovereign lands are generally defined by reference to the ordinary high and low water marks of tidal and navigable waterways. Because the boundaries of these lands are often legally based upon the last natural extent and location of the subject water body, they are not necessarily apparent from a present day site inspection, and substantial research is needed to define the extent of the state's ownership interests. Because the project crosses tributaries associated with the Eel River, further inquiry regarding the extent of SLC's jurisdiction should be conducted.

4.3.9 Permit Summary

In summary, a variety of permits and related environmental review would be necessary for project planning and design. In general, agencies are more supportive of projects when they are a part of the early planning and collaboration process. Currently, the proposed project would occur mostly within already disturbed areas, and environmental impacts are most likely if design features cross wetland or riparian areas. Any work within the identified creek crossings or wetlands would also trigger various permit requirements. The present document is intended to identify potential permits and environmental planning considerations at a project-wide scale.

5. Conclusions

5.1 Potential Permits and Environmental Constraints

The project area is shown on Figures 1 through 3. Appendix C contains representative photographs of the different habitats or constraints observed during the field reconnaissance effort.

The project will require a formal wetland delineation following USACE protocol to identify impacts to wetland habitat or waters of the U.S.; particularly in the areas identified as potential wetland, ditch, and stream crossings. Parts of the PSB contains what appear to be drainage ditches that could fall under either the USACE and/or RWQCB jurisdiction. The types of ditches identified in Figures 2a and 2b and 3 and shown in photographs in Appendix C include drainage ditches with evident flow paths connected by culverts, drainages comprised of hydrophytic vegetation, and swales.

Potential biological surveys required for implementing this proposed project include, at a minimum, a protocol level intensive botanical site inventory of vascular plant species, with emphasis on species identified in the database queries. This survey will need to be conducted at the appropriate season(s) to locate flowering individuals of listed species.

A few state special concern wildlife species have been reported within the general project vicinity, and others could occur although no recent field data is available for the PSB. Federally listed salmonids have been reported in other parts of Strong's Creek in the past and are presumed to be present. The PSB also contains several large redwoods and other large trees and other viable habitat for migratory nesting birds as well as riparian habitat. Therefore, these areas may need to be further assessed with CEQA special studies in order to identify and offset adverse impacts to the potential fauna along these routes. Additional non-biological studies may be required by CEQA/NEPA.

6. References

Baldwin et al. The Jepson Manual Vascular Plants of California, Second Edition. 2012. University of California Press. Berkeley, CA.

California Department of Fish and Wildlife 2013. *California Natural Diversity Database (CNDDB)*. Fortuna USGS 7.5 Minute Quadrangle. California Department of Fish and Wildlife CDFW). Sacramento, California. Accessed March 4, 2016:

https://nrmsecure.dfg.ca.gov/cnddb/view/query.aspx, February 22, 2013 (expires: August 5, 2013).

California Department of Fish and Game. May 2000. *Guidelines for Assessing the Effects of Proposed Development on Rare, Threatened, and Endangered Plants and Plant Communities.* Sacramento, CA.

California Native Plant Society (CNPS). 2016. Inventory of Rare and Endangered Plants (online edition, v8-01a). California Native Plant Society. Sacramento, CA. Accessed onMarch 4, 2016.

Holland, R. 1986. *Preliminary descriptions of the terrestrial natural communities of California*. Unpublished document, California Department of Fish and Game, Natural Heritage Division. Sacramento, CA.

USFWS, 2016. IPaC Trust resources Report for Fortuna *Quad* FWS Arcata Field Office, U. S. Fish and Wildlife Service (USFWS).Accessed: March 4, 2016: http://www.fws.gov/arcata/species/list/search.asp

USFWS, 1987. *National Wetland Inventory (NWI)*. U.S. Fish and Wildlife Service (USFWS). Portland, OR. Accessed: http://www.fws.gov/wetlands.

Prepared By;

Ken Mierzwa, Senior Environmental Scientist, GHD, Eureka, CA

Reviewed BY:

Josh Wolf, Project Manager, GHD, Eureka, CA Misha Schwarz, Senior Environmental Scientist, GHD, Eureka, CA

Appendix A (USFWS Listed/Proposed Threatened and Endangered Species for the Fortuna Quad)

Candidate species included

12th Street Interchange

IPaC Trust Resources Report

Generated March 04, 2016 03:19 PM MST, IPaC v3.0.0

This report is for informational purposes only and should not be used for planning or analyzing project level impacts. For project reviews that require U.S. Fish & Wildlife Service review or concurrence, please return to the IPaC website and request an official species list from the Regulatory Documents page.

IPaC - Information for Planning and Conservation (http://ecos.fws.gov/ipac/): A project planning tool to help streamline the U.S. Fish & Wildlife Service environmental review process.

Table of Contents

PaC Trust Resources Report		1
Project Description		1
Endangered Species		2
Migratory Birds	4	4
Refuges & Hatcheries		7
Wetlands	8	٤

U.S. Fish & Wildlife Service

IPaC Trust Resources Report

NAME

12th Street Interchange

LOCATION

Humboldt County, California

IPAC LINK

http://ecos.fws.gov/ipac/project/ 3IDEK-YDXKJ-BBLBW-TO465-QKA2Y4

U.S. Fish & Wildlife Service Contact Information

Trust resources in this location are managed by:

Arcata Fish And Wildlife Office

1655 Heindon Road Arcata, CA 95521-4573 (707) 822-7201

Endangered Species

Proposed, candidate, threatened, and endangered species are managed by the <u>Endangered Species Program</u> of the U.S. Fish & Wildlife Service.

This USFWS trust resource report is for informational purposes only and should not be used for planning or analyzing project level impacts.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list from the Regulatory Documents section.

<u>Section 7</u> of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency.

A letter from the local office and a species list which fulfills this requirement can only be obtained by requesting an official species list either from the Regulatory Documents section in IPaC or from the local field office directly.

The list of species below are those that may occur or could potentially be affected by activities in this location:

Birds

Marbled Murrelet Brachyramphus marmoratus

Threatened

CRITICAL HABITAT

There is **final** critical habitat designated for this species.

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B08C

Northern Spotted Owl Strix occidentalis caurina

Threatened

CRITICAL HABITAT

There is **final** critical habitat designated for this species.

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B08B

Western Snowy Plover Charadrius alexandrinus nivosus

Threatened

CRITICAL HABITAT

There is final critical habitat designated for this species.

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B07C

Yellow-billed Cuckoo Coccyzus americanus

Threatened

CRITICAL HABITAT

There is **proposed** critical habitat designated for this species.

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B06R

Flowering Plants

Beach Layia Layia carnosa

Endangered

CRITICAL HABITAT

No critical habitat has been designated for this species.

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=Q34T

Menzies' Wallflower Erysimum menziesii

Endangered

CRITICAL HABITAT

No critical habitat has been designated for this species.

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=Q29W

Western Lily Lilium occidentale

Endangered

CRITICAL HABITAT

No critical habitat has been designated for this species.

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=Q1Y0

Mammals

Fisher Martes pennanti

Proposed Threatened

CRITICAL HABITAT

No critical habitat has been designated for this species.

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=A0HS

Critical Habitats

This location overlaps all or part of the critical habitat for the following species:

Steelhead Critical Habitat Final designated

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=E08D#crithab

Migratory Birds

Birds are protected by the <u>Migratory Bird Treaty Act</u> and the <u>Bald and Golden Eagle</u> Protection Act.

Any activity that results in the take of migratory birds or eagles is prohibited unless authorized by the U.S. Fish & Wildlife Service.^[1] There are no provisions for allowing the take of migratory birds that are unintentionally killed or injured.

Any person or organization who plans or conducts activities that may result in the take of migratory birds is responsible for complying with the appropriate regulations and implementing appropriate conservation measures.

1. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

Additional information can be found using the following links:

- Birds of Conservation Concern
 http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Conservation measures for birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Year-round bird occurrence data http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/akn-histogram-tools.php

The following species of migratory birds could potentially be affected by activities in this location:

Allen's Hummingbird Selasphorus sasin Bird of

Season: Breeding

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0LI

Bald Eagle Haliaeetus leucocephalus

Year-round

 $\underline{\text{https://ecos.fws.gov/tess}} \ \underline{\text{public/profile/speciesProfile.action?spcode=B008}}$

Burrowing Owl Athene cunicularia

Year-round

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0NC

Calliope Hummingbird Stellula calliope

Season: Breeding

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0K3

Bird of conservation concern

Bird of conservation concern

Bird of conservation concern

Bird of conservation concern

Fox Sparrow Passerella iliaca

Season: Wintering

Lewis's Woodpecker Melanerpes lewis

Season: Wintering

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HQ

Long-billed Curlew Numenius americanus

Season: Wintering

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B06S

Marbled Godwit Limosa fedoa

Season: Wintering

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0JL

Olive-sided Flycatcher Contopus cooperi

Season: Breeding

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0AN

Peregrine Falcon Falco peregrinus

Year-round

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0FU

Purple Finch Carpodacus purpureus

Year-round

Short-billed Dowitcher Limnodromus griseus

Season: Wintering

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0JK

Short-eared Owl Asio flammeus

Season: Wintering

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HD

Snowy Plover Charadrius alexandrinus

Season: Breeding

Western Grebe aechmophorus occidentalis

Season: Wintering

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0EA

Whimbrel Numenius phaeopus

Season: Wintering

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0JN

Willow Flycatcher Empidonax traillii

Season: Breeding

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0F6

Yellow Warbler dendroica petechia ssp. brewsteri

Season: Breeding

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0EN

Bird of conservation concern

Red Knot Calidris canutus ssp. roselaari

Bird of conservation concern

Season: Wintering

https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0G6

Wildlife refuges and fish hatcheries

There are no refuges or fish hatcheries in this location

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army</u> <u>Corps of Engineers District</u>.

DATA LIMITATIONS

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

DATA EXCLUSIONS

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

DATA PRECAUTIONS

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

There are no wetlands in this location

Appendix B (CNDDB Occurrence Report)

Fortuna Quad

Selected Elements by Scientific Name

California Department of Fish and Wildlife California Natural Diversity Database

Query Criteria: Quad is (Fortuna (4012452))

						Rare Plant Rank/CDFW
Species A poloive triangle in	Element Code	Federal Status	State Status	Global Rank	State Rank	SSC or FP
Agelaius tricolor tricolored blackbird	ABPBXB0020	None	None	G2G3	S1S2	SSC
	AMACC10010	None	None	G5	S3	SSC
Antrozous pallidus pallid bat	AWACC 10010	None	None	GS	33	330
Arborimus pomo	AMAFF23030	None	None	G3	S 3	SSC
Sonoma tree vole	AWAI 123030	None	None	G 3	33	330
Ardea herodias	ABNGA04010	None	None	G5	S4	
great blue heron	7151107104010	None	140110	00	04	
Bombus caliginosus	IIHYM24380	None	None	G4?	S1S2	
obscure bumble bee		110110	110110	01.	0.02	
Bombus occidentalis	IIHYM24250	None	None	G2G3	S1	
western bumble bee						
Clarkia amoena ssp. whitneyi	PDONA05025	None	None	G5T1	S1	1B.1
Whitney's farewell-to-spring						
Emys marmorata	ARAAD02030	None	None	G3G4	S3	SSC
western pond turtle						
Fissidens pauperculus	NBMUS2W0U0	None	None	G3?	S2	1B.2
minute pocket moss						
Gilia capitata ssp. pacifica	PDPLM040B6	None	None	G5T3T4	S2	1B.2
Pacific gilia						
Lasiurus cinereus	AMACC05030	None	None	G5	S4	
hoary bat						
Montia howellii	PDPOR05070	None	None	G3G4	S3	2B.2
Howell's montia						
Oncorhynchus clarkii clarkii	AFCHA0208A	None	None	G4T4	S3	SSC
coast cutthroat trout						
Polemonium carneum	PDPLM0E050	None	None	G3G4	S2	2B.2
Oregon polemonium						
Rana aurora	AAABH01021	None	None	G4	S3	SSC
northern red-legged frog						
Rana boylii	AAABH01050	None	None	G3	S3	SSC
foothill yellow-legged frog						
Riparia riparia	ABPAU08010	None	Threatened	G5	S2	
bank swallow						
Sidalcea malviflora ssp. patula	PDMAL110F9	None	None	G5T2	S2	1B.2
Siskiyou checkerbloom						
Spirinchus thaleichthys	AFCHB03010	Candidate	Threatened	G5	S1	SSC
longfin smelt						

Record Count: 19

Appendix C (Site Photographs)

Strong's Creek and associated riparian area

Riverwalk Drive bridge, looking east toward Hwy 101

Dinsmore Drive north of bridge, with riparian edge on left

Dinsmore Drive north of Riverwalk Drive, looking north. Riparian on left, willow and Monterey cypress on right

Southbound Hwy 101 exit ramp at 12th Street, looking NE

Potential wetland swale within area shown in photo above, looking NW with 12th Street in background

Eucalyptus on slope east of Kenmar Rd. interchange and parking lot

Parking lot, looking west toward Hwy 101 with inactive rail line in middle ground

Potential wetland south of Kenmar, between rail line and Hwy 101 ramp, looking south

Ditch/potential wetland north of Kenmar and east of Hwy 101, looking north

Ephemeral ditch north of Kenmar and west of Hwy 101, with adjacent riparian area

Degraded riparian habitat north of Kenmar/Riverwalk and west of Hwy 101

Redwood west of Hwy 101 and north of Kenmar/Riverwalk

Ephemeral ditch flowing toward Eel River floodplain, south of Kenmar/Riverwalk and west of Hwy 101. Note redwood in top right.

www.ghd.com

