# HCAOG 2024 REGIONAL TRANSPORTATION IMPROVEMENT PROGRAM (RTIP) – PROJECT CANDIDATE FORM

RTIP programming background:

If the project is on a State Highway, a Project Study Report (PSR) is required. If not, a PSR equivalent is required. The PSR equivalent at a minimum must be adequate to define and justify the project scope, cost and schedule. The PSR or PSR equivalent must be submitted with this programming request.

Applicant Agency:

Project Title:

Total Funding Requested:

Of the total funding, amount for active transportation components of project:\$400,000

Project Purpose: What transportation deficiency will this project address (safety, congestion, operations, plan implementation, etc.)? If a safety project, will the project reduce fatalities or number and severity of injuries?

Project Location (community name, corridor, street name, etc.):

Project Description:

Is the project in the 2022 RTP?

Yes No

Are you requesting State only funding?

Yes No

To the maximum extent feasible, have complete streets elements been included in the project? Explain.

If a rehabilitation project, is it located on a federal-aid eligible road (higher than a local or minor collector road? Link to Caltrans maps: <u>http://www.dot.ca.gov/hq/tsip/hseb/crs\_maps</u>

Yes No

Provide Project Component funding needs:

| Project Component                 | Cost<br>Estimate | STIP Funding<br>Request | Other fund contribution | Allocation<br>Schedule |
|-----------------------------------|------------------|-------------------------|-------------------------|------------------------|
| Environmental Studies & Permits   | \$               | \$                      | \$                      |                        |
| Plans, Specifications & Estimates | \$               | \$                      | \$                      |                        |
| Right of Way                      | \$               | \$                      | \$                      |                        |
| Construction                      | \$               | \$                      | \$                      |                        |
| Total                             | \$               | \$                      | \$                      |                        |

Please describe any other relevant information about this project you feel will be useful in project selection. Additional attachments (i.e. maps, photos) may also be included with the submittal.

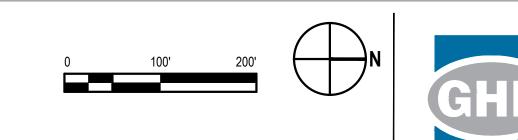


MARK ARSENAULT CALTRANS DISTRICT 1 NORTH REGION ARCHAEOLOGIST

DATE

RUSSELL HANSEN CALTRANS DISTRICT 1 PROJECT LOCAL ASSISTANCE DATE

BRENDAN BYRD CITY OF FORTUNA CITY ENGINEER


LEGEND:

AREA OF POTENTIAL EFFECTS

RD TUNA

10/13/2022

DATE



781 3rd St Eureka, CA 95501 USA T 1 707 443 8326 W www.ghd.com Filename: N:\US\Eureka\Projects\561\11214735\Digital\_Design\ACAD 2020\Figures\2132EX025.dwg Plot Date: 30 August 2022 - 12:58 PM



CITY OF FORTUNA KENMAR Rd/US 101 IC PROJECT 
 Project No.
 11214735

 Comp No.
 2132

 Date
 Aug 2022

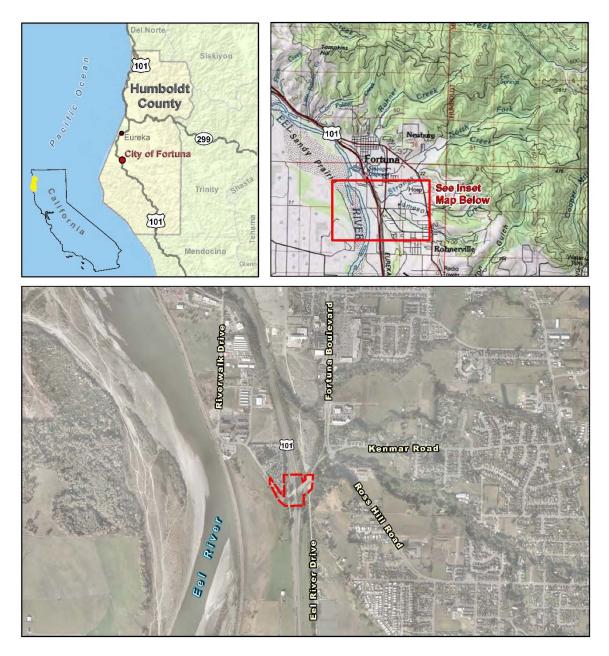
PROJECT FOOTPRINT

FIGURE 2

# Project Study Report-Project Development Support (PSR-PDS)

То

# Request Programming for Capital Support (Project Approval and Environmental Document Phase) in the 2018 STIP


| On Route | Kenmar Road                                       |
|----------|---------------------------------------------------|
| Between  | 500 Feet West of Kenmar Road US 101 Undercrossing |
| And      | 800 Feet East of Kenmar Road US 101 Undercrossing |

APPROVED:

Merritt Perry, Director of Public Works/City Engineer

 $\frac{12/n/17}{\text{Date}}$ 

## Vicinity Map







This project study report-project development support has been prepared under the direction of the following registered civil engineer. The registered civil engineer attests to the technical information contained herein and the engineering data upon which recommendations, conclusions, and decisions are based.

12/8/2017 REGISTERED CIVIL ENGINEER DATE PROFESSIONAL Joshua Wolf C70358 No Exp. <u>9/30/18</u> STATE CIVIL OF CP

# **Table of Contents**

| 1.  | INTRODUCTION                               | 4    |
|-----|--------------------------------------------|------|
| 2.  | BACKGROUND                                 | 4    |
| 3.  | PURPOSE AND NEED                           | 6    |
| 4.  | TRAFFIC ENGINEERING PERFORMANCE ASSESSMENT | 6    |
| 5.  | DEFICIENCIES                               | . 11 |
| 6.  | CORRIDOR AND SYSTEM COORDINATION           | . 12 |
| 7.  | ALTERNATIVES                               | .14  |
| 8.  | RIGHT-OF-WAY                               | .18  |
| 9.  | STAKEHOLDER INVOLVEMENT                    | .19  |
| 10. | ENVIRONMENTAL COMPLIANCE                   | .20  |
| 11. | FUNDING                                    | .21  |
| 12. | DELIVERY SCHEDULE                          | . 22 |
| 13. | RISKS                                      | . 23 |
| 14. | EXTERNAL AGENCY COORDINATION               | .23  |
| 15. | PROJECT REVIEWS                            | . 23 |
| 16. | PROJECT PERSONNEL                          | .24  |
| 17. | ATTACHMENTS                                | .24  |

## **Attachments**

- A. Location map
- B. Traffic Counts and LOS Analysis
- C. Review of Geometric Design Standards
  D. Conceptual Design Drawings
  E. Truck Turning Analysis
  F. Fast Path Exhibits

- G. Preliminary Structures AnalysisH. Landscaping/Gateway Concepts

- I. Cost Estimates
  J. Right-of-Way and Property Ownership
  K. Environmental Constraints Analysis

# 1. INTRODUCTION

## Project Description:

The project proposes to improve traffic, pedestrian, and bicycle operations at the Kenmar Road interchange with US 101 in Fortuna in Humboldt County. The existing intersection controls, roadway geometry, and the high volumes of local and regional traffic on Kenmar Road result in poor traffic operation at and near the interchange. Proposed project components include two roundabouts ("dog bone") on Kenmar Road at the intersections with the US 101 interchange, modifications to the US 101 on- and off-ramps, and the realignment of Eel River Drive. In addition to the proposed roadway improvements, the project includes a segment of Class I bike path through the project area in additional to other at-grade pedestrian and bicycle improvements to enhance pedestrian connections and promote regional bicycle network continuity.

This PSR-PDS was developed in conjunction with the Highway 101, Fortuna Downtown and Riverwalk Area Complete Streets and Connectivity Planning Study Study (GHD, 2016) which provides a detailed evaluation of interchange alternatives.

| Table 1. I Toject Guillinary     |                                                                                            |
|----------------------------------|--------------------------------------------------------------------------------------------|
| Project Limits                   | Kenmar between 500 feet west and 800 feet east of the Kenmar Road US 101 Undercrossing (BR |
|                                  |                                                                                            |
|                                  | 04 0128, PM 59.50).                                                                        |
| Number of Alternatives           | 5                                                                                          |
| Current Capital Outlay Support   | \$550K                                                                                     |
| Estimate for PA&ED               |                                                                                            |
| Current Capital Outlay Support   | \$800K - \$1.1M                                                                            |
| Estimate for PS&E                |                                                                                            |
| Current Capital Outlay           | \$4M - \$5.4M                                                                              |
| Construction Cost Range          |                                                                                            |
| Current Capital Outlay Right-of- | \$200K-\$300K                                                                              |
| Way Cost Range                   |                                                                                            |
| Funding Source                   | RTIP/STIP                                                                                  |
| Type of Facility                 | Kenmar Road: 2-lane Other Principal                                                        |
|                                  | Arterial/Major Collector                                                                   |
|                                  | Riverwalk Drive: 2-lane Major Collector                                                    |
|                                  | Eel River Drive: 2-lane Major Collector US 101: 4-                                         |
|                                  | lane expressway/freeway                                                                    |
| Number of Structures             | 1 (US 101 Kenmar Road UC)                                                                  |
| Anticipated Environmental        | CEQA Mitigated Negative Declaration                                                        |
| Determination or Document        | NEPA CE                                                                                    |
| Legal Description                | On Kenmar Road In Humboldt County in Fortuna                                               |
|                                  | between 500 feet west of US 101 Undercrossing                                              |
|                                  | and 800 feet east of US 101 Undercrossing.                                                 |
| Project Development Category     | 3                                                                                          |
|                                  |                                                                                            |

#### Table 1: Project Summary

# 2. BACKGROUND

The project need originates from desires expressed in the City's 2010 General Plan, user-based experiences and public request for improvements.

In 2016, a planning study was conducted to identify ways to improve access to the Riverwalk area and improve safety for all users (motorized & non-motorized), improve operations, apply Complete Streets concepts and create an entry statement/gateway, and ready the project for next steps in project development. The study was focused on US 101 interchanges at 12th Street and Kenmar Road and was funded by a 2015-2016 Sustainable Communities Planning Grant awarded to the Humboldt County Association of Governments (HCAOG) and the City of Fortuna as a sub-recipient.

The study process included researching and evaluating existing conditions, including right-of-way boundaries and ownership, maintenance responsibilities, identifying potentially sensitive environmental areas and potential permits, and obtaining traffic counts (motorized and non-motorized). Community meetings and stakeholder outreach were used to understand concerns with the existing facilities, solicit ideas for improvements, and obtain comments on preliminary design concepts. A deficiency analysis was performed to identify existing facilities which do not conform to current design standards or City goals. Traffic modeling showed that many of the intersections were operating below a level of service (LOS) C (Fortuna's standard) for current conditions, with the LOS expected to significantly decline for full buildout over 20-years with no improvements to the intersections.

### **Existing Conditions**

The project study area is focused on Kenmar Road from around 500 feet west and 800 feet east of Kenmar Road/US 101 undercrossing. Kenmar Road crosses under US 101, where the highway occupies parallel SB and NB bridges above grade. Within a short distance (approximately 600 feet), Kenmar Road has three intersections: at the SB on and off-ramps, the NB on and off-ramps, and at Eel River Drive. The Fortuna Park and Ride, which includes a bus stop for the Redwood Transit Main Line, is off Eel River Drive. A railroad crosses the road on the east side of US 101 between the NB on-ramp and off-ramp, and Eel River Drive intersection.

Kenmar Road consists of one vehicular travel lane in each direction with paved shoulders. The road varies in right-of-way and geometry due to intersections with Eel River Drive and South Fortuna Boulevard within 900 feet east of the Kenmar interchange. The current roadway configuration of the underpass consists of two 12 foot lanes, with eight foot shoulders, and a guard rail.

The intersection of Kenmar Road and US 101 SB Ramps is stop-controlled for the US 101 SB offramp and the eastbound approach of Kenmar Road. Left turns at the US 101 NB off ramp at Kenmar Road are stop controlled, with yield control only for the right turn. The existing intersection geometrics and control are shown in **Figure 1**.

There is a significant grade differential between Kenmar Road and the agricultural field to the south around the horizontal curve; guardrail is currently provided at the edge of travel way.

There are no designated pedestrian or bicycle facilities through the Kenmar Road corridor. However, there is a well-worn path behind the guardrail on the north side of the Kenmar Road underpass.

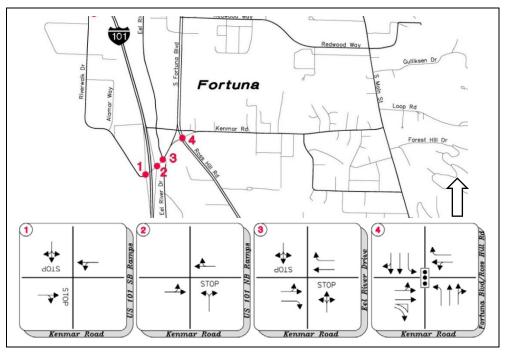



Figure 1: Existing Intersection Geometrics and Control

# 3. PURPOSE AND NEED

### Purpose:

- Simplify and improve navigation and traffic operations on Kenmar Road between Riverwalk Drive and Eel River Drive, including the Kenmar Road/US 101 interchange;
- Improve operations, reduce congestion, and minimize conflicts at the Kenmar Road intersections;
- Improve safety at Kenmar Road intersections;
- Improve the local and regional bicycle and pedestrian facilities through the Kenmar Road/US 101 interchange area; and
- Create a Gateway into south Fortuna.

### Need:

- Existing and future poor Level of Service (LOS) at the Kenmar Road intersections during peak hours as a result of stop-controlled intersections;
- Existing vehicle queue spillback from the Kenmar Road/US 101 ramp intersections onto the freeway off-ramps, especially in the southbound US 101 direction;
- No existing bicycle or pedestrian facilities resulting in a barrier to bicycle and pedestrian circulation and connectivity; and
- Intersections lack directional legibility, making it difficult for visitors to access the City's existing amenities.

Humboldt County's most significant regional thoroughfare for economic, tourist, recreational and commuting activity is US 101. The City of Fortuna is divided by US 101, which parallels the Eel River, and separates the Eel River and the Riverwalk Area from the majority of the City. Safer transportation alternatives, wayfinding signage, and improved traffic operations will support active living, provide better service to users, and support economic development and land use goals of the City.

# 4. TRAFFIC ENGINEERING PERFORMANCE ASSESSMENT

The information contained in this section is based on the findings from a preliminary traffic assessment conducted for the intersection at the Kenmar Road/US 101 interchange. The preliminary assessment include an Access Strategy and Configuration Assessment/Screening in accordance to the Intersection Control Evaluation (ICE) process outlined in Caltrans Traffic Operations Policy Directive 13-02. Refer to **Attachment B** for traffic counts and the LOS analysis. A Traffic Analysis Report will be developed during the PA&ED phase to further define the scope of work, and more accurately analyze and identify the forecasted operational impacts of the proposed improvements.

## **Existing Conditions**

<u>Traffic Counts:</u> The AM and PM peak hour intersection turn movement traffic counts were collected in March 2016. The AM peak hour is defined as one-hour of peak traffic flow counted between 7:00 am and 9:00 AM. The PM peak hour is defined as one-hour of peak traffic flow counted between 4:00 pm and 6:00 PM. The existing peak hour traffic volumes are presented in **Figure 2**.

<u>Bicycle and Pedestrian Counts:</u> HCAOG obtained bicycle and pedestrian counts for the project area in May 2016. The existing bicycle and pedestrian daily counts are presented in **Table 1**.

| Intersection Name     | Ave. Daily<br>Bicycle Count | Ave. Daily<br>Pedestrian Count |
|-----------------------|-----------------------------|--------------------------------|
| Kenmar Road/US 101 SB | 22                          | 20                             |
| Kenmar Road/US 101 NB | 23                          | 18                             |

### Table 1: Average Totally Daily Bicycle and Pedestrian Counts

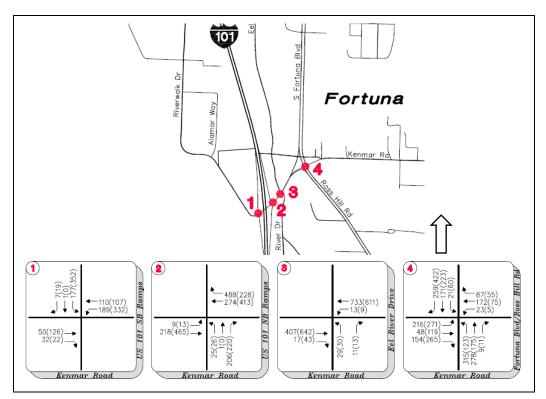



Figure 2: Existing Peak Hour Traffic Counts (2016)

## Modeling Tools and Methodologies

Operational deficiencies were estimated using future traffic volumes estimated using the travel demand model (TRAFFIX) prepared for the City's General Plan update. The cumulative condition was established by adding additional trips to the traffic counts obtained in 2016, by assuming full buildout over 20 years in accordance to the City's General Plan.

The existing, no build and signal alternatives were analyzed using Synchro/SimTraffic traffic analysis software. Roundabout alternatives were analyzed using Signalized and Unsignalized Intersection Design and Research Aid (SIDRA) analysis software. The LOS for all intersection control types were calculated using the methods documented in the Transportation Research Board Publication Highway Capacity Manual, 2010.

Synchro/SimTraffic was used to provide the queuing analysis. SimTraffic data was seeded into the network for 15 simulated minutes, and then recorded five runs of 60 simulated minutes. The 95<sup>th</sup>-percentile queue lengths were determined for each lane group based on an average of the five recorded runs. The 95<sup>th</sup>-percentile queue was defined to be the queue length (in feet) that has a 5-percent probability of being exceeded during the analysis time period. The 95<sup>th</sup>-percentile queue was utilized to determine the appropriate length of turn pockets.

### Summary of Existing Conditions Analysis and Findings

Existing weekday AM and PM peak hour intersection traffic operations were quantified utilizing the exiting traffic volumes and existing intersection lane geometrics and control. **Table 2** provides a summary of the existing vehicular AM and PM peak hour intersection delay and LOS. The following intersections were found to currently operate below the LOS C target:

- Kenmar Road and US 101 SB Ramps
- Kenmar Road and Eel River Drive

#### Table 2: Existing Levels of Service

| Control             | Target                                      | AM Pea                    | k Hour                                     | PM Pea                                           | k Hour                                                           |
|---------------------|---------------------------------------------|---------------------------|--------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|
| Type <sup>1,2</sup> | LOS                                         | Delay                     | LOS                                        | Delay                                            | LOS                                                              |
| TWSC                | С                                           | 17.6                      | С                                          | 189                                              | F                                                                |
| TWSC                | С                                           | 10.8                      | В                                          | 14.4                                             | В                                                                |
| OWSC                | С                                           | 37.9                      | E                                          | 37.7                                             | E                                                                |
| Signal              | С                                           | 30.8                      | С                                          | 19.2                                             | В                                                                |
|                     | Type <sup>1,2</sup><br>TWSC<br>TWSC<br>OWSC | Type1,2LOSTWSCCTWSCCOWSCC | Type1,2LOSDelayTWSCC17.6TWSCC10.8OWSCC37.9 | Type1,2LOSDelayLOSTWSCC17.6CTWSCC10.8BOWSCC37.9E | Type1,2LOSDelayLOSDelayTWSCC17.6C189TWSCC10.8B14.4OWSCC37.9E37.7 |

Notes:

1. OWSC = One Way Stop Control; TWSC = Two Way Stop Control

2. LOS = Delay based on worst minor street approach for TWSC intersections, average of all approaches for AWSC and Signal

#### Summary of No Build Operation Analysis and Findings

**Table 3** provides a summary of the No Build intersection LOS for cumulative conditions. All intersections are expected to operate below an acceptable LOS for the No Build alternative with all operating at a LOS of F for PM peak hour conditions.

 Table 3: No Build Levels of Service

| Intersection                                                    | Control             | Target | AM Pea | k Hour | PM Pea | k Hour |
|-----------------------------------------------------------------|---------------------|--------|--------|--------|--------|--------|
| intersection                                                    | Type <sup>1,2</sup> | LOS    | Delay  | LOS    | Delay  | LOS    |
| Kenmar Road and US 101 SB Ramps                                 | TWSC                | С      | 94.5   | F      | >300   | F      |
| Kenmar Road and US 101 NB Ramps                                 | TWSC                | С      | 14.9   | В      | 136.9  | F      |
| Kenmar Road and<br>Eel River Drive                              | TWSC                | С      | 181.2  | F      | >300   | F      |
| Kenmar Road and<br>South Fortuna<br>Boulevard/Ross Hill<br>Road | Signal              | С      | 67.8   | E      | 168.5  | F      |

Notes:

1. TWSC = Two Way Stop Control

2. LOS = Delay based on worst minor street approach for TWSC intersections, average of all approaches for AWSC and Signal

### Summary of Traffic Signal Operation Analysis and Findings

**Table 4** provides a summary of the intersection LOS for the signal intersections. All intersections are projected to operate at or above the threshold LOS for the signal alternative. **Figure 3** presents the cumulative peak hour volumes at the signalized intersections.

Table 4: Signalized Intersection Levels of Service

| Intersection                                                    | Control           | Target | AM Pea | k Hour | PM Pea | k Hour |
|-----------------------------------------------------------------|-------------------|--------|--------|--------|--------|--------|
| Intersection                                                    | Type <sup>1</sup> | LOS    | Delay  | LOS    | Delay  | LOS    |
| Kenmar Road and<br>US 101 SB Ramps                              | Signal            | С      | 21.8   | С      | 31.2   | С      |
| Kenmar Road and<br>US 101 NB Ramps                              | Signal            | С      | 14.5   | В      | 13.9   | В      |
| Kenmar Road and<br>Eel River Drive                              | Signal            | С      | 3.0    | А      | 13.0   | В      |
| Kenmar Road and<br>South Fortuna<br>Boulevard/Ross Hill<br>Road | Signal            | С      | 30.8   | С      | 23.1   | В      |

Notes:

1. LOS = Delay based on worst minor street approach for TWSC intersections, average of all approaches for AWSC and Signal

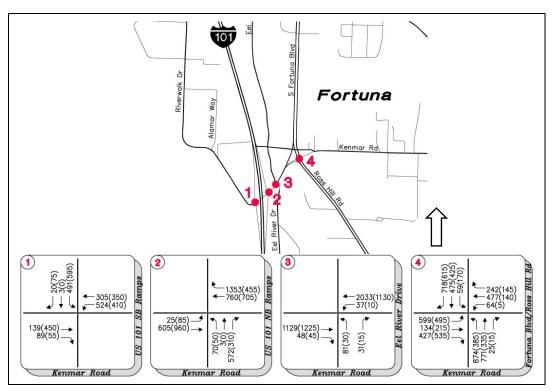



Figure 3: Cumulative Peak Volumes - Signalized Intersections

### Summary of Roundabout Operation Analysis and Findings

**Table 5** provides a summary of the intersection LOS for the roundabout intersections. All intersectionsare projected to operate at or above the threshold LOS for the roundabout alternatives. Figure 4presents the cumulative peak hour volumes at the roundabout intersections.

|                                                                 | Control             | Target | AM Pea | k Hour | PM Pea | k Hour |
|-----------------------------------------------------------------|---------------------|--------|--------|--------|--------|--------|
| Intersection                                                    | Type <sup>1,2</sup> | LOS    | Delay  | LOS    | Delay  | LOS    |
| Kenmar Road and<br>US 101 SB Ramps                              | RNDBT               | С      | 8.4    | A      | 16.6   | В      |
| Kenmar Road and<br>US 101 NB Ramps                              | RNDBT               | С      | 5.3    | A      | 8.3    | А      |
| Kenmar Road and<br>Eel River Drive                              | RNDBT               | С      | 5.4    | А      | 8.3    | A      |
| Kenmar Road and<br>South Fortuna<br>Boulevard/Ross Hill<br>Road | RNDBT               | С      | 11.0   | В      | 18.0   | В      |

Notes:

1. RNDBT = Roundbout

2. LOS = Delay based on worst minor street approach for TWSC intersections, average of all approaches for AWSC and Signal

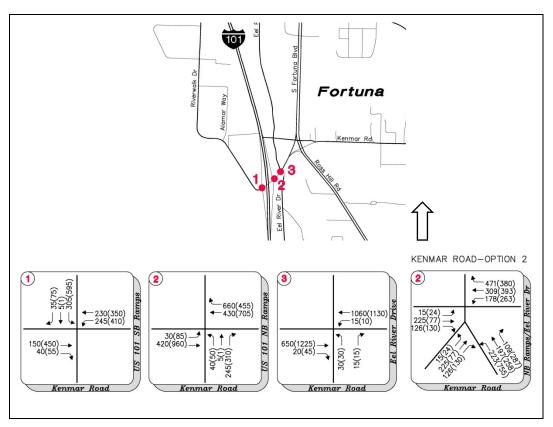



Figure 4: Cumulative Peak Volumes – Roundabout Intersections

#### Scope of Future Traffic Engineering Studies, Activities, & Tasks

The following discussion highlights the scope of traffic engineering studies, activities and tasks to be completed during the PA&ED phase.

Project Study Limits: The existing interchange study area includes the following intersections:

- Kenmar Road and US 101 Southbound Ramps
- Kenmar Road and US 101 Northbound Ramps
- Kenmar Road and Eel River Drive
- Kenmar Road and South Fortuna Boulevard/Ross Hill Road

<u>Traffic Data Collection</u>: The preliminary traffic assessment was prepared using existing AM and PM peak hour intersection traffic counts collected in March 2016 and bicycle/pedestrian counts collected in May 2016 for a preliminary study. Future traffic engineering studies may obtain new vehicle, pedestrian and bicycle traffic counts or may rely on the data already collected. Future traffic data obtained may include origin-destination surveys to gauge the movements and to observe driver behavior upon entry to the intersection.

<u>Traffic Forecasting</u>: In the PA&ED phase, the Project Development Team (PDT) may update the future design year forecasting of traffic volumes and movements for the Kenmar Road intersections within the project area based on new data or assumptions, if available.

<u>Traffic Safety Analysis:</u> A detailed study of the collision history will be developed during the PA&ED phase. The analysis will include the most recent collision data available for the project intersections.

<u>Intersection Control Evaluation</u>: An ICE Engineering Analysis (Step Two) will be prepared which may include intersection traffic control warrant studies, a capacity, operations and safety analysis, design performance checks, an economic analysis, and consultations with the District ICE Coordinator.

<u>Traffic Impacts during Construction</u>: The traffic impacts during construction will be evaluated and mitigation strategy identified. Special attention will be paid to the performance of non-standard geometric features, if any.

<u>Pedestrian and Bicycles Improvement Analysis:</u> During the PA&ED phase, additional analysis will be prepared to ensure the inclusion of context sensitive bicycle and pedestrian improvements, such as dedicated bike lanes, shared-use paths and crosswalks, some of which are included in the conceptual layouts of the alternatives. Preliminary designs will be analyzed to ensure adequate facilities are included to support bicyclists and pedestrians.

<u>Traffic Index for Pavement Design</u>: The traffic index (TI) required for the pavement design for the new pavement at the roundabout alternatives will be completed during the PA&ED Phase.

# 5. DEFICIENCIES

US 101 bisects the community cutting off the Riverwalk area from other areas of the City. The existing Kenmar interchange creates a significant barrier to bicycle and pedestrian movement, do not conform to current design standards, and will not accommodate future projected traffic volumes or the needs of roadway users. The interchanges also lack directional legibility, making it difficult for visitors to access the City's existing amenities.

### Existing and Forecasted (No Build) Operational Deficiencies

Traffic modeling conducted in 2016 showed that 2 of the 4 intersections analyzed are currently operating below a LOS C (Fortuna's standard). For full buildout over 20-years with no improvements to the intersections (No Build), all 4 intersections are expected to operate below a LOS C. Refer to **Table 6** for a summary of LOS for existing and no build future conditions.

#### Table 6: Existing Levels of Service

| Intersection                                                    | Control             | Target | Existin | g LOS   | Future No | Build LOS |
|-----------------------------------------------------------------|---------------------|--------|---------|---------|-----------|-----------|
| intersection                                                    | Type <sup>1,2</sup> | LOS    | AM Peak | PM Peak | AM Peak   | PM Peak   |
| Kenmar Road and US 101 SB Ramps                                 | TWSC                | С      | С       | F       | F         | F         |
| Kenmar Road and US 101 NB Ramps                                 | TWSC                | С      | В       | В       | В         | F         |
| Kenmar Road and<br>Eel River Drive                              | TWSC                | С      | E       | E       | F         | F         |
| Kenmar Road and<br>South Fortuna<br>Boulevard/Ross Hill<br>Road | Signal              | С      | С       | В       | F         | F         |
| Notes:                                                          |                     |        |         |         |           |           |

1. TWSC = Two Way Stop Control

2. LOS = Delay based on worst minor street approach for TWSC intersections, average of all approaches for AWSC and Signal

#### Geometric Design Deficiencies

The following summarizes the non-standard features and geometric deficiencies identified for existing conditions in the project area:

Kenmar Road:

- Curve Radii per HDM Index 203.2
- Decision Sight Distance per HDM Index 201.7
- Vertical Clearance per HDM 309.2

#### Eel River Drive:

- Curve Radii per HDM Index 203.2
- Decision Sight Distance per HDM Index 201.7
- Intersection Spacing per HDM Index 504.3
- Stopping Sight Distance per HDM Index 201.1

Refer to **Attachment C** for a more comprehensive review of existing conditions and project design standards.

#### Pedestrian and Bicycle Deficiencies

The existing Kenmar Road interchange lacks ADA-compliant pedestrian facilities. Bicycle infrastructure are absent from project area, except for bike lanes at the Kenmar Road underpass. The bike lanes at this location have no signage, control or connection to continuing facilities.

## 6. CORRIDOR AND SYSTEM COORDINATION

The following discussion highlights the state, regional and local planning considerations for the proposed project improvements.

#### State Planning

#### Complete Streets

Caltrans Deputy Directive 64-Revision (DD-64R) provides for the needs of travelers of all ages and abilities in all planning, programming, design, construction, operations, and maintenance activities on the State Highway System. The Department views all transportation improvements (new and retrofit) as opportunities to improve safety, access, and mobility for all travelers and recognizes bicycle, pedestrian, and transit modes as integral elements of the transportation system.

#### **Regional Planning**

The Kenmar Road Interchange Improvement Project was prioritized in HCAOG's 2017 Regional Transportation Plan (RTP) Update.

#### Local Planning

#### General Plan

The City of Fortuna General Plan 2030 (General Plan) formalizes a long-term vision for the City's physical development. The Kenmar Road Interchange Improvement Project fulfils or meets many policies set forth in the General Plan, including specific direction to improve interchanges within the study area. These policies are detailed below.

#### Roadways and Highways

Policy TC-1.1 Reducing Mode Conflicts. The City shall seek to minimize conflicts between pedestrians, automobiles, and bicycles.

Policy TC-1.2 New Roadway Improvements. The City shall design and phase roadway improvements so that a level of service (LOS) C or better is maintained on all City streets, except that LOS D or better shall be maintained on Main Street.

Policy TC-1.3 Balanced Transportation System. The City shall strive to meet the level of service standard through a balanced transportation system that provides alternatives to the automobile and by promoting pedestrian, bicycle, and transit connections between employment areas and major residential and commercial areas.

Policy TC-1.4 Improved LOS. The City shall identify economic, design, and planning solutions to improve levels of service currently below LOS C. Where physical mitigation is infeasible, the City shall consider developing programs that enhance alternative access or otherwise reduce automobile travel demand.

Policy TC-1.15 Interchange Improvements. The City, through HCAOG in cooperation with Caltrans, shall allocate the costs for funding interchange improvements to areas of benefit and assign proportionate share costs to individual projects.

#### **Bicycle and Trail Facilities**

Policy TC-5.2 Bicycle System. The City shall develop and maintain a safe, convenient, and effective bicycle system that encourages increased bicycle use.

Policy TC-5.5 Rails-to-Trails. The City shall explore the concept of converting any abandoned railroad rights-of-way into multi-use bike and pedestrian paths for local and regional use per Sections 2540 through 2549 of the Streets and Highways Code.

The General Plan proposes a Class I bike path on Kenmar Road/Riverwalk Drive west of the interchange, a trail along the existing rail corridor, and a Class I bike path near Eel River Drive (refer to **Figure 5**).

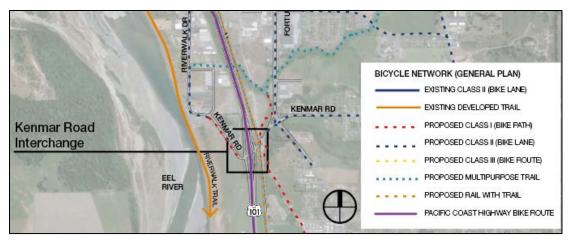



Figure 5: Bicycle Network in Fortuna General Plan

#### Pedestrian Facilities

Policy TC-4.2 New Developments. The City shall continue to require new development to finance and install sidewalks and pedestrian pathways connecting them to existing sidewalks or widening the right-of-way fronting the development to accommodate new sidewalks.

Policy TC-4.3 Specific Plans. The City shall encourage specific development plans to include design continuity of pedestrian access that enables residents to walk from their homes to places of work, recreation, and shopping.

Policy TC-4.7 Pedestrian Trails Interconnection. Where feasible, the City shall loop and interconnect pedestrian trails.

# 7. ALTERNATIVES

#### **Intersection Alternatives**

Unless noted otherwise, the alternatives identified below address the purpose and need of the project. Although the signal alternative does meet the projects purpose and need, its high estimated cost makes it infeasible for the City to implement, and therefore it is rejected from further consideration during the PA&ED phase. Only the roundabout are recommended to be carried forward in the PA&ED Phase of the project.

Based on the preliminary conceptual layouts, none of the build alternatives are anticipated to contain non-standard geometries with respect to both Caltrans Design Standards and City of Fortuna Design Standards. Further refinements to the proposed alternatives will be conducted during the PA&ED phase of the project.

Refer to **Attachment D** for conceptual design drawings, **Attachment E** for truck turning analysis, and **Attachment F** for roundabout fast path exhibits.

#### The "No Build" Alternative

This is the "No Build" condition, where the study intersections would remain unaltered with respect to intersection geometrics and stop control. This alternative does not meet the purpose and need of the proposed project.

#### Traffic Signal Alternative

This signalized intersection concept proposes three signals in close succession on Kenmar Road at the northbound on/offramp, southbound on/offramp, and at Eel River Drive. This alternative proposes

a mix of Class I and Class II bike facilities and a 7' wide sidewalk on the north side with connections to the three planned paths.

After analyzing the forecasted traffic volumes with Synchro, the lane geometry was determined for each intersection as shown conceptual design. Left-turn and right-turn pocket lengths were based on the 95<sup>th</sup>-percentile queue lengths.

For the signal alternative, the Kenmar Road corridor would require widening from the intersection of Kenmar Road and US 101 SB Ramps to the intersection of Kenmar Road and Fortuna Boulevard/Ross Hill Road. The current two lane roadway would require expansion to five lanes throughout the corridor to accommodate the projected growth. Widening of Kenmar Road and addition of bike lanes and sidewalks would require replacement of US 101 overcrossing bridge structure.

The signal alternative accommodates pedestrians and bicycles with standard Class II bike lanes, sidewalks, and intersection crossings along Kenmar Road and US 101 ramps. Each crossing is 10' wide and extends across the entire intersection length. Due to the number of lanes at each approach, long crosswalks would increase pedestrian crossing times and would affect the traffic signal timing to ensure that pedestrians can safely cross the roadway.

#### Roundabout Alternative 1 (a & b)

Roundabout alternative 1 uses roundabouts at the southbound and northbound on/off-ramps and two different options for the intersection with Eel River Drive:

- Option 1a: A third roundabout is included at the intersection with Eel River Drive.
- Option 1b: Eel River Drive is stop controlled with left turn movements onto and off Kenmar Road prohibited. Drivers desiring to make this movement would need to make a u-turn at the down-system intersections.

Both Option 1a and 1b include a 10' wide shared use path on the north side with connections to the three planned paths. In order to accommodate the path the Kenmar Road travel lanes would be reduced to 14 feet (with no shoulders).

Traffic modeling indicates that the NB Ramps intersection would operate at acceptable levels of service as a single lane roundabout with a westbound right-turn only lane. The SB off-ramp and EB Kenmar Road approaches the SB ramps intersection need a dedicated right-turn lane to operate at an acceptable level of service.

#### Roundabout Alternative 2

Roundabout alternative 2 uses a double ("dog bone") roundabout concept would place roundabouts on each side of US 101. The westerly roundabout accommodates traffic to and from the US 101 southbound offramp, Kenmar Road, and the southbound US 101 onramp. The easterly roundabout would manage traffic from Kenmar Road, the southerly reach of Eel River Drive, and northbound US 101 on and offramps. The northern portion of Eel River Drive would be realigned to cross the railroad and connect directly into the new roundabout located east of US 101.

Traffic modeling indicates that that the five-leg intersection would operate at an acceptable level of service as a single lane roundabout with a westbound right-turn only lane. The SB off-ramp and EB Kenmar Road approaches to the SB ramps intersection needed a dedicated right-turn lane to operate at an acceptable level of service. The concept includes 8' shoulders on each side of Kenmar Road under the existing freeway structure.

This design alternative includes a separated bike and walking path with connections to planned future trails, as well as pedestrian facilities throughout the system. The 10' wide shared use path on the north side would be located behind the existing structure columns. A retaining wall would be required beneath the structure to retain the highway/bridge embankment.

The realignment of Eel River Drive may allow for additional parking to be added to the park and ride lot, and access could be provided via a driveway on the realigned Eel River Drive or on Kenmar Road.

#### **Structure Alternatives**

A preliminary structures analysis was prepared to determine preliminary scope, feasibility, rough cost range, and a list of potential project risks for the proposed structures work. The full analysis and associated costs estimate are included in **Attachment G**.

US 101 spans over Kenmar Road on a bridge (Kenmar Road Undercrossing, BR. No. 04-0128). The bridge is skewed approximately 34 degrees to the right and is a 3-span, 133-foot-long, concrete teebeam structure, with a span arrangement of 34, 64, and 34 feet. The structure was constructed in 1962. End supports are diaphragm abutments on concrete pile foundations, and intermediate supports are 4-column bents on concrete pile foundations. The structure is in good condition with sufficiency rating equal to 98 and health index equal to 100. Kenmar Road currently passes under the 65 foot main span with a 14-foot 10-inch vertical clearance. The 40-foot-width of Kenmar Road currently accommodates two 12 foot travel lanes and two 8-foot shoulders. There are no sidewalks along either side of Kenmar Road.

In order to accommodate the proposed lane configurations and bicycle and connectivity on Kenmar Road at the US 101 interchange, the following structural alternatives were considered:

#### Signal Alternative

The signal alternative will add traffic signals and improve Kenmar Road in the City of Fortuna by widening the roadway, maintain profile grade, and adding a pedestrian sidewalk along the north side of the roadway. The widening would accommodate five 12-foot traffic-lanes, 5-foot shoulders each side of the roadway and a 7-foot-wide sidewalk along the north side of the road. The overall width of Kenmar Road improvement is approximately 77 feet including the sidewalk. In order to provide for widening and improving Kenmar Road to this extent, it will be necessary to replace the existing 3-span undercrossing. The existing bridge is in fair condition, however its' main span is insufficient dimension to accommodate the Kenmore Road improvements.

Based on the conditions at the site and the interchange geometrics, the new undercrossing will be a single-span, approximately 114 feet in length. The most economical structure type will likely be a precast, prestressed, concrete girder structure with a 6-foot structure depth. Supports would be high-cantilever wall type abutments founded on concrete piling. An increase in elevation of U.S. 101 on the order of 2 feet will be necessary to allow for a minimum 15 feet vertical clear distance from the bottom of soffit to Kenmar Road. The undercrossing will be designed to accommodate a Type 742 concrete left barrier, a minimum 10-foot left shoulder, two 12-foot lanes of southbound traffic, 5-foot southbound median shoulder, a Type 60 median barrier, a 5-foot northbound median shoulder, two 12-foot lanes northbound traffic, a 10-foot right shoulder, and a Type 742 concrete right barrier. Falsework would not necessary to erect this type of girder structure.

The new undercrossing can be constructed in two phases. The initial phase would likely be to remove and construct approximately the west half of the new bridge, while U.S. 101 traffic utilizes the east half of the existing bridge. The final phase would be to reroute U.S. 101 traffic to the new west half and remove and construct the east half of the new structure and a 3-foot wide deck closure pour.

#### Roundabout Alternatives

Roundabout alternative 2 will require a permanent retaining wall parallel to and in front of the north abutment of the existing Kenmar Road Undercrossing (Abutment 4) and to add traffic roundabouts each side of the interchange on Kenmar Road. The retaining wall in front of the abutment is to accommodate a 10-foot-wide pedestrian/bicycle facility under the structure. The total length of proposed wall will be approximately 180 feet.

The proposed wall layout line is 15 feet from the face of the existing columns; however, the layout line could be located as close as 10 feet from the face of existing columns. A Caltrans Type 7 retaining wall was considered for the proposed structure for the layout line 10 feet from the existing columns and the excavation for a Type 7 wall would likely be outside the influence zone of the Abutment 1 diaphragm. If the wall layout line is located more than 10 feet from the existing column face, then the new wall would need to be a permanent tie-back (ground anchor) diaphragm wall constructed from top

down in a minimum of three lifts. The maximum wall height above the pedestrian surface wouldbe approximately 12 feet depending on layout. The wall foundations would extend approximately 2 to 3 feet below finish grade. Cable railing will be mounted on top of the wall. Permanent tie-backs wjould require a permanent construction easement.

#### Pedestrian and Bike Facilities and Connectivity

#### Signal Alternative

The signal alternative accommodates pedestrians and bicycles with standard Class II bike lanes, sidewalks, and intersection crossings along Kenmar Road and US 101 ramps. Each crossing is 10' wide and extends across the entire intersection length. Due to the number of lanes at each approach, long crosswalks will increase pedestrian crossing times and will affect the traffic signal timing to ensure that pedestrians can safely cross the roadway.

### Roundabout Alternatives

Pedestrian crossings are provided along Kenmar Road and US 101 ramps for Kenmar Road Interchange roundabout alternatives. Crossings are 10 feet in width and set back a minimum of 20 feet from the roundabouts' circulating roadways. Where crosswalks intersect splitter islands or medians, a 6 foot long minimum paved pathway is provided between the travel lanes for safety and refuge when waiting to cross. Shared-use pathways, 10 feet in width and located outside of the roundabouts, are setback a minimum of 5 feet from the circulatory road with a landscape strip to increase accessibility and discourage pedestrians from crossing into the central traveled way.

Bicycles are accommodated by navigating through the roundabouts in two possible ways. Cyclists may choose to take the travel lane and travel through the roundabouts as a vehicle or may choose to take the separated bike ramp/shared use path and travel through the corridor as a pedestrian.

#### Gateway and Landscaping

Wayfinding, gateway aesthetics and plantings can be featured in each alternative in undeveloped open space along or within each intersection. Roundabouts, with their central landscape areas, lend themselves to focal points with artistic gateway treatments. Refer to **Attachment H** for preliminary landscape and gateway concepts.

### **Cost Estimates**

Capital, support, and total estimated costs for each alternative are summarized in **Table 7**. The total capital costs include traffic control, mobilization, right-of-way, utility relocation, and contingencies. The total support costs include costs for environmental clearance, plans, specifications, and estimates (PS&E), right-of-way engineering and acquisition, and construction support and management. Refer to **Attachment I** for detailed costs estimates for each alternative.

| Alternative   | Total Capital<br>Cost | Total Support<br>Cost | Total Estimated<br>Cost (Rounded) |
|---------------|-----------------------|-----------------------|-----------------------------------|
| Signal        | \$15.0M               | \$6.7M                | \$21.7                            |
| Roundabout 1a | \$4.4M                | \$2.0M                | \$6.4M                            |
| Roundabout 1b | \$4.2M                | \$2.0M                | \$6.2M                            |
| Roundabout 2  | \$5.6M                | \$2.4M                | \$8.0M                            |

#### Table 7: Cost Estimate Summary

#### Alternatives Comparison

A preliminary alternatives analysis was conducted to identify a preferred alternative. The analysis considered the following: cost, truck accommodation, safety, local access, complete streets, environmental impacts, right-of-way impacts, public input, and the purpose and need.

As previously stated, the signal alternative does meet the projects purpose and need, however, its high estimated cost makes it infeasible for the City to implement, and therefore it is rejected from further consideration.

The roundabout alternatives were generally considered comparable in terms of meeting the performance criteria, however roundabout alternative 2 was identified as the preferred alternative as it as it best met the performance criteria and was preferred by the public and stakeholders.

No design exceptions have been identified as at this point. However as the project is further developed, the need for exceptions to design standards should be analyzed.

## 8. RIGHT-OF-WAY

Initial research was conducted to determine road widths, rights-of-way, adjacent parcel ownerships and maintenance responsibilities, as these factors can affect feasible design solutions or preferred alternatives. Refer to **Attachment J** for additional information on right-of-way and ownership. Right-of-way data sheets will be prepared during the PA&ED phase of the project.

#### Ownership

Generally, the property in the immediate vicinity of the Kenmar interchanges is owned by public entities: Caltrans, the County of Humboldt, and the City of Fortuna. The underpass is owned by Caltrans and maintained by the County. The undeveloped Mill District Parcel is privately owned and accessed from the northern leg of Eel River Drive. Commercial land use (Riverwalk RV Park) is located southwest of the interchange. The railroad corridor is owned by the North Coast Railroad Authority (NCRA). Caltrans owns a small park and ride lot on the corner of Kenmar Road and Eel River Drive.

### **Right-of-Way Widths**

The width of Riverwalk Drive right-of-way west of US 101 has been determined to be 50-feet between the back of the walk on the east side and top of slope on the west side. Additional research and surveying will be needed to determine the right-of-way limits for Kenmar Road and Eel River Drive.

**Table 8** summarizes the approximate anticipated right-of-way impacts for each project alternative.

 Only roundabout alternative 1a is expected to require right-of-way acquisition (less than a tenth of an acre) to construct the northern leg of the Eel River Drive roundabout.

In addition to permanent acquisitions, temporary permissions/easements and/or encroachment permits will need to be obtained during the Right-of-Way phase of the project.

| Alternative          | APN #       | Right-of-Wa | ay Acquisition |
|----------------------|-------------|-------------|----------------|
|                      |             | SQFT        | Acre           |
| Signal               | N/A         | N/A         | N/A            |
| Roundabout Option 1a | 201-331-005 | 3,772.58    | 0.09           |
| Roundabout Option 1b | N/A         | N/A         | N/A            |
| Roundabout Option 2  | N/A         | N/A         | N/A            |

### Table 8: Right-of-way Impacts

### <u>Utilities</u>

Existing underground and above ground utilities in the vicinity of the Kenmar Road interchange will need to be modified or relocated to accommodate the proposed improvements. Utility ownership is presented in **Table 9**.

| Utility          | Owner                    |
|------------------|--------------------------|
| Storm Drain      | Caltrans/City of Fortuna |
| Cable Television | Suddenlink               |
| Telephone        | AT&T                     |
| Electrical       | PG&E                     |
| Water            | City of Fortuna          |
| RR Signal        | NCAR                     |

## Table 9: Utilities in Vicinity of Kenmar Road Interchange

### Railroad

The railroad corridor roughly parallels the east side of US 101 and crosses through the Kenmar Road project area. The NCRA is the public agency that owns right-of-way and the Northwestern Pacific Railroad (NWPRR) is the contract operator of the railroad. Together they have the responsibility for the safety, operation and maintenance of the railroad. Although there is currently not active rail service, any modifications to railroad crossings at roadway intersections will require the approval of the California Public Utilities Commission (CPUC) under General Order 88-B. As the project moves forward to project development, close coordination with the NCRA, NWPRR and the CPUC will be required to ensure that railroad operations are not impeded by interchange improvements.

## 9. STAKEHOLDER INVOLVEMENT

The project concepts were developed and vetted through a public process that included regular meetings of a Technical Advisory Group (TAG), the general public, and specific project stakeholders. This section discusses the results of the public and stakeholder engagement during the design development process.

### Technical Advisory Group (TAG)

A TAG was convened in January 2016 to support initial project planning and the development of project alternatives. The TAG met on five different occasions provide technical information relevant to the project, to coordinate with local agencies, and to act as the "eyes and ears" of the community to guide the project. Group members included representatives from HCAOG, the City of Fortuna, the Humboldt County Department Public Work, and Caltrans District 1.

### **Community Meetings**

Two workshops were held in March and July of 2016 to obtain public input into the project assessment and design. Outreach for the project was conducted with flyers, emails, radio public service announcements on six or more stations, social media posts, and targeted in-person outreach to colleagues and residents. In order to encourage participation, each workshop offered food, a childfriendly space with activities, and Spanish-English interpretation. Both workshops resulted in specific and helpful feedback from stakeholders that was utilized during the development and evaluation of design alternatives.

#### First Community Meeting (March 2016)

The goals of this first workshop was to understand how residents and visitors currently navigate Kenmar interchange area, to identify specific concerns related to safety, operations, and connectivity, and to discuss potential design treatments that could be implements

The attendees identified many challenges for pedestrians and bicyclists, including dark areas under crossings, narrow or virtually non-existent shoulders, and challenging road crossings. Meeting participants showed a preference for design alternatives involving roundabouts. Signalized intersection alternative comments were mostly mildly negative. Roundabout options with fewer roundabouts, and fewer bicycle/pedestrian crossings were preferred.

#### Second Community Meeting (July 2016)

The second workshop, conducted on July 20, 2016, was primarily focused on presenting design alternatives, answering questions and soliciting community feedback. There was a clear preference for the roundabout alternative 2 for Kenmar Road.

#### Public Presentations

The results of the 2016 Highway 101, Fortuna Downtown and Riverwalk Area Complete Streets and Connectivity Study was presented at the following public meetings:

- Fortuna City Council Meeting November 8, 2016
- HCAOG Board Meeting November 17, 2016
- HCAOG Technical Advisory Committee (TAC) Meeting December 1, 2016

In addition, the results of the study were presented to the Caltrans District 1 Executive Committee on January 3, 2017.

## 10. ENVIRONMENTAL COMPLIANCE

### Preliminary Environmental Analysis

In 2016, an initial environmental evaluation of the project and alternatives was conducted to help anticipate potential environmental constraints that may affect project design, alternatives, cost, schedule, and delivery. The evaluation included a reconnaissance-level site investigation of existing conditions in the project area to identify the presence or potential presence of biological resources listed under the Federal Endangered Species Act (ESA), the presence of wetlands and Waters of the US as regulated by the US Army Corps of Engineers (USACE), the presence or potential presence of species listed as endangered or threatened under the California Endangered Species Act (CESA) or considered a species of special concern (SSC) by the California Department of Fish and Wildlife (CDFW), or the potential for special-status plant species having a rare plant ranking as determined by the California Native Plant Society (CNPS) rare plant inventory, and to present the potential of sensitive habitats as listed by the CDFW. Refer to **Attachment K** for more information on the initial environmental evaluation that was prepared. During the PA&ED phase of the project, a formal Preliminary Environmental Analysis Report (PEAR) may be completed to satisfy Caltrans if required.

#### NEPA, CEQA and Permitting

During the PA&ED phase, the project will be evaluated for potential impacts on the environment in compliance with the California Environmental Quality Act (CEQA) and National Environmental Policy Act (NEPA). Feasible opportunities to avoid or reduce impacts will be pursued and mitigation measures will be developed to reduce potentially significant impacts as appropriate. The draft CEQA document will be made available to the public for review and comment.

Based on the information currently available, the expected compliance pathways are a Mitigated Negative Declaration of environmental impact for CEQA and a Categorical Exclusion for NEPA in conformance with the Federal Highways Administration/Caltrans programmatic process.

The wetland and riparian habitats in the project area have a moderate to high likelihood of supporting listed reptile, frog and fish species including Western Pond Turtle *Emys (Actinymys) marmorata*, Northern Red-legged Frog Rana aurora, and Foothill Yellow-legged Frog *Rana boylii*. Several sensitive plant species also have a moderate likelihood of occurring in the study area.

Subsequent environmental investigations including a wetland delineation will be needed to address potential sensitive species identified and address any impacts to protected habitats. Additionally, a variety of permits and related environmental review will be necessary for project planning and design.

Anticipated Environmental Permitting and Compliance Requirements are presented in Table 10.

| Law/Regulation                                | Permit/Approval                                                   | Authority                                                                      |
|-----------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|
| CEQA                                          | Mitigated Negative Declaration                                    | Lead Agency                                                                    |
| NEPA                                          | Categorical Exclusion                                             | Caltrans on behalf of Federal<br>Highways Administration                       |
| Clean Water Act Section 404                   | Nationwide Permit                                                 | US Army Corps of Engineers                                                     |
| Porter-Cologne/Clean Water<br>Act Section 401 | 401 Certification and/or Waste<br>Discharge Requirements<br>(WDR) | North Coast Regional Water<br>Quality Control Board                            |
| National Historic<br>Preservation Act         | Letter of Concurrence                                             | State Historic Preservation<br>Office & Tribal Historic<br>Preservation Office |

Table 10. Anticipated Environmental Permitting and Compliance Requirements

A Preliminary Environmental Study (PES) Form will be developed during the PA&ED phase of the project. The following technical studies and plans are anticipated to be required:

- Natural Environmental Study (NES) of Biological Resources
- Wetland Delineation and Rare Plant Survey
- Initial Site Assessment (ISA)
- Visual Impact Assessment
- Floodplain Evaluation & Location Hydraulic Study
- Geotechnical Investigation
- Historic Property Survey Report (HPSR) and Archeological Survey Report (ARS)
- Stormwater Data Report

## 11. FUNDING

In 2017, HCAOG prepared its 2018 Regional Transportation Improvement Program (RTIP) for incorporation into the 2018 State Transportation Improvement Program (STIP) cycle. The RTIP identifies state highway and local agency projects proposed for funding from Fiscal Year (FY) 2018-19 through 2022-23 based on the amount of funding available to the region. In addition, HCAOG requested an advance of \$550,000 of funding for the US 101/Kenmar Road Interchange Project through the Advanced Project Development Element (APDE). The APDE is an advancement of future

regular regional RTIP funds which provides funding for environmental, permits, plans, specifications and estimates. The advanced funds were requested to be programmed in FY 2019-20. The California Transportation Commission will make a decision on HCAOG's RTIP at its meeting on March 21/22, 2018.

Funding for PS&E, right-of-way and construction has not been programmed. Potential funding sources for PS&E, right-of-way and construction include: the state Active Transportation Program (ATP), the federal TIGER program, future STIP cycles, and local funds.

It has been determined that this project is eligible for Federal-aid funding.

## **Capital Outlay Project Estimate**

**Table 11** presents a summary of the capital outlay estimates for the proposed alternatives. Detailed estimates for the various alternatives are presented in **Attachment I**.

|               | Range of Es  | timate           | Federal F    | unds             | Local Fu     | nds              |
|---------------|--------------|------------------|--------------|------------------|--------------|------------------|
| Alternative   | Construction | Right-<br>of-Way | Construction | Right-of-<br>Way | Construction | Right-of-<br>Way |
| Signal        | \$14.8M      | \$200K           | TBD          | TBD              | TBD          | TBD              |
| Roundabout 1a | \$4.1M       | \$300K           | TBD          | TBD              | TBD          | TBD              |
| Roundabout 1b | \$4.0M       | \$200K           | TBD          | TBD              | TBD          | TBD              |
| Roundabout 2  | \$5.4M       | \$200K           | TBD          | TBD              | TBD          | TBD              |

 Table 11: Summary of Capital Outlay Estimate

The level of detail available to develop these capital outlay project estimates is only accurate to within the above ranges and is useful for long-range planning purposes only. The capital outlay project estimates should not be used to program or commit State-programmed capital outlay funds.

## **Capital Outlay Support Estimate**

Capital outlay support estimate for programming PA&ED in the 2018 STIP for this project: \$550,000.

# 12. DELIVERY SCHEDULE

The following section outlines the delivery schedule for the proposed alternative.

#### Table 10: Project Delivery Schedule

| Project Milestones                     | Scheduled Delivery Date |
|----------------------------------------|-------------------------|
| Program Project                        | 12/15/2017              |
| Begin Environmental (PA&ED) Phase      | 07/01/2019              |
| Circulate Draft Environmental Document | 07/01/2020              |
| Draft Project Report                   | 12/1/2020               |
| End Environmental Milestone            | 6/30/2021               |

The anticipated funding fiscal year for construction is 2025/26.

## 13. RISKS

A risk register and risk analysis will be complete for the project during the PA&ED phase of the project.

# 14. EXTERNAL AGENCY COORDINATION

This project does not anticipate coordination with the Federal Highway Administration (FHWA).

Coordination between the City of Fortuna, County of Humboldt and Caltrans will be required throughout all phases of this project. In addition, the project will require the following coordination:

<u>Caltrans</u> Encroachment Permit

<u>US Army Corps of Engineers</u> Department of the Army Permit for: Clean Water Act Section 404

<u>California Department of Fish and Wildlife</u> California Fish and Game Code Section 1602 Lake or Streambed Alteration Agreement

<u>California Coastal Commission and/or Local Coastal Program</u> California Public Resources Code Division 20 (California Coastal Act) Coastal Development Permit

Regional Water Quality Control Board Clean Water Act Section 401 Water Quality Certification

Railroads North Coast Railroad Authority

<u>California Public Utilities Commission</u> Modification to an Existing Rail Crossing, GO-88B

# 15. PROJECT REVIEWS

Caltrans District 1 has indicated that a formal review of this PSR is not required at this time. The City will engage Caltrans prior to proceeding with PA&ED at which time formal Caltrans reviews can occur, if requested.

## 16. PROJECT PERSONNEL

#### **City of Fortuna**

Merritt Perry, Director of Public Works/City Engineer, 707-725-1469 Kevin Carter, Deputy Director of Public Works, 707-725-1472 Mike Johnson, General Services Superintendent, 707-725-1466

#### **Caltrans District 1**

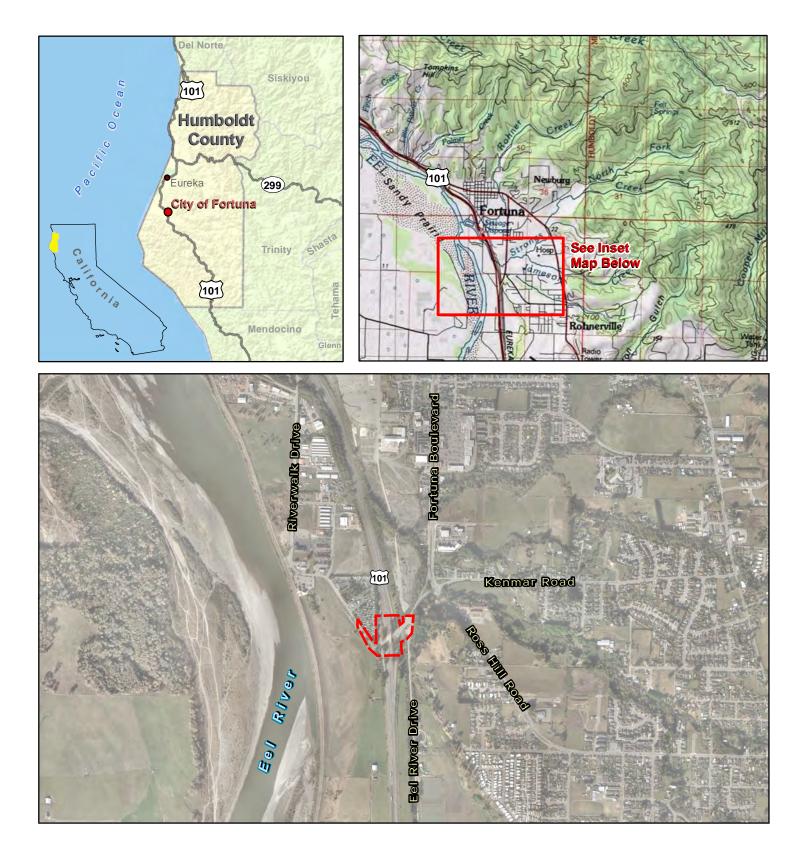
Kevin Tucker, Advanced Planning, 707-441-5770 Jesse Roberts, Transportation Planning, 707-441-4693

#### Humboldt County Association of Governments

Marcella Clem, Director, 707-444-8208

### **County of Humboldt**

Tony Seghetti, Deputy Director Engineering, 707-445-7377 Tom Mattson, Director of Public Works, 707-445-7491


#### GHD (Consultant)

Josh Wolf, Project Manager, 707-443-8326

## 17. ATTACHMENTS

- L. Location map
- M. Traffic Counts and LOS Analysis
- N. Review of Geometric Design Standards
- O. Conceptual Design Drawings
- P. Truck Turning Analysis
- Q. Fast Path Exhibits
- R. Preliminary Structures Analysis
- S. Landscaping/Gateway Concepts
- T. Cost Estimates
- U. Right-of-Way and Property Ownership
- V. Environmental Constraints Analysis

**Attachment A - Location map** 





Paper Size 8.5" x 11" (ANSI A) City of Fortuna Job Number | 11109149 0 200400600800,000 Kenmar Road Interchange Improvements Revision A 06 Dec 2017 Date Feet Map Projection: Lambert Conformal Conic Horizontal Datum: North American 1983 Grid: NAD 1983 StatePlane California I FIPS 0401 Feet Vicinity Map Figure 1

C:\111\11109149 HCAOG Hwy 101 Fortuna Downtown-Riverwalk\08-GIS\Maps\Figures\Recon\_WetlandsHabitat\F1\_Vicinity\_171206.mxd © 2012. While every care has been taken to prepare this map, GHD (and DATA CUSTODIAN) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any way and for any reason. Data source: City of Fortuna Aerial, 2010; GHD data, 2013; USA Topo Maps; Streetmap USA. Created by:gldavidson W www.ghd.com

Attachment B - Traffic Counts and LOS Analysis

**Existing Conditions** 

6.7

## Intersection

Int Delay, s/veh

| Movement                 | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Traffic Vol, veh/h       | 0    | 50   | 32   | 189  | 110  | 0    | 0    | 0    | 0    | 177  | 1    | 7    |
| Future Vol, veh/h        | 0    | 50   | 32   | 189  | 110  | 0    | 0    | 0    | 0    | 177  | 1    | 7    |
| Conflicting Peds, #/hr   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control             | Stop | Stop | Stop | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized           | -    | -    | None |
| Storage Length           | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, # | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %                 | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor         | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   |
| Heavy Vehicles, %        | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    |
| Mvmt Flow                | 0    | 53   | 34   | 199  | 116  | 0    | 0    | 0    | 0    | 186  | 1    | 7    |
|                          |      |      |      |      |      |      |      |      |      |      |      |      |

| Major/Minor           |     |           | Major2 |   |   | Minor2 |      |       |
|-----------------------|-----|-----------|--------|---|---|--------|------|-------|
| Conflicting Flow All  |     |           | 0      | 0 | 0 | 514    | 514  | 116   |
| Stage 1               |     |           | -      | - | - | 514    | 514  | -     |
| Stage 2               |     |           | -      | - | - | 0      | 0    | -     |
| Critical Hdwy         |     |           | 4.13   | - | - | 7.13   | 6.53 | 6.23  |
| Critical Hdwy Stg 1   |     |           | -      | - | - | 6.13   | 5.53 | -     |
| Critical Hdwy Stg 2   |     |           | -      | - | - | -      | -    | -     |
| Follow-up Hdwy        |     |           | 2.227  | - | - |        |      | 3.327 |
| Pot Cap-1 Maneuver    |     |           | -      | - | 0 | 469    | 463  | 934   |
| Stage 1               |     |           | -      | - | 0 | 541    | 534  | -     |
| Stage 2               |     |           | -      | - | 0 | -      | -    | -     |
| Platoon blocked, %    |     |           |        | - |   |        |      |       |
| Mov Cap-1 Maneuver    |     |           | -      | - | - | 469    | 463  | 934   |
| Mov Cap-2 Maneuver    |     |           | -      | - | - | 469    | 463  | -     |
| Stage 1               |     |           | -      | - | - | 541    | 534  | -     |
| Stage 2               |     |           | -      | - | - | -      | -    | -     |
|                       |     |           |        |   |   |        |      |       |
| Approach              |     |           | WB     |   |   | SB     |      |       |
| HCM Control Delay, s  |     |           |        |   |   | 17.6   |      |       |
| HCM LOS               |     |           |        |   |   | С      |      |       |
|                       |     |           |        |   |   |        |      |       |
| Minor Lane/Major Mvmt | WBL | WBT SBLn1 |        |   |   |        |      |       |
| Capacity (veh/h)      | -   | - 478     |        |   |   |        |      |       |
| HCM Lana V/C Patia    |     | 0 407     |        |   |   |        |      |       |

| HCM Lane V/C Ratio    | - | - 0.407 |  |
|-----------------------|---|---------|--|
| HCM Control Delay (s) | - | - 17.6  |  |
| HCM Lane LOS          | - | - C     |  |
| HCM 95th %tile Q(veh) | - | - 2     |  |

## Intersection

Int Delay, s/veh

3.5

| Movement                 | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR   | SBL  | SBT  | SBR  |
|--------------------------|------|------|------|------|------|------|------|------|-------|------|------|------|
| Traffic Vol, veh/h       | 9    | 218  | 0    | 0    | 274  | 488  | 25   | 1    | 206   | 0    | 0    | 0    |
| Future Vol, veh/h        | 9    | 218  | 0    | 0    | 274  | 488  | 25   | 1    | 206   | 0    | 0    | 0    |
| Conflicting Peds, #/hr   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    |
| Sign Control             | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop  | Stop | Stop | Stop |
| RT Channelized           | -    | -    | None | -    | -    | Free | -    | -    | Yield | -    | -    | None |
| Storage Length           | -    | -    | -    | -    | -    | -    | -    | -    | -     | -    | -    | -    |
| Veh in Median Storage, # | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     | -    | 0    | -    |
| Grade, %                 | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     | -    | 0    | -    |
| Peak Hour Factor         | 87   | 87   | 87   | 87   | 87   | 87   | 87   | 87   | 87    | 87   | 87   | 87   |
| Heavy Vehicles, %        | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     | 2    | 2    | 2    |
| Mvmt Flow                | 10   | 251  | 0    | 0    | 315  | 561  | 29   | 1    | 237   | 0    | 0    | 0    |
|                          |      |      |      |      |      |      |      |      |       |      |      |      |

| Major/Minor          | Major1 |   |   | Major2 |   |   | Minor1 |       |       |  |
|----------------------|--------|---|---|--------|---|---|--------|-------|-------|--|
| Conflicting Flow All | 315    | 0 | - | -      | - | 0 | 586    | 586   | 251   |  |
| Stage 1              | -      | - | - | -      | - | - | 271    | 271   | -     |  |
| Stage 2              | -      | - | - | -      | - | - | 315    | 315   | -     |  |
| Critical Hdwy        | 4.12   | - | - | -      | - | - | 6.42   | 6.52  | 6.22  |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 5.42   | 5.52  | -     |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 5.42   | 5.52  | -     |  |
| Follow-up Hdwy       | 2.218  | - | - | -      | - | - | 3.518  | 4.018 | 3.318 |  |
| Pot Cap-1 Maneuver   | 1245   | - | 0 | 0      | - | 0 | 473    | 422   | 788   |  |
| Stage 1              | -      | - | 0 | 0      | - | 0 | 775    | 685   | -     |  |
| Stage 2              | -      | - | 0 | 0      | - | 0 | 740    | 656   | -     |  |
| Platoon blocked, %   |        | - |   |        | - |   |        |       |       |  |
| Mov Cap-1 Maneuver   | 1245   | - | - | -      | - | - | 469    | 0     | 788   |  |
| Mov Cap-2 Maneuver   | -      | - | - | -      | - | - | 469    | 0     | -     |  |
| Stage 1              | -      | - | - | -      | - | - | 768    | 0     | -     |  |
| Stage 2              | -      | - | - | -      | - | - | 740    | 0     | -     |  |
|                      |        |   |   |        |   |   |        |       |       |  |

| Approach             | EB  | WB | NB   |  |
|----------------------|-----|----|------|--|
| HCM Control Delay, s | 0.3 | 0  | 10.8 |  |
| HCM LOS              |     |    | В    |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | WBT |
|-----------------------|-------|-------|-----|-----|
| Capacity (veh/h)      | 887   | 1245  | -   | -   |
| HCM Lane V/C Ratio    | 0.301 | 0.008 | -   | -   |
| HCM Control Delay (s) | 10.8  | 7.9   | 0   | -   |
| HCM Lane LOS          | В     | А     | Α   | -   |
| HCM 95th %tile Q(veh) | 1.3   | 0     | -   | -   |

1.3

## Intersection

Int Delay, s/veh

| Movement                 | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Traffic Vol, veh/h       | 0    | 407  | 17   | 13   | 733  | 0    | 29   | 0    | 11   | 0    | 0    | 0    |
| Future Vol, veh/h        | 0    | 407  | 17   | 13   | 733  | 0    | 29   | 0    | 11   | 0    | 0    | 0    |
| Conflicting Peds, #/hr   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control             | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized           | -    | -    | None |
| Storage Length           | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, # | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %                 | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor         | 86   | 86   | 86   | 86   | 86   | 86   | 86   | 86   | 86   | 86   | 86   | 86   |
| Heavy Vehicles, %        | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                | 0    | 473  | 20   | 15   | 852  | 0    | 34   | 0    | 13   | 0    | 0    | 0    |
|                          |      |      |      |      |      |      |      |      |      |      |      |      |

| Major/Minor          | Major1 |   |   | Major2 |   |   | Minor1 |       |       | Minor2 |       |       |
|----------------------|--------|---|---|--------|---|---|--------|-------|-------|--------|-------|-------|
| Conflicting Flow All | 852    | 0 | 0 | 493    | 0 | 0 | 1366   | 1366  | 483   | 1373   | 1376  | 852   |
| Stage 1              | -      | - | - | -      | - | - | 483    | 483   | -     | 883    | 883   | -     |
| Stage 2              | -      | - | - | -      | - | - | 883    | 883   | -     | 490    | 493   | -     |
| Critical Hdwy        | 4.12   | - | - | 4.12   | - | - | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Follow-up Hdwy       | 2.218  | - | - | 2.218  | - | - | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver   | 787    | - | - | 1071   | - | - | 124    | 147   | 584   | 123    | 145   | 359   |
| Stage 1              | -      | - | - | -      | - | - | 565    | 553   | -     | 340    | 364   | -     |
| Stage 2              | -      | - | - | -      | - | - | 340    | 364   | -     | 560    | 547   | -     |
| Platoon blocked, %   |        | - | - |        | - | - |        |       |       |        |       |       |
| Mov Cap-1 Maneuver   | 787    | - | - | 1071   | - | - | 121    | 143   | 584   | 118    | 141   | 359   |
| Mov Cap-2 Maneuver   | -      | - | - | -      | - | - | 121    | 143   | -     | 118    | 141   | -     |
| Stage 1              | -      | - | - | -      | - | - | 565    | 553   | -     | 340    | 354   | -     |
| Stage 2              | -      | - | - | -      | - | - | 331    | 354   | -     | 548    | 547   | -     |
|                      |        |   |   |        |   |   |        |       |       |        |       |       |

| Approach             | EB | WB  | NB   | SB |
|----------------------|----|-----|------|----|
| HCM Control Delay, s | 0  | 0.1 | 37.9 | 0  |
| HCM LOS              |    |     | E    | А  |

| Minor Lane/Major Mvmt | NBLn1 | EBL | EBT | EBR | WBL   | WBT | WBR S | BLn1 |
|-----------------------|-------|-----|-----|-----|-------|-----|-------|------|
| Capacity (veh/h)      | 155   | 787 | -   | -   | 1071  | -   | -     | -    |
| HCM Lane V/C Ratio    | 0.3   | -   | -   | -   | 0.014 | -   | -     | -    |
| HCM Control Delay (s) | 37.9  | 0   | -   | -   | 8.4   | 0   | -     | 0    |
| HCM Lane LOS          | E     | А   | -   | -   | А     | А   | -     | А    |
| HCM 95th %tile Q(veh) | 1.2   | 0   | -   | -   | 0     | -   | -     | -    |

|                              | ≯          | -          | $\mathbf{r}$ | ∢         | +    | •    | 1    | Ť          | 1    | 1    | ţ    | ~    |
|------------------------------|------------|------------|--------------|-----------|------|------|------|------------|------|------|------|------|
| Movement                     | EBL        | EBT        | EBR          | WBL       | WBT  | WBR  | NBL  | NBT        | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations          |            | र्भ        | 1            |           | र्भ  | 1    | ሻ    | <b>∱</b> } |      | ሻ    | - 11 |      |
| Traffic Volume (veh/h)       | 216        | 48         | 154          | 23        | 172  | 87   | 315  | 278        | 9    | 21   | 171  | 259  |
| Future Volume (veh/h)        | 216        | 48         | 154          | 23        | 172  | 87   | 315  | 278        | 9    | 21   | 171  | 259  |
| Number                       | 7          | 4          | 14           | 3         | 8    | 18   | 5    | 2          | 12   | 1    | 6    | 16   |
| Initial Q (Qb), veh          | 0          | 0          | 0            | 0         | 0    | 0    | 0    | 0          | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00       |            | 1.00         | 1.00      |      | 1.00 | 1.00 |            | 1.00 | 1.00 |      | 1.00 |
| Parking Bus, Adj             | 1.00       | 1.00       | 1.00         | 1.00      | 1.00 | 1.00 | 1.00 | 1.00       | 1.00 | 1.00 | 1.00 | 1.00 |
| Adj Sat Flow, veh/h/ln       | 1900       | 1863       | 1863         | 1900      | 1863 | 1863 | 1863 | 1863       | 1900 | 1863 | 1863 | 1900 |
| Adj Flow Rate, veh/h         | 257        | 57         | 183          | 27        | 205  | 104  | 375  | 331        | 11   | 25   | 204  | 0    |
| Adj No. of Lanes             | 0          | 1          | 1            | 0         | 1    | 1    | 1    | 2          | 0    | 1    | 2    | 0    |
| Peak Hour Factor             | 0.84       | 0.84       | 0.84         | 0.84      | 0.84 | 0.84 | 0.84 | 0.84       | 0.84 | 0.84 | 0.84 | 0.84 |
| Percent Heavy Veh, %         | 2          | 2          | 2            | 2         | 2    | 2    | 2    | 2          | 2    | 2    | 2    | 2    |
| Cap, veh/h                   | 312        | 69         | 337          | 35        | 268  | 259  | 420  | 1160       | 38   | 49   | 434  | 0    |
| Arrive On Green              | 0.21       | 0.21       | 0.21         | 0.16      | 0.16 | 0.16 | 0.24 | 0.33       | 0.33 | 0.03 | 0.12 | 0.00 |
| Sat Flow, veh/h              | 1465       | 325        | 1583         | 216       | 1636 | 1583 | 1774 | 3496       | 116  | 1774 | 3632 | 0.00 |
| Grp Volume(v), veh/h         | 314        | 0          | 183          | 232       | 0    | 104  | 375  | 167        | 175  | 25   | 204  | 0    |
| Grp Sat Flow(s),veh/h/ln     | 1790       | 0          | 1583         | 1852      | 0    | 1583 | 1774 | 1770       | 1842 | 1774 | 1770 | 0    |
| Q Serve(g_s), s              | 11.4       | 0.0        | 7.0          | 8.2       | 0.0  | 4.0  | 13.9 | 4.8        | 4.8  | 0.9  | 3.7  | 0.0  |
| Cycle Q Clear(g_c), s        | 11.4       | 0.0        | 7.0          | 8.2       | 0.0  | 4.0  | 13.9 | 4.8        | 4.8  | 0.9  | 3.7  | 0.0  |
| Prop In Lane                 | 0.82       |            | 1.00         | 0.12      |      | 1.00 | 1.00 |            | 0.06 | 1.00 |      | 0.00 |
| Lane Grp Cap(c), veh/h       | 381        | 0          | 337          | 303       | 0    | 259  | 420  | 587        | 611  | 49   | 434  | 0    |
| V/C Ratio(X)                 | 0.82       | 0.00       | 0.54         | 0.77      | 0.00 | 0.40 | 0.89 | 0.28       | 0.29 | 0.51 | 0.47 | 0.00 |
| Avail Cap(c_a), veh/h        | 472        | 0          | 418          | 489       | 0    | 418  | 455  | 794        | 827  | 140  | 960  | 0    |
| HCM Platoon Ratio            | 1.00       | 1.00       | 1.00         | 1.00      | 1.00 | 1.00 | 1.00 | 1.00       | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)           | 1.00       | 0.00       | 1.00         | 1.00      | 0.00 | 1.00 | 1.00 | 1.00       | 1.00 | 1.00 | 1.00 | 0.00 |
| Uniform Delay (d), s/veh     | 25.6       | 0.0        | 23.9         | 27.3      | 0.0  | 25.5 | 25.2 | 16.8       | 16.8 | 32.7 | 27.8 | 0.0  |
| Incr Delay (d2), s/veh       | 9.4        | 0.0        | 1.4          | 4.0       | 0.0  | 1.0  | 18.6 | 0.3        | 0.3  | 7.9  | 0.8  | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0        | 0.0        | 0.0          | 0.0       | 0.0  | 0.0  | 0.0  | 0.0        | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 6.6        | 0.0        | 3.2          | 4.5       | 0.0  | 1.8  | 8.9  | 2.4        | 2.5  | 0.6  | 1.8  | 0.0  |
| LnGrp Delay(d),s/veh         | 35.0       | 0.0        | 25.2         | 31.3      | 0.0  | 26.5 | 43.8 | 17.1       | 17.1 | 40.6 | 28.6 | 0.0  |
| LnGrp LOS                    | D          | 0.0        | C            | C         | 0.0  | C    | D    | В          | В    | D    | C    | 0.0  |
| Approach Vol, veh/h          |            | 497        |              |           | 336  |      |      | 717        |      |      | 229  |      |
| Approach Delay, s/veh        |            | 31.4       |              |           | 29.8 |      |      | 31.0       |      |      | 29.9 |      |
| Approach LOS                 |            | C          |              |           | C    |      |      | C          |      |      | C    |      |
| Timer                        | 1          | 2          | 3            | 4         | 5    | 6    | 7    | 8          |      |      |      |      |
| Assigned Phs                 | 1          | 2          |              | 4         | 5    | 6    |      | 8          |      |      |      |      |
| Phs Duration (G+Y+Rc), s     | 6.4        | 27.1       |              | 4<br>19.0 | 20.7 | 12.9 |      | 15.7       |      |      |      |      |
| Change Period (Y+Rc), s      | 4.5        | 4.5        |              | 4.5       | 4.5  | 4.5  |      | 4.5        |      |      |      |      |
| Max Green Setting (Gmax), s  | 4.5<br>5.4 | 30.6       |              | 4.5       | 4.5  | 4.5  |      | 4.5        |      |      |      |      |
| Max Q Clear Time (g_c+I1), s | 2.9        | 6.8        |              | 13.4      | 15.9 | 5.7  |      | 10.0       |      |      |      |      |
| Green Ext Time (p_c), s      | 2.9<br>0.0 | 0.0<br>3.4 |              | 13.4      | 0.2  | 2.7  |      | 1.0        |      |      |      |      |
| u = 71                       | 0.0        | J.4        |              | 1.1       | 0.2  | 2.1  |      | 1.0        |      |      |      |      |
| Intersection Summary         |            |            |              |           |      |      |      |            |      |      |      |      |
| HCM 2010 Ctrl Delay          |            |            | 30.8         |           |      |      |      |            |      |      |      |      |
| HCM 2010 LOS                 |            |            | С            |           |      |      |      |            |      |      |      |      |

86.6

#### Intersection

Int Delay, s/veh

| Movement                 | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Traffic Vol, veh/h       | 0    | 126  | 22   | 332  | 107  | 0    | 0    | 0    | 0    | 352  | 0    | 19   |
| Future Vol, veh/h        | 0    | 126  | 22   | 332  | 107  | 0    | 0    | 0    | 0    | 352  | 0    | 19   |
| Conflicting Peds, #/hr   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control             | Stop | Stop | Stop | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized           | -    | -    | None |
| Storage Length           | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, # | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %                 | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor         | 94   | 94   | 94   | 94   | 94   | 94   | 94   | 94   | 94   | 94   | 94   | 94   |
| Heavy Vehicles, %        | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                | 0    | 134  | 23   | 353  | 114  | 0    | 0    | 0    | 0    | 374  | 0    | 20   |
|                          |      |      |      |      |      |      |      |      |      |      |      |      |

| Major/Minor          | Major2 |   |   | Minor2 |       |       |
|----------------------|--------|---|---|--------|-------|-------|
| Conflicting Flow All | 0      | 0 | 0 | 820    | 820   | 114   |
| Stage 1              | -      | - | - | 820    | 820   | -     |
| Stage 2              | -      | - | - | 0      | 0     | -     |
| Critical Hdwy        | 4.12   | - | - | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1  | -      | - | - | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2  | -      | - | - | -      | -     | -     |
| Follow-up Hdwy       | 2.218  | - | - | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver   | -      | - | 0 | ~ 294  | 310   | 939   |
| Stage 1              | -      | - | 0 | ~ 369  | 389   | -     |
| Stage 2              | -      | - | 0 | -      | -     | -     |
| Platoon blocked, %   |        | - |   |        |       |       |
| Mov Cap-1 Maneuver   | -      | - | - | ~ 294  | 310   | 939   |
| Mov Cap-2 Maneuver   | -      | - | - | ~ 294  | 310   | -     |
| Stage 1              | -      | - | - | ~ 369  | 389   | -     |
| Stage 2              | -      | - | - | -      | -     | -     |
|                      |        |   |   |        |       |       |
| Approach             | WB     |   |   | SB     |       |       |
| HCM Control Delay    |        |   |   | 180    |       |       |

| HCM Control Delay, s | 189 |
|----------------------|-----|
| HCM LOS              | F   |
|                      |     |

| Minor Lane/Major Mvmt | WBL | WBT SBLn1 |  |
|-----------------------|-----|-----------|--|
| Capacity (veh/h)      | -   | - 305     |  |
| HCM Lane V/C Ratio    | -   | - 1.294   |  |
| HCM Control Delay (s) | -   | - 189     |  |
| HCM Lane LOS          | -   | - F       |  |
| HCM 95th %tile Q(veh) | -   | - 19      |  |
| Notes                 |     |           |  |

~: Volume exceeds capacity \$:

\$: Delay exceeds 300s +: Computation Not Defined

\*: All major volume in platoon

### Intersection

Int Delay, s/veh

3.2

| Movement                 | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR   | SBL  | SBT  | SBR  |
|--------------------------|------|------|------|------|------|------|------|------|-------|------|------|------|
| Traffic Vol, veh/h       | 13   | 465  | 0    | 0    | 413  | 228  | 26   | 0    | 220   | 0    | 0    | 0    |
| Future Vol, veh/h        | 13   | 465  | 0    | 0    | 413  | 228  | 26   | 0    | 220   | 0    | 0    | 0    |
| Conflicting Peds, #/hr   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    |
| Sign Control             | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop  | Stop | Stop | Stop |
| RT Channelized           | -    | -    | None | -    | -    | Free | -    | -    | Yield | -    | -    | None |
| Storage Length           | -    | -    | -    | -    | -    | -    | -    | -    | -     | -    | -    | -    |
| Veh in Median Storage, # | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     | -    | 0    | -    |
| Grade, %                 | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     | -    | 0    | -    |
| Peak Hour Factor         | 94   | 94   | 94   | 94   | 94   | 94   | 94   | 94   | 94    | 94   | 94   | 94   |
| Heavy Vehicles, %        | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     | 2    | 2    | 2    |
| Mvmt Flow                | 14   | 495  | 0    | 0    | 439  | 243  | 28   | 0    | 234   | 0    | 0    | 0    |
|                          |      |      |      |      |      |      |      |      |       |      |      |      |

| Major/Minor          | Major1 |   |   | Major2 |   |   | Minor1 |       |       |  |
|----------------------|--------|---|---|--------|---|---|--------|-------|-------|--|
| Conflicting Flow All | 439    | 0 | - | -      | - | 0 | 961    | 961   | 495   |  |
| Stage 1              | -      | - | - | -      | - | - | 522    | 522   | -     |  |
| Stage 2              | -      | - | - | -      | - | - | 439    | 439   | -     |  |
| Critical Hdwy        | 4.12   | - | - | -      | - | - | 6.42   | 6.52  | 6.22  |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 5.42   | 5.52  | -     |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 5.42   | 5.52  | -     |  |
| Follow-up Hdwy       | 2.218  | - | - | -      | - | - | 3.518  | 4.018 | 3.318 |  |
| Pot Cap-1 Maneuver   | 1121   | - | 0 | 0      | - | 0 | 284    | 256   | 575   |  |
| Stage 1              | -      | - | 0 | 0      | - | 0 | 595    | 531   | -     |  |
| Stage 2              | -      | - | 0 | 0      | - | 0 | 650    | 578   | -     |  |
| Platoon blocked, %   |        | - |   |        | - |   |        |       |       |  |
| Mov Cap-1 Maneuver   | 1121   | - | - | -      | - | - | 279    | 0     | 575   |  |
| Mov Cap-2 Maneuver   | -      | - | - | -      | - | - | 279    | 0     | -     |  |
| Stage 1              | -      | - | - | -      | - | - | 585    | 0     | -     |  |
| Stage 2              | -      | - | - | -      | - | - | 650    | 0     | -     |  |
|                      |        |   |   |        |   |   |        |       |       |  |
|                      |        |   |   |        |   |   |        |       |       |  |

| Approach             | EB  | WB | NB   |  |
|----------------------|-----|----|------|--|
| HCM Control Delay, s | 0.2 | 0  | 14.4 |  |
| HCM LOS              |     |    | В    |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | WBT |
|-----------------------|-------|-------|-----|-----|
| Capacity (veh/h)      | 643   | 1121  | -   | -   |
| HCM Lane V/C Ratio    | 0.407 | 0.012 | -   | -   |
| HCM Control Delay (s) | 14.4  | 8.3   | 0   | -   |
| HCM Lane LOS          | В     | А     | Α   | -   |
| HCM 95th %tile Q(veh) | 2     | 0     | -   | -   |

1.2

### Intersection

Int Delay, s/veh

| Movement                 | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Traffic Vol, veh/h       | 0    | 642  | 43   | 9    | 611  | 0    | 30   | 0    | 13   | 0    | 0    | 0    |
| Future Vol, veh/h        | 0    | 642  | 43   | 9    | 611  | 0    | 30   | 0    | 13   | 0    | 0    | 0    |
| Conflicting Peds, #/hr   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control             | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized           | -    | -    | None |
| Storage Length           | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, # | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %                 | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor         | 94   | 94   | 94   | 94   | 94   | 94   | 94   | 94   | 94   | 94   | 94   | 94   |
| Heavy Vehicles, %        | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Mvmt Flow                | 0    | 683  | 46   | 10   | 650  | 0    | 32   | 0    | 14   | 0    | 0    | 0    |
|                          |      |      |      |      |      |      |      |      |      |      |      |      |

| Major/Minor          | Major1 |   |   | Major2 |   |   | Minor1 |       |       | Minor2 |       |       |
|----------------------|--------|---|---|--------|---|---|--------|-------|-------|--------|-------|-------|
| Conflicting Flow All | 650    | 0 | 0 | 729    | 0 | 0 | 1375   | 1375  | 706   | 1382   | 1398  | 650   |
| Stage 1              | -      | - | - | -      | - | - | 706    | 706   | -     | 669    | 669   | -     |
| Stage 2              | -      | - | - | -      | - | - | 669    | 669   | -     | 713    | 729   | -     |
| Critical Hdwy        | 4.11   | - | - | 4.11   | - | - | 7.11   | 6.51  | 6.21  | 7.11   | 6.51  | 6.21  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.11   | 5.51  | -     | 6.11   | 5.51  | -     |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.11   | 5.51  | -     | 6.11   | 5.51  | -     |
| Follow-up Hdwy       | 2.209  | - | - | 2.209  | - | - | 3.509  | 4.009 | 3.309 | 3.509  | 4.009 | 3.309 |
| Pot Cap-1 Maneuver   | 941    | - | - | 879    | - | - | 123    | 146   | 438   | 122    | 141   | 471   |
| Stage 1              | -      | - | - | -      | - | - | 428    | 440   | -     | 449    | 457   | -     |
| Stage 2              | -      | - | - | -      | - | - | 449    | 457   | -     | 424    | 430   | -     |
| Platoon blocked, %   |        | - | - |        | - | - |        |       |       |        |       |       |
| Mov Cap-1 Maneuver   | 941    | - | - | 879    | - | - | 121    | 143   | 438   | 117    | 138   | 471   |
| Mov Cap-2 Maneuver   | -      | - | - | -      | - | - | 121    | 143   | -     | 117    | 138   | -     |
| Stage 1              | -      | - | - | -      | - | - | 428    | 440   | -     | 449    | 449   | -     |
| Stage 2              | -      | - | - | -      | - | - | 441    | 449   | -     | 411    | 430   | -     |
| -                    |        |   |   |        |   |   |        |       |       |        |       |       |
| Approach             | ED     |   |   | \//D   |   |   | ND     |       |       | CD     |       |       |

| Approach             | EB | WB  | NB   | SB |
|----------------------|----|-----|------|----|
| HCM Control Delay, s | 0  | 0.1 | 37.7 | 0  |
| HCM LOS              |    |     | E    | А  |

| Minor Lane/Major Mvmt | NBLn1 | EBL | EBT | EBR | WBL   | WBT | WBR S | BLn1 |
|-----------------------|-------|-----|-----|-----|-------|-----|-------|------|
| Capacity (veh/h)      | 155   | 941 | -   | -   | 879   | -   | -     | -    |
| HCM Lane V/C Ratio    | 0.295 | -   | -   | -   | 0.011 | -   | -     | -    |
| HCM Control Delay (s) | 37.7  | 0   | -   | -   | 9.1   | 0   | -     | 0    |
| HCM Lane LOS          | E     | А   | -   | -   | А     | Α   | -     | А    |
| HCM 95th %tile Q(veh) | 1.2   | 0   | -   | -   | 0     | -   | -     | -    |

|                              | ≯          | -    | $\mathbf{\hat{z}}$ | ∢    | +    | •    | 1    | Ť           | 1    | 1    | ţ       | ~    |
|------------------------------|------------|------|--------------------|------|------|------|------|-------------|------|------|---------|------|
| Movement                     | EBL        | EBT  | EBR                | WBL  | WBT  | WBR  | NBL  | NBT         | NBR  | SBL  | SBT     | SBR  |
| Lane Configurations          |            | र्भ  | 1                  |      | र्भ  | 1    | 7    | <b>∱</b> î≽ |      | 5    | <u></u> |      |
| Traffic Volume (veh/h)       | 271        | 119  | 265                | 5    | 75   | 55   | 123  | 175         | 11   | 60   | 223     | 422  |
| Future Volume (veh/h)        | 271        | 119  | 265                | 5    | 75   | 55   | 123  | 175         | 11   | 60   | 223     | 422  |
| Number                       | 7          | 4    | 14                 | 3    | 8    | 18   | 5    | 2           | 12   | 1    | 6       | 16   |
| Initial Q (Qb), veh          | 0          | 0    | 0                  | 0    | 0    | 0    | 0    | 0           | 0    | 0    | 0       | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00       |      | 1.00               | 1.00 |      | 1.00 | 1.00 |             | 1.00 | 1.00 |         | 1.00 |
| Parking Bus, Adj             | 1.00       | 1.00 | 1.00               | 1.00 | 1.00 | 1.00 | 1.00 | 1.00        | 1.00 | 1.00 | 1.00    | 1.00 |
| Adj Sat Flow, veh/h/ln       | 1900       | 1881 | 1881               | 1900 | 1881 | 1881 | 1881 | 1881        | 1900 | 1881 | 1881    | 1900 |
| Adj Flow Rate, veh/h         | 274        | 120  | 268                | 5    | 76   | 56   | 124  | 177         | 11   | 61   | 225     | 0    |
| Adj No. of Lanes             | 0          | 1    | 1                  | 0    | 1    | 1    | 1    | 2           | 0    | 1    | 2       | 0    |
| Peak Hour Factor             | 0.99       | 0.99 | 0.99               | 0.99 | 0.99 | 0.99 | 0.99 | 0.99        | 0.99 | 0.99 | 0.99    | 0.99 |
| Percent Heavy Veh, %         | 1          | 1    | 1                  | 1    | 1    | 1    | 1    | 1           | 1    | 1    | 1       | 1    |
| Cap, veh/h                   | 359        | 157  | 454                | 10   | 157  | 143  | 165  | 612         | 38   | 105  | 520     | 0    |
| Arrive On Green              | 0.28       | 0.28 | 0.28               | 0.09 | 0.09 | 0.09 | 0.09 | 0.18        | 0.18 | 0.06 | 0.15    | 0.00 |
| Sat Flow, veh/h              | 1264       | 554  | 1599               | 116  | 1760 | 1599 | 1792 | 3420        | 211  | 1792 | 3668    | 0    |
| Grp Volume(v), veh/h         | 394        | 0    | 268                | 81   | 0    | 56   | 124  | 92          | 96   | 61   | 225     | 0    |
| Grp Sat Flow(s),veh/h/ln     | 1818       | 0    | 1599               | 1875 | 0    | 1599 | 1792 | 1787        | 1844 | 1792 | 1787    | 0    |
| Q Serve(g_s), s              | 9.2        | 0.0  | 6.7                | 1.9  | 0.0  | 1.5  | 3.1  | 2.1         | 2.1  | 1.5  | 2.7     | 0.0  |
| Cycle Q Clear(g_c), s        | 9.2        | 0.0  | 6.7                | 1.9  | 0.0  | 1.5  | 3.1  | 2.1         | 2.1  | 1.5  | 2.7     | 0.0  |
| Prop In Lane                 | 0.70       | 0.0  | 1.00               | 0.06 | 0.0  | 1.00 | 1.00 |             | 0.11 | 1.00 |         | 0.00 |
| Lane Grp Cap(c), veh/h       | 517        | 0    | 454                | 168  | 0    | 143  | 165  | 320         | 330  | 105  | 520     | 0    |
| V/C Ratio(X)                 | 0.76       | 0.00 | 0.59               | 0.48 | 0.00 | 0.39 | 0.75 | 0.29        | 0.29 | 0.58 | 0.43    | 0.00 |
| Avail Cap(c_a), veh/h        | 707        | 0    | 622                | 729  | 0    | 622  | 677  | 1181        | 1219 | 209  | 1428    | 0    |
| HCM Platoon Ratio            | 1.00       | 1.00 | 1.00               | 1.00 | 1.00 | 1.00 | 1.00 | 1.00        | 1.00 | 1.00 | 1.00    | 1.00 |
| Upstream Filter(I)           | 1.00       | 0.00 | 1.00               | 1.00 | 0.00 | 1.00 | 1.00 | 1.00        | 1.00 | 1.00 | 1.00    | 0.00 |
| Uniform Delay (d), s/veh     | 15.1       | 0.0  | 14.2               | 20.1 | 0.0  | 19.9 | 20.5 | 16.5        | 16.5 | 21.2 | 18.0    | 0.0  |
| Incr Delay (d2), s/veh       | 3.3        | 0.0  | 1.2                | 2.1  | 0.0  | 1.7  | 6.7  | 0.5         | 0.5  | 5.0  | 0.6     | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0        | 0.0  | 0.0                | 0.0  | 0.0  | 0.0  | 0.0  | 0.0         | 0.0  | 0.0  | 0.0     | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 5.1        | 0.0  | 3.1                | 1.1  | 0.0  | 0.7  | 1.9  | 1.1         | 1.1  | 0.9  | 1.4     | 0.0  |
| LnGrp Delay(d),s/veh         | 18.5       | 0.0  | 15.5               | 22.2 | 0.0  | 21.6 | 27.2 | 16.9        | 16.9 | 26.2 | 18.6    | 0.0  |
| LnGrp LOS                    | B          | 0.0  | B                  | C    | 0.0  | C    | C    | B           | B    | C    | B       | 0.0  |
| Approach Vol, veh/h          |            | 662  | _                  |      | 137  |      |      | 312         |      |      | 286     |      |
| Approach Delay, s/veh        |            | 17.3 |                    |      | 22.0 |      |      | 21.0        |      |      | 20.2    |      |
| Approach LOS                 |            | B    |                    |      | C    |      |      | C           |      |      | C       |      |
| Timer                        | 1          | 2    | 3                  | 4    | 5    | 6    | 7    | 8           |      |      |         |      |
| Assigned Phs                 | 1          | 2    | Ŭ                  | 4    | 5    | 6    |      | 8           |      |      |         |      |
| Phs Duration (G+Y+Rc), s     | 7.2        | 12.8 |                    | 17.7 | 8.8  | 11.2 |      | 8.6         |      |      |         |      |
| Change Period (Y+Rc), s      | 4.5        | 4.5  |                    | 4.5  | 4.5  | 4.5  |      | 4.5         |      |      |         |      |
| Max Green Setting (Gmax), s  | 4.J<br>5.4 | 30.6 |                    | 18.0 | 4.5  | 18.5 |      | 18.0        |      |      |         |      |
| Max Q Clear Time (g c+l1), s | 3.5        | 4.1  |                    | 11.2 | 5.1  | 4.7  |      | 3.9         |      |      |         |      |
| Green Ext Time (p_c), s      | 0.0        | 2.6  |                    | 2.0  | 0.2  | 2.1  |      | 0.4         |      |      |         |      |
| u = 7:                       | 0.0        | 2.0  |                    | 2.0  | 0.2  | 2.1  |      | 0.4         |      |      |         |      |
| Intersection Summary         |            |      | 40.0               |      |      |      |      |             |      |      |         |      |
| HCM 2010 Ctrl Delay          |            |      | 19.2               |      |      |      |      |             |      |      |         | _    |
| HCM 2010 LOS                 |            |      | В                  |      |      |      |      |             |      |      |         |      |

# **Cumulative No Build Alternative**

40

### Intersection

Int Delay, s/veh

| Movement                 | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Traffic Vol, veh/h       | 0    | 150  | 40   | 240  | 230  | 0    | 0    | 0    | 0    | 305  | 5    | 35   |
| Future Vol, veh/h        | 0    | 150  | 40   | 240  | 230  | 0    | 0    | 0    | 0    | 305  | 5    | 35   |
| Conflicting Peds, #/hr   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control             | Stop | Stop | Stop | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized           | -    | -    | None |
| Storage Length           | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, # | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %                 | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor         | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   |
| Heavy Vehicles, %        | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    |
| Mvmt Flow                | 0    | 158  | 42   | 253  | 242  | 0    | 0    | 0    | 0    | 321  | 5    | 37   |
|                          |      |      |      |      |      |      |      |      |      |      |      |      |

| Major/Minor           |     |           | Major2 |   |   | Minor2 |       |      |
|-----------------------|-----|-----------|--------|---|---|--------|-------|------|
| Conflicting Flow All  |     |           | 0      | 0 | 0 | 747    | 747   | 242  |
| Stage 1               |     |           | -      | - | - | 747    | 747   | -    |
| Stage 2               |     |           | -      | - | - | 0      | 0     | -    |
| Critical Hdwy         |     |           | 4.13   | - | - | 7.13   | 6.53  | 6.23 |
| Critical Hdwy Stg 1   |     |           | -      | - | - | 6.13   | 5.53  | -    |
| Critical Hdwy Stg 2   |     |           | -      | - | - | -      | -     | -    |
| Follow-up Hdwy        |     |           | 2.227  | - | - |        | 4.027 |      |
| Pot Cap-1 Maneuver    |     |           | -      | - | 0 | 328    | 340   | 794  |
| Stage 1               |     |           | -      | - | 0 | 403    | 419   | -    |
| Stage 2               |     |           | -      | - | 0 | -      | -     | -    |
| Platoon blocked, %    |     |           |        | - |   |        |       |      |
| Mov Cap-1 Maneuver    |     |           | -      | - | - | 328    | 340   | 794  |
| Mov Cap-2 Maneuver    |     |           | -      | - | - | 328    | 340   | -    |
| Stage 1               |     |           | -      | - | - | 403    | 419   | -    |
| Stage 2               |     |           | -      | - | - | -      | -     | -    |
|                       |     |           |        |   |   |        |       |      |
| Approach              |     |           | WB     |   |   | SB     |       |      |
| HCM Control Delay, s  |     |           |        |   |   | 94.5   |       |      |
| HCM LOS               |     |           |        |   |   | F      |       |      |
|                       |     |           |        |   |   |        |       |      |
| Minor Lane/Major Mvmt | WBL | WBT SBLn1 |        |   |   |        |       |      |

| Capacity (veh/h)      | - | - 349   |  |
|-----------------------|---|---------|--|
| HCM Lane V/C Ratio    | - | - 1.041 |  |
| HCM Control Delay (s) | - | - 94.5  |  |
| HCM Lane LOS          | - | - F     |  |
| HCM 95th %tile Q(veh) | - | - 12.6  |  |

### Intersection

Int Delay, s/veh

3.9

| Movement                 | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR   | SBL  | SBT  | SBR  |
|--------------------------|------|------|------|------|------|------|------|------|-------|------|------|------|
| Traffic Vol, veh/h       | 30   | 425  | 0    | 0    | 430  | 660  | 40   | 5    | 245   | 0    | 0    | 0    |
| Future Vol, veh/h        | 30   | 425  | 0    | 0    | 430  | 660  | 40   | 5    | 245   | 0    | 0    | 0    |
| Conflicting Peds, #/hr   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    |
| Sign Control             | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop  | Stop | Stop | Stop |
| RT Channelized           | -    | -    | None | -    | -    | Free | -    | -    | Yield | -    | -    | None |
| Storage Length           | -    | -    | -    | -    | -    | -    | -    | -    | -     | -    | -    | -    |
| Veh in Median Storage, # | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     | -    | 0    | -    |
| Grade, %                 | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     | -    | 0    | -    |
| Peak Hour Factor         | 88   | 88   | 88   | 88   | 88   | 88   | 88   | 88   | 88    | 88   | 88   | 88   |
| Heavy Vehicles, %        | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     | 2    | 2    | 2    |
| Mvmt Flow                | 34   | 483  | 0    | 0    | 489  | 750  | 45   | 6    | 278   | 0    | 0    | 0    |
|                          |      |      |      |      |      |      |      |      |       |      |      |      |

| Major/Minor          | Major1 |   |   | Major2 |   |   | Minor1 |       |       |  |
|----------------------|--------|---|---|--------|---|---|--------|-------|-------|--|
| Conflicting Flow All | 489    | 0 | - | -      | - | 0 | 1040   | 1040  | 483   |  |
| Stage 1              | -      | - | - | -      | - | - | 551    | 551   | -     |  |
| Stage 2              | -      | - | - | -      | - | - | 489    | 489   | -     |  |
| Critical Hdwy        | 4.12   | - | - | -      | - | - | 6.42   | 6.52  | 6.22  |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 5.42   | 5.52  | -     |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 5.42   | 5.52  | -     |  |
| Follow-up Hdwy       | 2.218  | - | - | -      | - | - | 3.518  | 4.018 | 3.318 |  |
| Pot Cap-1 Maneuver   | 1074   | - | 0 | 0      | - | 0 | 255    | 230   | 584   |  |
| Stage 1              | -      | - | 0 | 0      | - | 0 | 577    | 515   | -     |  |
| Stage 2              | -      | - | 0 | 0      | - | 0 | 616    | 549   | -     |  |
| Platoon blocked, %   |        | - |   |        | - |   |        |       |       |  |
| Mov Cap-1 Maneuver   | 1074   | - | - | -      | - | - | 244    | 0     | 584   |  |
| Mov Cap-2 Maneuver   | -      | - | - | -      | - | - | 244    | 0     | -     |  |
| Stage 1              | -      | - | - | -      | - | - | 552    | 0     | -     |  |
| Stage 2              | -      | - | - | -      | - | - | 616    | 0     | -     |  |
|                      |        |   |   |        |   |   |        |       |       |  |

| Approach             | EB  | WB | NB   |  |
|----------------------|-----|----|------|--|
| HCM Control Delay, s | 0.6 | 0  | 14.9 |  |
| HCM LOS              |     |    | В    |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | WBT |
|-----------------------|-------|-------|-----|-----|
| Capacity (veh/h)      | 691   | 1074  | -   | -   |
| HCM Lane V/C Ratio    | 0.477 | 0.032 | -   | -   |
| HCM Control Delay (s) | 14.9  | 8.5   | 0   | -   |
| HCM Lane LOS          | В     | А     | А   | -   |
| HCM 95th %tile Q(veh) | 2.6   | 0.1   | -   | -   |

4.6

### Intersection

Int Delay, s/veh

| Movement                 | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Traffic Vol, veh/h       | 0    | 650  | 20   | 15   | 1060 | 0    | 30   | 0    | 15   | 0    | 0    | 0    |
| Future Vol, veh/h        | 0    | 650  | 20   | 15   | 1060 | 0    | 30   | 0    | 15   | 0    | 0    | 0    |
| Conflicting Peds, #/hr   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control             | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized           | -    | -    | None |
| Storage Length           | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, # | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %                 | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor         | 88   | 88   | 88   | 88   | 88   | 88   | 88   | 88   | 88   | 88   | 88   | 88   |
| Heavy Vehicles, %        | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                | 0    | 739  | 23   | 17   | 1205 | 0    | 34   | 0    | 17   | 0    | 0    | 0    |
|                          |      |      |      |      |      |      |      |      |      |      |      |      |

| Major/Minor          | Major1 |   |   | Major2 |   |   | Minor1 |       |       | Minor2 |       |       |
|----------------------|--------|---|---|--------|---|---|--------|-------|-------|--------|-------|-------|
| Conflicting Flow All | 1205   | 0 | 0 | 761    | 0 | 0 | 1989   | 1989  | 750   | 1998   | 2000  | 1205  |
| Stage 1              | -      | - | - | -      | - | - | 750    | 750   | -     | 1239   | 1239  | -     |
| Stage 2              | -      | - | - | -      | - | - | 1239   | 1239  | -     | 759    | 761   | -     |
| Critical Hdwy        | 4.12   | - | - | 4.12   | - | - | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Follow-up Hdwy       | 2.218  | - | - | 2.218  | - | - | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver   | 579    | - | - | 851    | - | - | 45     | 61    | 411   | 45     | 60    | 224   |
| Stage 1              | -      | - | - | -      | - | - | 403    | 419   | -     | 215    | 247   | -     |
| Stage 2              | -      | - | - | -      | - | - | 215    | 247   | -     | 399    | 414   | -     |
| Platoon blocked, %   |        | - | - |        | - | - |        |       |       |        |       |       |
| Mov Cap-1 Maneuver   | 579    | - | - | 851    | - | - | 43     | 57    | 411   | 41     | 56    | 224   |
| Mov Cap-2 Maneuver   | -      | - | - | -      | - | - | 43     | 57    | -     | 41     | 56    | -     |
| Stage 1              | -      | - | - | -      | - | - | 403    | 419   | -     | 215    | 232   | -     |
| Stage 2              | -      | - | - | -      | - | _ | 202    | 232   | -     | 382    | 414   | -     |
|                      |        |   |   |        |   |   |        |       |       |        |       |       |

| Approach             | EB | WB  | NB    | SB |
|----------------------|----|-----|-------|----|
| HCM Control Delay, s | 0  | 0.1 | 181.2 | 0  |
| HCM LOS              |    |     | F     | А  |

| Minor Lane/Major Mvmt | NBLn1 | EBL | EBT | EBR | WBL  | WBT | WBR S | BLn1 |
|-----------------------|-------|-----|-----|-----|------|-----|-------|------|
| Capacity (veh/h)      | 61    | 579 | -   | -   | 851  | -   | -     | -    |
| HCM Lane V/C Ratio    | 0.838 | -   | -   | -   | 0.02 | -   | -     | -    |
| HCM Control Delay (s) | 181.2 | 0   | -   | -   | 9.3  | 0   | -     | 0    |
| HCM Lane LOS          | F     | А   | -   | -   | А    | А   | -     | Α    |
| HCM 95th %tile Q(veh) | 3.8   | 0   | -   | -   | 0.1  | -   | -     | -    |

|                              | ≯        | -         | $\mathbf{i}$ | 1         | +         | *        | 1         | Ť            | 1         | 1        | Ŧ            | ~    |
|------------------------------|----------|-----------|--------------|-----------|-----------|----------|-----------|--------------|-----------|----------|--------------|------|
| Movement                     | EBL      | EBT       | EBR          | WBL       | WBT       | WBR      | NBL       | NBT          | NBR       | SBL      | SBT          | SBR  |
| Lane Configurations          |          | र्भ       | 1            |           | ર્સ       | 1        | ሻ         | <b>∱1</b> }- |           | ሻ        | - <b>†</b> † |      |
| Traffic Volume (veh/h)       | 280      | 75        | 305          | 25        | 230       | 242      | 485       | 415          | 10        | 55       | 245          | 360  |
| Future Volume (veh/h)        | 280      | 75        | 305          | 25        | 230       | 242      | 485       | 415          | 10        | 55       | 245          | 360  |
| Number                       | 7        | 4         | 14           | 3         | 8         | 18       | 5         | 2            | 12        | 1        | 6            | 16   |
| Initial Q (Qb), veh          | 0        | 0         | 0            | 0         | 0         | 0        | 0         | 0            | 0         | 0        | 0            | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00     |           | 1.00         | 1.00      |           | 1.00     | 1.00      |              | 1.00      | 1.00     |              | 1.00 |
| Parking Bus, Adj             | 1.00     | 1.00      | 1.00         | 1.00      | 1.00      | 1.00     | 1.00      | 1.00         | 1.00      | 1.00     | 1.00         | 1.00 |
| Adj Sat Flow, veh/h/ln       | 1900     | 1863      | 1863         | 1900      | 1863      | 1863     | 1863      | 1863         | 1900      | 1863     | 1863         | 1900 |
| Adj Flow Rate, veh/h         | 318      | 85        | 347          | 28        | 261       | 275      | 551       | 472          | 11        | 62       | 278          | 0    |
| Adj No. of Lanes             | 0        | 1         | 1            | 0         | 1         | 1        | 1         | 2            | 0         | 1        | 2            | 0    |
| Peak Hour Factor             | 0.88     | 0.88      | 0.88         | 0.88      | 0.88      | 0.88     | 0.88      | 0.88         | 0.88      | 0.88     | 0.88         | 0.88 |
| Percent Heavy Veh, %         | 2        | 2         | 2            | 2         | 2         | 2        | 2         | 2            | 2         | 2        | 2            | 2    |
| Cap, veh/h                   | 333      | 89        | 373          | 30        | 284       | 268      | 565       | 1418         | 33        | 80       | 453          | 0    |
| Arrive On Green              | 0.24     | 0.24      | 0.24         | 0.17      | 0.17      | 0.17     | 0.32      | 0.40         | 0.40      | 0.05     | 0.13         | 0.00 |
| Sat Flow, veh/h              | 1414     | 378       | 1583         | 180       | 1674      | 1583     | 1774      | 3536         | 82        | 1774     | 3632         | 0    |
| Grp Volume(v), veh/h         | 403      | 0         | 347          | 289       | 0         | 275      | 551       | 236          | 247       | 62       | 278          | 0    |
| Grp Sat Flow(s),veh/h/ln     | 1792     | 0         | 1583         | 1854      | 0         | 1583     | 1774      | 1770         | 1848      | 1774     | 1770         | 0    |
| Q Serve(g_s), s              | 26.8     | 0.0       | 26.0         | 18.6      | 0.0       | 20.5     | 37.2      | 11.1         | 11.2      | 4.2      | 9.0          | 0.0  |
| Cycle Q Clear(g_c), s        | 26.8     | 0.0       | 26.0         | 18.6      | 0.0       | 20.5     | 37.2      | 11.1         | 11.2      | 4.2      | 9.0          | 0.0  |
| Prop In Lane                 | 0.79     | 0.0       | 1.00         | 0.10      | 0.0       | 1.00     | 1.00      |              | 0.04      | 1.00     | 0.0          | 0.00 |
| Lane Grp Cap(c), veh/h       | 422      | 0         | 373          | 314       | 0         | 268      | 565       | 710          | 741       | 80       | 453          | 0.00 |
| V/C Ratio(X)                 | 0.95     | 0.00      | 0.93         | 0.92      | 0.00      | 1.02     | 0.98      | 0.33         | 0.33      | 0.78     | 0.61         | 0.00 |
| Avail Cap(c_a), veh/h        | 422      | 0.00      | 373          | 314       | 0.00      | 268      | 565       | 826          | 863       | 154      | 834          | 0.00 |
| HCM Platoon Ratio            | 1.00     | 1.00      | 1.00         | 1.00      | 1.00      | 1.00     | 1.00      | 1.00         | 1.00      | 1.00     | 1.00         | 1.00 |
| Upstream Filter(I)           | 1.00     | 0.00      | 1.00         | 1.00      | 0.00      | 1.00     | 1.00      | 1.00         | 1.00      | 1.00     | 1.00         | 0.00 |
| Uniform Delay (d), s/veh     | 45.6     | 0.0       | 45.3         | 49.4      | 0.0       | 50.2     | 40.8      | 25.0         | 25.0      | 57.2     | 49.9         | 0.0  |
| Incr Delay (d2), s/veh       | 32.3     | 0.0       | 29.5         | 31.0      | 0.0       | 61.5     | 31.7      | 0.3          | 0.3       | 14.8     | 1.4          | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0      | 0.0       | 0.0          | 0.0       | 0.0       | 0.1      | 0.0       | 0.0          | 0.0       | 0.0      | 0.0          | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 17.1     | 0.0       | 14.4         | 12.2      | 0.0       | 13.6     | 23.2      | 5.5          | 5.7       | 2.4      | 4.5          | 0.0  |
| LnGrp Delay(d),s/veh         | 77.9     | 0.0       | 74.8         | 80.4      | 0.0       | 111.8    | 72.5      | 25.3         | 25.3      | 71.9     | 51.3         | 0.0  |
| LnGrp LOS                    | н.э<br>Е | 0.0       | 74.0<br>E    | 00.4<br>F | 0.0       | F        | 72.5<br>E | 23.3<br>C    | 23.3<br>C | н.э<br>Е | D            | 0.0  |
| Approach Vol, veh/h          | <u> </u> | 750       | <u> </u>     | <u> </u>  | 564       | <u> </u> | <u> </u>  | 1034         | 0         | <u> </u> | 340          |      |
| Approach Delay, s/veh        |          | 76.4      |              |           | 95.7      |          |           | 50.4         |           |          | 55.0         |      |
| Approach LOS                 |          | 70.4<br>E |              |           | 95.7<br>F |          |           | 50.4<br>D    |           |          | 55.0<br>E    |      |
| Approach LOS                 |          | E         |              |           | Г         |          |           | D            |           |          | E            |      |
| Timer                        | 1        | 2         | 3            | 4         | 5         | 6        | 7         | 8            |           |          |              |      |
| Assigned Phs                 | 1        | 2         |              | 4         | 5         | 6        |           | 8            |           |          |              |      |
| Phs Duration (G+Y+Rc), s     | 9.9      | 53.0      |              | 33.0      | 43.0      | 20.0     |           | 25.0         |           |          |              |      |
| Change Period (Y+Rc), s      | 4.5      | 4.5       |              | 4.5       | 4.5       | 4.5      |           | 4.5          |           |          |              |      |
| Max Green Setting (Gmax), s  | 10.5     | 56.5      |              | 28.5      | 38.5      | 28.5     |           | 20.5         |           |          |              |      |
| Max Q Clear Time (g_c+I1), s | 6.2      | 13.2      |              | 28.8      | 39.2      | 11.0     |           | 22.5         |           |          |              |      |
| Green Ext Time (p_c), s      | 0.0      | 5.5       |              | 0.0       | 0.0       | 4.5      |           | 0.0          |           |          |              |      |
| Intersection Summary         |          |           |              |           |           |          |           |              |           |          |              |      |
| HCM 2010 Ctrl Delay          |          |           | 67.8         |           |           |          |           |              |           |          |              |      |
| HCM 2010 LOS                 |          |           | E            |           |           |          |           |              |           |          |              |      |
|                              |          |           | -            |           |           |          |           |              |           |          |              |      |

### Intersection: 1: US 101 SB On/US 101 NB Off & Kenmar Road

| Movement              | EB  | WB  | SB  |
|-----------------------|-----|-----|-----|
| Directions Served     | TR  | LT  | LTR |
| Maximum Queue (ft)    | 130 | 4   | 251 |
| Average Queue (ft)    | 59  | 0   | 134 |
| 95th Queue (ft)       | 102 | 2   | 238 |
| Link Distance (ft)    | 191 | 222 | 214 |
| Upstream Blk Time (%) |     |     | 8   |
| Queuing Penalty (veh) |     |     | 0   |
| Storage Bay Dist (ft) |     |     |     |
| Storage Blk Time (%)  |     |     |     |
| Queuing Penalty (veh) |     |     |     |

### Intersection: 2: US 101 NB Off/US 101 NB One & Kenmar Road/Kenmar Drive

| Movement              | EB  | WB  | NB  |
|-----------------------|-----|-----|-----|
| Directions Served     | LT  | TR  | LTR |
| Maximum Queue (ft)    | 178 | 271 | 307 |
| Average Queue (ft)    | 49  | 69  | 83  |
| 95th Queue (ft)       | 162 | 225 | 231 |
| Link Distance (ft)    | 222 | 248 | 302 |
| Upstream Blk Time (%) | 1   | 1   | 2   |
| Queuing Penalty (veh) | 4   | 12  | 0   |
| Storage Bay Dist (ft) |     |     |     |
| Storage Blk Time (%)  |     |     |     |
| Queuing Penalty (veh) |     |     |     |

### Intersection: 3: Atterberry lane/Eel River Drive & Kenmar Drive

| Movement              | EB  | WB  | NB  |
|-----------------------|-----|-----|-----|
| Directions Served     | LTR | LTR | LTR |
| Maximum Queue (ft)    | 318 | 594 | 313 |
| Average Queue (ft)    | 86  | 106 | 141 |
| 95th Queue (ft)       | 317 | 411 | 322 |
| Link Distance (ft)    | 248 | 513 | 346 |
| Upstream Blk Time (%) | 8   | 3   | 5   |
| Queuing Penalty (veh) | 55  | 30  | 0   |
| Storage Bay Dist (ft) |     |     |     |
| Storage Blk Time (%)  |     |     |     |
| Queuing Penalty (veh) |     |     |     |

694.2

#### Intersection

Int Delay, s/veh

| Movement                 | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Traffic Vol, veh/h       | 0    | 450  | 55   | 410  | 350  | 0    | 0    | 0    | 0    | 595  | 0    | 75   |
| Future Vol, veh/h        | 0    | 450  | 55   | 410  | 350  | 0    | 0    | 0    | 0    | 595  | 0    | 75   |
| Conflicting Peds, #/hr   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control             | Stop | Stop | Stop | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized           | -    | -    | None |
| Storage Length           | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, # | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %                 | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor         | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   |
| Heavy Vehicles, %        | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                | 0    | 474  | 58   | 432  | 368  | 0    | 0    | 0    | 0    | 626  | 0    | 79   |
|                          |      |      |      |      |      |      |      |      |      |      |      |      |

| Major/Minor          | Major2 |   |   | Minor2 |       |       |
|----------------------|--------|---|---|--------|-------|-------|
| Conflicting Flow All | 0      | 0 | 0 | 1232   | 1232  | 368   |
| Stage 1              | -      | - | - | 1232   | 1232  | -     |
| Stage 2              | -      | - | - | 0      | 0     | -     |
| Critical Hdwy        | 4.12   | - | - | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1  | -      | - | - | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2  | -      | - | - | -      | -     | -     |
| Follow-up Hdwy       | 2.218  | - | - | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver   | -      | - | 0 | ~ 154  | 177   | 677   |
| Stage 1              | -      | - | 0 | ~ 217  | 249   | -     |
| Stage 2              | -      | - | 0 | -      | -     | -     |
| Platoon blocked, %   |        | - |   |        |       |       |
| Mov Cap-1 Maneuver   | -      | - | - | ~ 154  | 177   | 677   |
| Mov Cap-2 Maneuver   | -      | - | - | ~ 154  | 177   | -     |
| Stage 1              | -      | - | - | ~ 217  | 249   | -     |
| Stage 2              | -      | - | - | -      | -     | -     |
| -                    |        |   |   |        |       |       |

| Approach             | WB | SB        |
|----------------------|----|-----------|
| HCM Control Delay, s |    | \$ 1481.7 |
| HCMLOS               |    | F         |

| Minor Lane/Major Mvmt | WBL | WBT SBLn1        |
|-----------------------|-----|------------------|
| Capacity (veh/h)      | -   | - 169            |
| HCM Lane V/C Ratio    | -   | - 4.173          |
| HCM Control Delay (s) | -   | <b>\$</b> 1481.7 |
| HCM Lane LOS          | -   | - F              |
| HCM 95th %tile Q(veh) | -   | - 70.8           |
| Notes                 |     |                  |

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined

\*: All major volume in platoon

#### Intersection

Int Delay, s/veh

23.8

| Movement                 | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR   | SBL  | SBT  | SBR  |
|--------------------------|------|------|------|------|------|------|------|------|-------|------|------|------|
| Traffic Vol, veh/h       | 85   | 960  | 0    | 0    | 705  | 455  | 50   | 0    | 310   | 0    | 0    | 0    |
| Future Vol, veh/h        | 85   | 960  | 0    | 0    | 705  | 455  | 50   | 0    | 310   | 0    | 0    | 0    |
| Conflicting Peds, #/hr   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    |
| Sign Control             | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop  | Stop | Stop | Stop |
| RT Channelized           | -    | -    | None | -    | -    | Free | -    | -    | Yield | -    | -    | None |
| Storage Length           | -    | -    | -    | -    | -    | -    | -    | -    | -     | -    | -    | -    |
| Veh in Median Storage, # | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     | -    | 0    | -    |
| Grade, %                 | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     | -    | 0    | -    |
| Peak Hour Factor         | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95    | 95   | 95   | 95   |
| Heavy Vehicles, %        | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     | 2    | 2    | 2    |
| Mvmt Flow                | 89   | 1011 | 0    | 0    | 742  | 479  | 53   | 0    | 326   | 0    | 0    | 0    |
|                          |      |      |      |      |      |      |      |      |       |      |      |      |

| Major/Minor          | Major1 |   |   | Major2 |   |   | Minor1 |       |       |  |
|----------------------|--------|---|---|--------|---|---|--------|-------|-------|--|
| Conflicting Flow All | 742    | 0 | - | -      | - | 0 | 1931   | 1931  | 1011  |  |
| Stage 1              | -      | - | - | -      | - | - | 1189   | 1189  | -     |  |
| Stage 2              | -      | - | - | -      | - | - | 742    | 742   | -     |  |
| Critical Hdwy        | 4.12   | - | - | -      | - | - | 6.42   | 6.52  | 6.22  |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 5.42   | 5.52  | -     |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 5.42   | 5.52  | -     |  |
| Follow-up Hdwy       | 2.218  | - | - | -      | - | - | 3.518  | 4.018 | 3.318 |  |
| Pot Cap-1 Maneuver   | 865    | - | 0 | 0      | - | 0 | 73     | 66    | ~ 291 |  |
| Stage 1              | -      | - | 0 | 0      | - | 0 | 289    | 261   | -     |  |
| Stage 2              | -      | - | 0 | 0      | - | 0 | 471    | 422   | -     |  |
| Platoon blocked, %   |        | - |   |        | - |   |        |       |       |  |
| Mov Cap-1 Maneuver   | 865    | - | - | -      | - | - | 56     | 0     | ~ 291 |  |
| Mov Cap-2 Maneuver   | -      | - | - | -      | - | - | 56     | 0     | -     |  |
| Stage 1              | -      | - | - | -      | - | - | 221    | 0     | -     |  |
| Stage 2              | -      | - | - | -      | - | - | 471    | 0     | -     |  |
|                      |        |   |   |        |   |   |        |       |       |  |

| Approach             | EB  | WB | NB    |  |
|----------------------|-----|----|-------|--|
| HCM Control Delay, s | 0.8 | 0  | 136.9 |  |
| HCM LOS              |     |    | F     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | WBT |
|-----------------------|-------|-------|-----|-----|
| Capacity (veh/h)      | 326   | 865   | -   | -   |
| HCM Lane V/C Ratio    | 1.162 | 0.103 | -   | -   |
| HCM Control Delay (s) | 136.9 | 9.6   | 0   | -   |
| HCM Lane LOS          | F     | А     | А   | -   |
| HCM 95th %tile Q(veh) | 15.7  | 0.3   | -   | -   |
| Notes                 |       |       |     |     |

~: Volume exceeds capacity

\$: Delay exceeds 300s

+: Computation Not Defined \*: All major volume in platoon

13.1

### Intersection

Int Delay, s/veh

| Movement                 | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Traffic Vol, veh/h       | 0    | 1225 | 45   | 10   | 1130 | 0    | 30   | 0    | 15   | 0    | 0    | 0    |
| Future Vol, veh/h        | 0    | 1225 | 45   | 10   | 1130 | 0    | 30   | 0    | 15   | 0    | 0    | 0    |
| Conflicting Peds, #/hr   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control             | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized           | -    | -    | None |
| Storage Length           | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage, # | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %                 | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor         | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   | 95   |
| Heavy Vehicles, %        | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                | 0    | 1289 | 47   | 11   | 1189 | 0    | 32   | 0    | 16   | 0    | 0    | 0    |
|                          |      |      |      |      |      |      |      |      |      |      |      |      |

| Major/Minor          | Major1 |   |   | Major2 |   |   | Minor1 |       |       | Minor2 |       |       |
|----------------------|--------|---|---|--------|---|---|--------|-------|-------|--------|-------|-------|
| Conflicting Flow All | 1189   | 0 | 0 | 1337   | 0 | 0 | 2524   | 2524  | 1313  | 2532   | 2548  | 1189  |
| Stage 1              | -      | - | - | -      | - | - | 1313   | 1313  | -     | 1211   | 1211  | -     |
| Stage 2              | -      | - | - | -      | - | - | 1211   | 1211  | -     | 1321   | 1337  | -     |
| Critical Hdwy        | 4.12   | - | - | 4.12   | - | - | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Follow-up Hdwy       | 2.218  | - | - | 2.218  | - | - | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver   | 587    | - | - | 516    | - | - | ~ 19   | 28    | 194   | 18     | 27    | 229   |
| Stage 1              | -      | - | - | -      | - | - | 195    | 228   | -     | 223    | 255   | -     |
| Stage 2              | -      | - | - | -      | - | - | 223    | 255   | -     | 193    | 222   | -     |
| Platoon blocked, %   |        | - | - |        | - | - |        |       |       |        |       |       |
| Mov Cap-1 Maneuver   | 587    | - | - | 516    | - | - | ~ 18   | 26    | 194   | 16     | 25    | 229   |
| Mov Cap-2 Maneuver   | -      | - | - | -      | - | - | ~ 18   | 26    | -     | 16     | 25    | -     |
| Stage 1              | -      | - | - | -      | - | - | 195    | 228   | -     | 223    | 239   | -     |
| Stage 2              | -      | - | - | -      | - | - | 209    | 239   | -     | 177    | 222   | -     |
|                      |        |   |   |        |   |   |        |       |       |        |       |       |

| Approach             | EB | WB  | NB       | SB |
|----------------------|----|-----|----------|----|
| HCM Control Delay, s | 0  | 0.1 | \$ 712.7 | 0  |
| HCM LOS              |    |     | F        | А  |

| Minor Lane/Major Mvmt | NBLn1    | EBL | EBT | EBR | WBL  | WBT | WBR SI | BLn1 |
|-----------------------|----------|-----|-----|-----|------|-----|--------|------|
| Capacity (veh/h)      | 26       | 587 | -   | -   | 516  | -   | -      | -    |
| HCM Lane V/C Ratio    | 1.822    | -   | -   | -   | 0.02 | -   | -      | -    |
| HCM Control Delay (s) | \$ 712.7 | 0   | -   | -   | 12.1 | 0   | -      | 0    |
| HCM Lane LOS          | F        | А   | -   | -   | В    | А   | -      | А    |
| HCM 95th %tile Q(veh) | 5.8      | 0   | -   | -   | 0.1  | -   | -      | -    |
| Notes                 |          |     |     |     |      |     |        |      |

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined \*: All

\*: All major volume in platoon

|                              | ≯          | -          | $\mathbf{\hat{z}}$ | •         | -         | *         | 1         | Ť            | ۲    | 1          | ŧ         | ~    |
|------------------------------|------------|------------|--------------------|-----------|-----------|-----------|-----------|--------------|------|------------|-----------|------|
| Movement                     | EBL        | EBT        | EBR                | WBL       | WBT       | WBR       | NBL       | NBT          | NBR  | SBL        | SBT       | SBR  |
| Lane Configurations          |            | र्भ        | 1                  |           | र्स       | 1         | ሻ         | <b>∱1</b> }- |      | ሻ          | - 11      |      |
| Traffic Volume (veh/h)       | 495        | 215        | 535                | 5         | 140       | 145       | 385       | 335          | 15   | 170        | 425       | 615  |
| Future Volume (veh/h)        | 495        | 215        | 535                | 5         | 140       | 145       | 385       | 335          | 15   | 170        | 425       | 615  |
| Number                       | 7          | 4          | 14                 | 3         | 8         | 18        | 5         | 2            | 12   | 1          | 6         | 16   |
| Initial Q (Qb), veh          | 0          | 0          | 0                  | 0         | 0         | 0         | 0         | 0            | 0    | 0          | 0         | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00       |            | 1.00               | 1.00      |           | 1.00      | 1.00      |              | 1.00 | 1.00       |           | 1.00 |
| Parking Bus, Adj             | 1.00       | 1.00       | 1.00               | 1.00      | 1.00      | 1.00      | 1.00      | 1.00         | 1.00 | 1.00       | 1.00      | 1.00 |
| Adj Sat Flow, veh/h/ln       | 1900       | 1863       | 1863               | 1900      | 1863      | 1863      | 1863      | 1863         | 1900 | 1863       | 1863      | 1900 |
| Adj Flow Rate, veh/h         | 500        | 217        | 540                | 5         | 141       | 146       | 389       | 338          | 15   | 172        | 429       | 0    |
| Adj No. of Lanes             | 0          | 1          | 1                  | 0         | 1         | 1         | 1         | 2            | 0    | 1          | 2         | 0    |
| Peak Hour Factor             | 0.99       | 0.99       | 0.99               | 0.99      | 0.99      | 0.99      | 0.99      | 0.99         | 0.99 | 0.99       | 0.99      | 0.99 |
| Percent Heavy Veh, %         | 2          | 2          | 2                  | 2         | 2         | 2         | 2         | 2            | 2    | 2          | 2         | 2    |
| Cap, veh/h                   | 294        | 128        | 371                | 8         | 226       | 199       | 404       | 1159         | 51   | 125        | 631       | 0    |
| Arrive On Green              | 0.23       | 0.23       | 0.23               | 0.13      | 0.13      | 0.13      | 0.23      | 0.34         | 0.34 | 0.07       | 0.18      | 0.00 |
| Sat Flow, veh/h              | 1255       | 545        | 1583               | 64        | 1796      | 1583      | 1774      | 3453         | 153  | 1774       | 3632      | 0    |
| Grp Volume(v), veh/h         | 717        | 0          | 540                | 146       | 0         | 146       | 389       | 173          | 180  | 172        | 429       | 0    |
| Grp Sat Flow(s), veh/h/ln    | 1800       | 0          | 1583               | 1860      | 0         | 1583      | 1774      | 1770         | 1836 | 1774       | 1770      | 0    |
| Q Serve(g_s), s              | 18.0       | 0.0        | 18.0               | 5.7       | 0.0       | 6.8       | 16.7      | 5.5          | 5.6  | 5.4        | 8.7       | 0.0  |
| Cycle Q Clear(g_c), s        | 18.0       | 0.0        | 18.0               | 5.7       | 0.0       | 6.8       | 16.7      | 5.5          | 5.6  | 5.4        | 8.7       | 0.0  |
| Prop In Lane                 | 0.70       | 0.0        | 1.00               | 0.03      | 0.0       | 1.00      | 1.00      | 0.0          | 0.08 | 1.00       | 0.1       | 0.00 |
| Lane Grp Cap(c), veh/h       | 422        | 0          | 371                | 234       | 0         | 199       | 404       | 594          | 616  | 125        | 631       | 0.00 |
| V/C Ratio(X)                 | 1.70       | 0.00       | 1.46               | 0.62      | 0.00      | 0.73      | 0.96      | 0.29         | 0.29 | 1.38       | 0.68      | 0.00 |
| Avail Cap(c_a), veh/h        | 422        | 0.00       | 371                | 436       | 0         | 371       | 404       | 705          | 731  | 125        | 852       | 0    |
| HCM Platoon Ratio            | 1.00       | 1.00       | 1.00               | 1.00      | 1.00      | 1.00      | 1.00      | 1.00         | 1.00 | 1.00       | 1.00      | 1.00 |
| Upstream Filter(I)           | 1.00       | 0.00       | 1.00               | 1.00      | 0.00      | 1.00      | 1.00      | 1.00         | 1.00 | 1.00       | 1.00      | 0.00 |
| Uniform Delay (d), s/veh     | 29.4       | 0.0        | 29.4               | 31.9      | 0.0       | 32.4      | 29.4      | 18.8         | 18.8 | 35.7       | 29.5      | 0.0  |
| Incr Delay (d2), s/veh       | 325.4      | 0.0        | 219.7              | 2.7       | 0.0       | 5.2       | 35.1      | 0.3          | 0.3  | 213.0      | 1.3       | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0        | 0.0        | 0.0                | 0.0       | 0.0       | 0.0       | 0.0       | 0.0          | 0.0  | 0.0        | 0.0       | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 46.9       | 0.0        | 30.4               | 3.1       | 0.0       | 3.3       | 12.0      | 2.7          | 2.8  | 10.0       | 4.3       | 0.0  |
| LnGrp Delay(d),s/veh         | 354.8      | 0.0        | 249.2              | 34.6      | 0.0       | 37.5      | 64.5      | 19.1         | 19.1 | 248.7      | 30.9      | 0.0  |
| LnGrp LOS                    | 554.0<br>F | 0.0        | 243.2<br>F         | 0.+0<br>C | 0.0       | 57.5<br>D | 04.5<br>E | B            | B    | 240.7<br>F | 50.5<br>C | 0.0  |
| Approach Vol, veh/h          |            | 1257       | <u> </u>           | 0         | 292       | U         |           | 742          |      | 1          | 601       |      |
| Approach Delay, s/veh        |            | 309.4      |                    |           | 36.1      |           |           | 42.9         |      |            | 93.2      |      |
| Approach LOS                 |            | 509.4<br>F |                    |           | 50.1<br>D |           |           | 42.9<br>D    |      |            | 95.2<br>F |      |
| Approach 203                 |            | Г          |                    |           | U         |           |           | D            |      |            | Г         |      |
| Timer                        | 1          | 2          | 3                  | 4         | 5         | 6         | 7         | 8            |      |            |           |      |
| Assigned Phs                 | 1          | 2          |                    | 4         | 5         | 6         |           | 8            |      |            |           |      |
| Phs Duration (G+Y+Rc), s     | 9.9        | 30.3       |                    | 22.5      | 22.0      | 18.2      |           | 14.2         |      |            |           |      |
| Change Period (Y+Rc), s      | 4.5        | 4.5        |                    | 4.5       | 4.5       | 4.5       |           | 4.5          |      |            |           |      |
| Max Green Setting (Gmax), s  | 5.4        | 30.6       |                    | 18.0      | 17.5      | 18.5      |           | 18.0         |      |            |           |      |
| Max Q Clear Time (g_c+l1), s | 7.4        | 7.6        |                    | 20.0      | 18.7      | 10.7      |           | 8.8          |      |            |           |      |
| Green Ext Time (p_c), s      | 0.0        | 5.2        |                    | 0.0       | 0.0       | 3.0       |           | 0.8          |      |            |           |      |
| Intersection Summary         |            |            |                    |           |           |           |           |              |      |            |           |      |
| HCM 2010 Ctrl Delay          |            |            | 168.5              |           |           |           |           |              |      |            |           |      |
| HCM 2010 LOS                 |            |            | F                  |           |           |           |           |              |      |            |           |      |
|                              |            |            |                    |           |           |           |           |              |      |            |           |      |

### Intersection: 1: US 101 SB On/US 101 NB Off & Kenmar Road

| Movement              | EB  | WB  | SB  |
|-----------------------|-----|-----|-----|
| Directions Served     | TR  | LT  | LTR |
| Maximum Queue (ft)    | 236 | 76  | 258 |
| Average Queue (ft)    | 211 | 3   | 232 |
| 95th Queue (ft)       | 227 | 45  | 247 |
| Link Distance (ft)    | 191 | 222 | 214 |
| Upstream Blk Time (%) | 100 |     | 100 |
| Queuing Penalty (veh) | 0   |     | 0   |
| Storage Bay Dist (ft) |     |     |     |
| Storage Blk Time (%)  |     |     |     |
| Queuing Penalty (veh) |     |     |     |

### Intersection: 2: US 101 NB Off/US 101 NB One & Kenmar Road/Kenmar Drive

| Movement              | EB  | WB  | NB  |
|-----------------------|-----|-----|-----|
| Directions Served     | LT  | TR  | LTR |
| Maximum Queue (ft)    | 245 | 225 | 358 |
| Average Queue (ft)    | 149 | 42  | 315 |
| 95th Queue (ft)       | 296 | 148 | 381 |
| Link Distance (ft)    | 222 | 248 | 302 |
| Upstream Blk Time (%) | 14  | 0   | 93  |
| Queuing Penalty (veh) | 144 | 1   | 0   |
| Storage Bay Dist (ft) |     |     |     |
| Storage Blk Time (%)  |     |     |     |
| Queuing Penalty (veh) |     |     |     |

### Intersection: 3: Atterberry lane/Eel River Drive & Kenmar Drive

| Movement              | EB  | WB  | NB  |
|-----------------------|-----|-----|-----|
| Directions Served     | LTR | LTR | LTR |
| Maximum Queue (ft)    | 401 | 404 | 336 |
| Average Queue (ft)    | 298 | 61  | 177 |
| 95th Queue (ft)       | 510 | 316 | 380 |
| Link Distance (ft)    | 248 | 512 | 346 |
| Upstream Blk Time (%) | 40  | 2   | 20  |
| Queuing Penalty (veh) | 512 | 21  | 0   |
| Storage Bay Dist (ft) |     |     |     |
| Storage Blk Time (%)  |     |     |     |
| Queuing Penalty (veh) |     |     |     |

# **Cumulative Signal Alternative**

|                                                         | ≯    | -         | $\mathbf{\hat{z}}$ | 4           | +        | •           | 1   | Ť          | 1   | 1         | Ļ         | ~    |
|---------------------------------------------------------|------|-----------|--------------------|-------------|----------|-------------|-----|------------|-----|-----------|-----------|------|
| Movement                                                | EBL  | EBT       | EBR                | WBL         | WBT      | WBR         | NBL | NBT        | NBR | SBL       | SBT       | SBR  |
| Lane Configurations                                     |      | 4         |                    | ሻሻ          | <b>↑</b> |             |     |            |     | ሻ         | 4         |      |
| Traffic Volume (veh/h)                                  | 0    | 150       | 40                 | 240         | 230      | 0           | 0   | 0          | 0   | 305       | 5         | 35   |
| Future Volume (veh/h)                                   | 0    | 150       | 40                 | 240         | 230      | 0           | 0   | 0          | 0   | 305       | 5         | 35   |
| Number                                                  | 7    | 4         | 14                 | 3           | 8        | 18          |     |            |     | 1         | 6         | 16   |
| Initial Q (Qb), veh                                     | 0    | 0         | 0                  | 0           | 0        | 0           |     |            |     | 0         | 0         | 0    |
| Ped-Bike Adj(A_pbT)                                     | 1.00 |           | 1.00               | 1.00        |          | 1.00        |     |            |     | 1.00      |           | 1.00 |
| Parking Bus, Adj                                        | 1.00 | 1.00      | 1.00               | 1.00        | 1.00     | 1.00        |     |            |     | 1.00      | 1.00      | 1.00 |
| Adj Sat Flow, veh/h/ln                                  | 0    | 1845      | 1900               | 1845        | 1845     | 0           |     |            |     | 1845      | 1845      | 1900 |
| Adj Flow Rate, veh/h                                    | 0    | 158       | 42                 | 253         | 242      | 0           |     |            |     | 359       | 0         | 0    |
| Adj No. of Lanes                                        | 0    | 1         | 0                  | 2           | 1        | 0           |     |            |     | 2         | 1         | 0    |
| Peak Hour Factor                                        | 0.95 | 0.95      | 0.95               | 0.95        | 0.95     | 0.95        |     |            |     | 0.95      | 0.95      | 0.95 |
| Percent Heavy Veh, %                                    | 0    | 3         | 3                  | 3           | 3        | 0           |     |            |     | 3         | 3         | 3    |
| Cap, veh/h                                              | 0    | 220       | 58                 | 1843        | 1390     | 0           |     |            |     | 468       | 246       | 0    |
| Arrive On Green                                         | 0.00 | 0.16      | 0.16               | 0.90        | 1.00     | 0.00        |     |            |     | 0.13      | 0.00      | 0.00 |
| Sat Flow, veh/h                                         | 0    | 1405      | 374                | 3408        | 1845     | 0           |     |            |     | 3514      | 1845      | 0    |
| Grp Volume(v), veh/h                                    | 0    | 0         | 200                | 253         | 242      | 0           |     |            |     | 359       | 0         | 0    |
| Grp Sat Flow(s), veh/h/ln                               | 0    | 0         | 1779               | 1704        | 1845     | 0           |     |            |     | 1757      | 1845      | 0    |
| Q Serve(g_s), s                                         | 0.0  | 0.0       | 9.6                | 0.7         | 0.0      | 0.0         |     |            |     | 8.9       | 0.0       | 0.0  |
| Cycle Q Clear(g_c), s                                   | 0.0  | 0.0       | 9.6                | 0.7         | 0.0      | 0.0         |     |            |     | 8.9       | 0.0       | 0.0  |
| Prop In Lane                                            | 0.00 | 0.0       | 0.21               | 1.00        | 0.0      | 0.00        |     |            |     | 1.00      | 0.0       | 0.00 |
| Lane Grp Cap(c), veh/h                                  | 0.00 | 0         | 278                | 1843        | 1390     | 0.00        |     |            |     | 468       | 246       | 0.00 |
| V/C Ratio(X)                                            | 0.00 | 0.00      | 0.72               | 0.14        | 0.17     | 0.00        |     |            |     | 0.77      | 0.00      | 0.00 |
| Avail Cap(c_a), veh/h                                   | 0.00 | 0.00      | 579                | 1843        | 1390     | 0.00        |     |            |     | 996       | 523       | 0.00 |
| HCM Platoon Ratio                                       | 1.00 | 1.00      | 1.00               | 1.67        | 1.67     | 1.00        |     |            |     | 1.00      | 1.00      | 1.00 |
| Upstream Filter(I)                                      | 0.00 | 0.00      | 1.00               | 0.99        | 0.99     | 0.00        |     |            |     | 1.00      | 0.00      | 0.00 |
| Uniform Delay (d), s/veh                                | 0.0  | 0.0       | 36.1               | 2.0         | 0.0      | 0.0         |     |            |     | 37.7      | 0.0       | 0.0  |
| Incr Delay (d2), s/veh                                  | 0.0  | 0.0       | 3.5                | 0.0         | 0.3      | 0.0         |     |            |     | 2.7       | 0.0       | 0.0  |
| Initial Q Delay(d3),s/veh                               | 0.0  | 0.0       | 0.0                | 0.0         | 0.0      | 0.0         |     |            |     | 0.0       | 0.0       | 0.0  |
| %ile BackOfQ(50%),veh/ln                                | 0.0  | 0.0       | 5.0                | 0.4         | 0.0      | 0.0         |     |            |     | 4.5       | 0.0       | 0.0  |
| LnGrp Delay(d),s/veh                                    | 0.0  | 0.0       | 39.6               | 2.1         | 0.3      | 0.0         |     |            |     | 40.3      | 0.0       | 0.0  |
| LnGrp LOS                                               | 0.0  | 0.0       | 00.0<br>D          | A           | A        | 0.0         |     |            |     | чо.о<br>D | 0.0       | 0.0  |
| Approach Vol, veh/h                                     |      | 200       |                    |             | 495      |             |     |            |     |           | 359       |      |
| Approach Delay, s/veh                                   |      | 39.6      |                    |             | 1.2      |             |     |            |     |           | 40.3      |      |
|                                                         |      | 59.0<br>D |                    |             | A        |             |     |            |     |           | 40.5<br>D |      |
| Approach LOS                                            |      |           |                    |             |          |             |     |            |     |           | U         |      |
| Timer                                                   | 1    | 2         | 3                  | 4           | 5        | 6           | 7   | 8          |     |           |           |      |
| Assigned Phs                                            |      |           | 3                  | 4           |          | 6           |     | 8          |     |           |           |      |
| Phs Duration (G+Y+Rc), s                                |      |           | 53.8               | 19.2        |          | 17.1        |     | 72.9       |     |           |           |      |
| Change Period (Y+Rc), s                                 |      |           | 5.1                | 5.1         |          | 5.1         |     | 5.1        |     |           |           |      |
| Max Green Setting (Gmax), s                             |      |           | 19.9               | 29.3        |          | 25.5        |     | 47.7       |     |           |           |      |
| Max Q Clear Time (g_c+11), s<br>Green Ext Time (p_c), s |      |           | 2.7<br>0.8         | 11.6<br>2.4 |          | 10.9<br>1.1 |     | 2.0<br>2.9 |     |           |           |      |
| u = 7.                                                  |      |           | 0.0                | ۲.2         |          | 1.1         |     | 2.5        |     |           |           |      |
| Intersection Summary                                    |      |           | 04.0               |             |          |             |     |            |     |           |           |      |
| HCM 2010 Ctrl Delay                                     |      |           | 21.8               |             |          |             |     |            |     |           |           |      |
| HCM 2010 LOS                                            |      |           | С                  |             |          |             |     |            |     |           |           |      |
| Notes                                                   |      |           |                    |             |          |             |     |            |     |           |           |      |
|                                                         |      |           |                    |             |          |             |     |            |     |           |           |      |

5:00 pm Baseline

Synchro 9 Report Page 1

|                           | ۶       | -          | $\mathbf{\hat{v}}$ | 4    | +        | •    | 1    | t    | 1    | $\mathbf{b}$ | ţ   | ∢   |  |
|---------------------------|---------|------------|--------------------|------|----------|------|------|------|------|--------------|-----|-----|--|
| Movement                  | EBL     | EBT        | EBR                | WBL  | WBT      | WBR  | NBL  | NBT  | NBR  | SBL          | SBT | SBR |  |
| Lane Configurations       | ۲.      | <b>†</b> † |                    |      | <b>^</b> | 1    |      | ર્ન  | 1    |              |     |     |  |
| Traffic Volume (veh/h)    | 30      | 425        | 0                  | 0    | 430      | 660  | 40   | 5    | 245  | 0            | 0   | 0   |  |
| Future Volume (veh/h)     | 30      | 425        | 0                  | 0    | 430      | 660  | 40   | 5    | 245  | 0            | 0   | 0   |  |
| Number                    | 7       | 4          | 14                 | 3    | 8        | 18   | 5    | 2    | 12   |              |     |     |  |
| Initial Q (Qb), veh       | 0       | 0          | 0                  | 0    | 0        | 0    | 0    | 0    | 0    |              |     |     |  |
| Ped-Bike Adj(A_pbT)       | 1.00    |            | 1.00               | 1.00 |          | 1.00 | 1.00 |      | 1.00 |              |     |     |  |
| Parking Bus, Adj          | 1.00    | 1.00       | 1.00               | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 |              |     |     |  |
| Adj Sat Flow, veh/h/ln    | 1863    | 1863       | 0                  | 0    | 1863     | 1863 | 1900 | 1863 | 1863 |              |     |     |  |
| Adj Flow Rate, veh/h      | 34      | 483        | 0                  | 0    | 489      | 0    | 45   | 6    | 278  |              |     |     |  |
| Adj No. of Lanes          | 1       | 2          | 0                  | 0    | 2        | 1    | 0    | 1    | 1    |              |     |     |  |
| Peak Hour Factor          | 0.88    | 0.88       | 0.88               | 0.88 | 0.88     | 0.88 | 0.88 | 0.88 | 0.88 |              |     |     |  |
| Percent Heavy Veh, %      | 2       | 2          | 0                  | 0    | 2        | 2    | 2    | 2    | 2    |              |     |     |  |
| Cap, veh/h                | 56      | 2428       | 0                  | 0    | 2138     | 956  | 316  | 42   | 318  |              |     |     |  |
| Arrive On Green           | 0.03    | 0.69       | 0.00               | 0.00 | 1.00     | 0.00 | 0.20 | 0.20 | 0.20 |              |     |     |  |
| Sat Flow, veh/h           | 1774    | 3632       | 0                  | 0    | 3632     | 1583 | 1574 | 210  | 1583 |              |     |     |  |
| Grp Volume(v), veh/h      | 34      | 483        | 0                  | 0    | 489      | 0    | 51   | 0    | 278  |              |     |     |  |
| Grp Sat Flow(s),veh/h/l   | n1774   | 1770       | 0                  | 0    | 1770     | 1583 | 1784 | 0    | 1583 |              |     |     |  |
| Q Serve(g_s), s           | 1.7     | 4.5        | 0.0                | 0.0  | 0.0      | 0.0  | 2.1  | 0.0  | 15.3 |              |     |     |  |
| Cycle Q Clear(g_c), s     | 1.7     | 4.5        | 0.0                | 0.0  | 0.0      | 0.0  | 2.1  | 0.0  | 15.3 |              |     |     |  |
| Prop In Lane              | 1.00    |            | 0.00               | 0.00 |          | 1.00 | 0.88 |      | 1.00 |              |     |     |  |
| Lane Grp Cap(c), veh/h    | n 56    | 2428       | 0                  | 0    | 2138     | 956  | 358  | 0    | 318  |              |     |     |  |
| V/C Ratio(X)              | 0.60    | 0.20       | 0.00               | 0.00 | 0.23     | 0.00 | 0.14 | 0.00 | 0.87 |              |     |     |  |
| Avail Cap(c_a), veh/h     | 187     | 2428       | 0                  | 0    | 2138     | 956  | 494  | 0    | 438  |              |     |     |  |
| HCM Platoon Ratio         | 1.00    | 1.00       | 1.00               | 1.00 | 1.67     | 1.67 | 1.00 | 1.00 | 1.00 |              |     |     |  |
| Upstream Filter(I)        | 0.72    | 0.72       | 0.00               | 0.00 | 0.93     | 0.00 | 1.00 | 0.00 | 1.00 |              |     |     |  |
| Uniform Delay (d), s/vel  | h 43.0  | 5.1        | 0.0                | 0.0  | 0.0      | 0.0  | 29.6 | 0.0  | 34.9 |              |     |     |  |
| Incr Delay (d2), s/veh    | 7.2     | 0.1        | 0.0                | 0.0  | 0.2      | 0.0  | 0.2  | 0.0  | 13.6 |              |     |     |  |
| Initial Q Delay(d3),s/vel | n 0.0   | 0.0        | 0.0                | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  |              |     |     |  |
| %ile BackOfQ(50%),ve      | h/lr0.9 | 2.2        | 0.0                | 0.0  | 0.1      | 0.0  | 1.1  | 0.0  | 7.9  |              |     |     |  |
| LnGrp Delay(d),s/veh      | 50.3    | 5.3        | 0.0                | 0.0  | 0.2      | 0.0  | 29.8 | 0.0  | 48.5 |              |     |     |  |
| LnGrp LOS                 | D       | А          |                    |      | А        |      | С    |      | D    |              |     |     |  |
| Approach Vol, veh/h       |         | 517        |                    |      | 489      |      |      | 329  |      |              |     |     |  |
| Approach Delay, s/veh     |         | 8.2        |                    |      | 0.2      |      |      | 45.6 |      |              |     |     |  |
| Approach LOS              |         | А          |                    |      | Α        |      |      | D    |      |              |     |     |  |
| Timer                     | 1       | 2          | 3                  | 4    | 5        | 6    | 7    | 8    |      |              |     |     |  |
| Assigned Phs              |         | 2          |                    | 4    |          |      | 7    | 8    |      |              |     |     |  |
| Phs Duration (G+Y+Rc      | ), s    | 23.2       |                    | 66.8 |          |      | 7.4  | 59.5 |      |              |     |     |  |
| Change Period (Y+Rc),     |         | 5.1        |                    | 5.1  |          |      | 4.5  | 5.1  |      |              |     |     |  |
| Max Green Setting (Gr     |         | 24.9       |                    | 54.9 |          |      | 9.5  | 40.9 |      |              |     |     |  |
| Max Q Clear Time (g c     |         | 17.3       |                    | 6.5  |          |      | 3.7  | 2.0  |      |              |     |     |  |
| Green Ext Time (p_c),     |         | 0.8        |                    | 8.2  |          |      | 0.0  | 8.0  |      |              |     |     |  |
| Intersection Summary      |         |            |                    |      |          |      |      |      |      |              |     |     |  |
| HCM 2010 Ctrl Delay       |         |            | 14.5               |      |          |      |      |      |      |              |     |     |  |
| HCM 2010 LOS              |         |            | В                  |      |          |      |      |      |      |              |     |     |  |
|                           |         |            |                    |      |          |      |      |      |      |              |     |     |  |

|                           | ۶       | -    | $\mathbf{i}$ | 4    | +           | *     | 1    | 1    | 1           | 1    | ţ    | ∢_   |  |
|---------------------------|---------|------|--------------|------|-------------|-------|------|------|-------------|------|------|------|--|
| Movement                  | EBL     | EBT  | EBR          | WBL  | WBT         | WBR   | NBL  | NBT  | NBR         | SBL  | SBT  | SBR  |  |
| Lane Configurations       | ٦       | A    |              | ኘ    | <b>≜</b> †₽ |       |      | 4    |             |      | 4    |      |  |
| Traffic Volume (veh/h)    | 0       | 650  | 20           | 15   | 1060        | 0     | 30   | 0    | 15          | 0    | 0    | 0    |  |
| Future Volume (veh/h)     | 0       | 650  | 20           | 15   | 1060        | 0     | 30   | 0    | 15          | 0    | 0    | 0    |  |
| Number                    | 5       | 2    | 12           | 1    | 6           | 16    | 3    | 8    | 18          | 7    | 4    | 14   |  |
| Initial Q (Qb), veh       | 0       | 0    | 0            | 0    | 0           | 0     | 0    | 0    | 0           | 0    | 0    | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00    | Ŭ    | 1.00         | 1.00 | Ŭ           | 1.00  | 1.00 | Ū    | 1.00        | 1.00 | Ū    | 1.00 |  |
| Parking Bus, Adj          | 1.00    | 1.00 | 1.00         | 1.00 | 1.00        | 1.00  | 1.00 | 1.00 | 1.00        | 1.00 | 1.00 | 1.00 |  |
| Adj Sat Flow, veh/h/ln    | 1863    | 1863 | 1900         | 1863 | 1863        | 1900  | 1900 | 1863 | 1900        | 1900 | 1863 | 1900 |  |
| Adj Flow Rate, veh/h      | 0       | 739  | 23           | 17   | 1205        | 0     | 34   | 0    | 17          | 0    | 0    | 0    |  |
| Adj No. of Lanes          | 1       | 2    | 0            | 1    | 2           | 0     | 0    | 1    | 0           | 0    | 1    | Ũ    |  |
| Peak Hour Factor          | 0.88    | 0.88 | 0.88         | 0.88 | 0.88        | 0.88  | 0.88 | 0.88 | 0.88        | 0.88 | 0.88 | 0.88 |  |
| Percent Heavy Veh, %      | 2       | 2    | 2            | 0.00 | 2           | 0.00  | 2    | 0.00 | 0.00        | 2    | 2    | 2    |  |
| Cap, veh/h                | 2       | 2744 | 85           | 34   | 3020        | 0     | 46   | 0    | 23          | 0    | 2    | 0    |  |
| Arrive On Green           | 0.00    | 1.00 | 1.00         | 0.02 | 0.85        | 0.00  | 0.04 | 0.00 | 0.04        | 0.00 | 0.00 | 0.00 |  |
| Sat Flow, veh/h           | 1774    | 3504 | 100          | 1774 | 3632        | 0.00  | 1137 | 0.00 | 0.04<br>569 | 0.00 | 1863 | 0.00 |  |
|                           |         |      |              |      |             |       |      |      |             |      |      |      |  |
| Grp Volume(v), veh/h      | 0       | 373  | 389          | 17   | 1205        | 0     | 51   | 0    | 0           | 0    | 0    | 0    |  |
| Grp Sat Flow(s),veh/h/li  |         | 1770 | 1844         | 1774 | 1770        | 0     | 1706 | 0    | 0           | 0    | 1863 | 0    |  |
| Q Serve(g_s), s           | 0.0     | 0.0  | 0.0          | 0.9  | 6.8         | 0.0   | 2.7  | 0.0  | 0.0         | 0.0  | 0.0  | 0.0  |  |
| Cycle Q Clear(g_c), s     | 0.0     | 0.0  | 0.0          | 0.9  | 6.8         | 0.0   | 2.7  | 0.0  | 0.0         | 0.0  | 0.0  | 0.0  |  |
| Prop In Lane              | 1.00    |      | 0.06         | 1.00 |             | 0.00  | 0.67 |      | 0.33        | 0.00 |      | 0.00 |  |
| Lane Grp Cap(c), veh/h    |         | 1386 | 1443         | 34   | 3020        | 0     | 68   | 0    | 0           | 0    | 2    | 0    |  |
| V/C Ratio(X)              | 0.00    | 0.27 | 0.27         | 0.50 | 0.40        | 0.00  | 0.75 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 |  |
| Avail Cap(c_a), veh/h     | 99      | 1386 | 1443         | 106  | 3020        | 0     | 104  | 0    | 0           | 0    | 103  | 0    |  |
| HCM Platoon Ratio         | 2.00    | 2.00 | 2.00         | 1.00 | 1.00        | 1.00  | 1.00 | 1.00 | 1.00        | 1.00 | 1.00 | 1.00 |  |
| Upstream Filter(I)        | 0.00    | 0.95 | 0.95         | 0.43 | 0.43        | 0.00  | 1.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 |  |
| Uniform Delay (d), s/vel  | h 0.0   | 0.0  | 0.0          | 43.7 | 1.5         | 0.0   | 42.7 | 0.0  | 0.0         | 0.0  | 0.0  | 0.0  |  |
| Incr Delay (d2), s/veh    | 0.0     | 0.5  | 0.4          | 4.8  | 0.2         | 0.0   | 14.9 | 0.0  | 0.0         | 0.0  | 0.0  | 0.0  |  |
| Initial Q Delay(d3),s/vel | n 0.0   | 0.0  | 0.0          | 0.0  | 0.0         | 0.0   | 0.0  | 0.0  | 0.0         | 0.0  | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),vel     | h/lr0.0 | 0.2  | 0.2          | 0.5  | 3.3         | 0.0   | 1.5  | 0.0  | 0.0         | 0.0  | 0.0  | 0.0  |  |
| LnGrp Delay(d),s/veh      | 0.0     | 0.5  | 0.4          | 48.5 | 1.6         | 0.0   | 57.6 | 0.0  | 0.0         | 0.0  | 0.0  | 0.0  |  |
| LnGrp LOS                 |         | А    | А            | D    | А           |       | Е    |      |             |      |      |      |  |
| Approach Vol, veh/h       |         | 762  |              |      | 1222        |       |      | 51   |             |      | 0    |      |  |
| Approach Delay, s/veh     |         | 0.4  |              |      | 2.3         |       |      | 57.6 |             |      | 0.0  |      |  |
| Approach LOS              |         | A    |              |      | Α           |       |      | E    |             |      | 0.0  |      |  |
|                           | 1       |      | 2            | Λ    |             | 6     | 7    |      |             |      |      |      |  |
| Timer                     | 1       | 2    | 3            | 4    | 5           |       | 1    | 8    |             |      |      |      |  |
| Assigned Phs              |         | 2    |              | 4    | 5           | 6     |      | 8    |             |      |      |      |  |
| Phs Duration (G+Y+Rc)     |         | 75.6 |              | 0.0  | 0.0         | 81.9  |      | 8.1  |             |      |      |      |  |
| Change Period (Y+Rc),     |         | 5.1  |              | 4.5  | 4.5         | * 5.1 |      | 4.5  |             |      |      |      |  |
| Max Green Setting (Gr     |         | 55.4 |              | 5.0  | 5.0         | * 57  |      | 5.5  |             |      |      |      |  |
| Max Q Clear Time (g_c     |         | 2.0  |              | 0.0  | 0.0         | 8.8   |      | 4.7  |             |      |      |      |  |
| Green Ext Time (p_c), s   | s 0.0   | 23.7 |              | 0.0  | 0.0         | 22.7  |      | 0.0  |             |      |      |      |  |
| Intersection Summary      |         |      |              |      |             |       |      |      |             |      |      |      |  |
| HCM 2010 Ctrl Delay       |         |      | 3.0          |      |             |       |      |      |             |      |      |      |  |
| HCM 2010 LOS              |         |      | А            |      |             |       |      |      |             |      |      |      |  |
| Notes                     |         |      |              |      |             |       |      |      |             |      |      |      |  |
|                           |         |      |              |      |             |       |      |      |             |      |      |      |  |

|                           | ≯         | -         | $\mathbf{r}$ | •         | +           | *         | 1         | 1           | 1         | 1         | Ŧ         | ∢_          |  |
|---------------------------|-----------|-----------|--------------|-----------|-------------|-----------|-----------|-------------|-----------|-----------|-----------|-------------|--|
| Movement                  | EBL       | EBT       | EBR          | WBL       | WBT         | WBR       | NBL       | NBT         | NBR       | SBL       | SBT       | SBR         |  |
| Lane Configurations       | ሻሻ        |           | 1            | ٦         |             | 1         | ኘኘ        | <b>≜</b> †₽ |           | ٦         | ††        | 1           |  |
| Traffic Volume (veh/h)    | 280       | 75        | 305          | 25        | 230         | 242       | 485       | 415         | 10        | 55        | 245       | 360         |  |
| Future Volume (veh/h)     | 280       | 75        | 305          | 25        | 230         | 242       | 485       | 415         | 10        | 55        | 245       | 360         |  |
| Number                    | 7         | 4         | 14           | 3         | 8           | 18        | 5         | 2           | 12        | 1         | 6         | 16          |  |
| Initial Q (Qb), veh       | 0         | 0         | 0            | 0         | 0           | 0         | 0         | 0           | 0         | 0         | 0         | 0           |  |
| Ped-Bike Adj(A_pbT)       | 1.00      |           | 1.00         | 1.00      |             | 1.00      | 1.00      |             | 1.00      | 1.00      |           | 1.00        |  |
| Parking Bus, Adj          | 1.00      | 1.00      | 1.00         | 1.00      | 1.00        | 1.00      | 1.00      | 1.00        | 1.00      | 1.00      | 1.00      | 1.00        |  |
| Adj Sat Flow, veh/h/ln    | 1863      | 1863      | 1863         | 1863      | 1863        | 1863      | 1863      | 1863        | 1900      | 1863      | 1863      | 1863        |  |
| Adj Flow Rate, veh/h      | 318       | 85        | 347          | 28        | 261         | 275       | 551       | 472         | 11        | 62        | 278       | 409         |  |
| Adj No. of Lanes          | 2         | 1         | 1            | 1         | 1           | 1         | 2         | 2           | 0         | 1         | 2         | 1           |  |
| Peak Hour Factor          | 0.88      | 0.88      | 0.88         | 0.88      | 0.88        | 0.88      | 0.88      | 0.88        | 0.88      | 0.88      | 0.88      | 0.88        |  |
| Percent Heavy Veh, %      | 2         | 2         | 2            | 2         | 2           | 2         | 2         | 2           | 2         | 2         | 2         | 2           |  |
| Cap, veh/h                | 413       | 436       | 672          | 119       | 337         | 286       | 654       | 1450        | 34        | 86        | 950       | 425         |  |
| Arrive On Green           | 0.12      | 0.23      | 0.23         | 0.07      | 0.18        | 0.18      | 0.19      | 0.41        | 0.41      | 0.05      | 0.27      | 0.27        |  |
| Sat Flow, veh/h           | 3442      | 1863      | 1583         | 1774      | 1863        | 1583      | 3442      | 3536        | 82        | 1774      | 3539      | 1583        |  |
| Grp Volume(v), veh/h      | 318       | 85        | 347          | 28        | 261         | 275       | 551       | 236         | 247       | 62        | 278       | 409         |  |
| Grp Sat Flow(s), veh/h/li |           | 1863      | 1583         | 1774      | 1863        | 1583      | 1721      | 1770        | 1848      | 1774      | 1770      | 1583        |  |
| Q Serve(g_s), s           | 6.7       | 2.7       | 12.1         | 1.1       | 10.0        | 10.2      | 11.6      | 6.8         | 6.8       | 2.6       | 4.7       | 12.8        |  |
| Cycle Q Clear(g_c), s     | 6.7       | 2.7       | 12.1         | 1.1       | 10.0        | 10.2      | 11.6      | 6.8         | 6.8       | 2.6       | 4.7       | 12.8        |  |
| Prop In Lane              | 1.00      | 2.1       | 1.00         | 1.00      | 10.0        | 1.00      | 1.00      | 0.0         | 0.04      | 1.00      | ۰.۳       | 1.00        |  |
| Lane Grp Cap(c), veh/h    |           | 436       | 672          | 119       | 337         | 286       | 654       | 726         | 758       | 86        | 950       | 425         |  |
| V/C Ratio(X)              | 0.77      | 0.19      | 0.52         | 0.24      | 0.77        | 0.96      | 0.84      | 0.33        | 0.33      | 0.72      | 0.29      | 0.96        |  |
| Avail Cap(c_a), veh/h     | 437       | 543       | 762          | 135       | 448         | 381       | 759       | 0.33<br>844 | 882       | 209       | 1324      | 0.90<br>592 |  |
| HCM Platoon Ratio         | 1.00      | 1.00      | 1.00         | 1.00      | 1.00        | 1.00      | 1.00      | 1.00        | 1.00      | 1.00      | 1.00      | 1.00        |  |
| Upstream Filter(I)        | 1.00      | 1.00      | 1.00         | 1.00      | 1.00        | 1.00      | 1.00      | 1.00        | 1.00      | 1.00      | 1.00      | 1.00        |  |
| Uniform Delay (d), s/vel  |           | 23.0      | 15.9         | 33.1      | 29.2        | 19.2      | 29.2      | 15.0        | 15.0      | 35.1      | 21.7      | 12.2        |  |
| Incr Delay (d2), s/veh    | 7.7       | 23.0      | 0.6          | 1.0       | 29.2<br>6.0 | 31.2      | 7.6       | 0.3         | 0.2       | 10.8      | 0.2       | 23.4        |  |
| Initial Q Delay(d3),s/vel |           | 0.2       | 0.0          | 0.0       | 0.0         | 0.0       | 0.0       | 0.0         | 0.2       | 0.0       | 0.2       | 23.4        |  |
| %ile BackOfQ(50%),vel     |           | 1.4       | 5.3          | 0.0       | 5.7         | 7.1       | 6.2       | 3.3         | 3.5       | 1.5       | 2.3       | 0.0<br>8.8  |  |
| LnGrp Delay(d),s/veh      | 39.7      | 23.2      | 16.5         | 34.1      | 35.2        | 50.4      | 36.8      | 15.3        | 15.3      | 45.9      | 2.3       | 35.6        |  |
| LnGrp LOS                 | 59.7<br>D | 23.2<br>C | 10.5<br>B    | 04.1<br>C | 55.2<br>D   | 50.4<br>D | 30.0<br>D | 15.5<br>B   | 15.5<br>B | 45.9<br>D | 21.9<br>C | 55.0<br>D   |  |
|                           | U         |           | D            | 0         |             | U         | U         |             | D         | U         |           | D           |  |
| Approach Vol, veh/h       |           | 750       |              |           | 564         |           |           | 1034        |           |           | 749       |             |  |
| Approach Delay, s/veh     |           | 27.1      |              |           | 42.5        |           |           | 26.7        |           |           | 31.4      |             |  |
| Approach LOS              |           | С         |              |           | D           |           |           | С           |           |           | С         |             |  |
| Timer                     | 1         | 2         | 3            | 4         | 5           | 6         | 7         | 8           |           |           |           |             |  |
| Assigned Phs              | 1         | 2         | 3            | 4         | 5           | 6         | 7         | 8           |           |           |           |             |  |
| Phs Duration (G+Y+Rc)     | ), s8.1   | 35.2      | 9.5          | 22.0      | 18.7        | 24.6      | 13.5      | 18.0        |           |           |           |             |  |
| Change Period (Y+Rc),     |           | 4.5       | 4.5          | 4.5       | 4.5         | 4.5       | 4.5       | 4.5         |           |           |           |             |  |
| Max Green Setting (Gr     |           | 35.7      | 5.7          | 21.8      | 16.5        | 28.0      | 9.5       | 18.0        |           |           |           |             |  |
| Max Q Clear Time (g_c     |           | 8.8       | 3.1          | 14.1      | 13.6        | 14.8      | 8.7       | 12.2        |           |           |           |             |  |
| Green Ext Time (p_c), s   |           | 7.0       | 0.0          | 1.9       | 0.7         | 5.3       | 0.3       | 1.3         |           |           |           |             |  |
| Intersection Summary      |           |           |              |           |             |           |           |             |           |           |           |             |  |
| HCM 2010 Ctrl Delay       |           |           | 30.8         |           |             |           |           |             |           |           |           |             |  |
| HCM 2010 LOS              |           |           | С            |           |             |           |           |             |           |           |           |             |  |
|                           |           |           | Ŭ            |           |             |           |           |             |           |           |           |             |  |

### Intersection: 1: US 101 SB On/US 101 NB Off & Kenmar Road

| MovementEBWBWBSBSBDirections ServedTRLLTLL |
|--------------------------------------------|
| Directions Served TR L L T L LTR           |
|                                            |
| Maximum Queue (ft) 182 57 96 160 168 207   |
| Average Queue (ft) 111 11 45 42 93 101     |
| 95th Queue (ft) 178 35 82 107 154 180      |
| Link Distance (ft) 169 213 213 256         |
| Upstream Blk Time (%) 2 0 0                |
| Queuing Penalty (veh) 0 0 0                |
| Storage Bay Dist (ft) 80 120               |
| Storage Blk Time (%) 0 1 4 5               |
| Queuing Penalty (veh) 0 1 8 8              |

### Intersection: 2: US 101 NB Off/US 101 NB One & Kenmar Road/Kenmar Drive

| Movement              | EB  | EB  | EB  | WB  | WB  | WB  | NB  | NB  |
|-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Directions Served     | L   | Т   | Т   | Т   | Т   | R   | LT  | R   |
| Maximum Queue (ft)    | 122 | 145 | 137 | 97  | 112 | 204 | 80  | 109 |
| Average Queue (ft)    | 24  | 55  | 44  | 26  | 32  | 11  | 28  | 45  |
| 95th Queue (ft)       | 67  | 120 | 103 | 67  | 83  | 84  | 64  | 81  |
| Link Distance (ft)    |     | 213 | 213 | 236 | 236 | 236 | 289 |     |
| Upstream Blk Time (%) |     |     |     |     |     | 0   |     |     |
| Queuing Penalty (veh) |     |     |     |     |     | 0   |     |     |
| Storage Bay Dist (ft) | 75  |     |     |     |     |     |     | 150 |
| Storage Blk Time (%)  | 0   | 2   |     |     |     |     |     |     |
| Queuing Penalty (veh) | 0   | 1   |     |     |     |     |     |     |

### Intersection: 3: Atterberry lane/Eel River Drive & Kenmar Drive

| Movement<br>Lane Configurations<br>Traffic Volume (veh/h)<br>Future Volume (veh/h)<br>Number<br>Initial Q (Qb), veh<br>Ped-Bike Adj(A_pbT)<br>Dadking Dug Adji | EBL<br>0<br>0<br>7<br>0<br>1.00<br>1.00<br>1.00<br>0<br>0 | EBT<br>450<br>450<br>4<br>0<br>1.00 | EBR<br>55<br>55<br>14<br>0<br>1.00 | WBL<br>410<br>410<br>3 | WBT<br>1<br>350<br>350 | WBR<br>0 | NBL | NBT  | NBR | SBL         | SBT  | SBR  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------|------------------------------------|------------------------|------------------------|----------|-----|------|-----|-------------|------|------|
| Traffic Volume (veh/h)<br>Future Volume (veh/h)<br>Number<br>Initial Q (Qb), veh<br>Ped-Bike Adj(A_pbT)                                                        | 0<br>7<br>1.00<br>1.00<br>0                               | 450<br>450<br>4<br>0                | 55<br>14<br>0                      | 410<br>410<br>3        | 350                    | 0        |     |      |     | ×           | Δ.   |      |
| Future Volume (veh/h)<br>Number<br>Initial Q (Qb), veh<br>Ped-Bike Adj(A_pbT)                                                                                  | 0<br>7<br>1.00<br>1.00<br>0                               | 450<br>4<br>0                       | 55<br>14<br>0                      | 410<br>410<br>3        |                        | Ο        |     |      |     | -           |      |      |
| Number<br>Initial Q (Qb), veh<br>Ped-Bike Adj(A_pbT)                                                                                                           | 7<br>0<br>1.00<br>1.00<br>0                               | 4<br>0                              | 14<br>0                            | 3                      | 350                    | 0        | 0   | 0    | 0   | 595         | 0    | 75   |
| Initial Q (Qb), veh<br>Ped-Bike Adj(A_pbT)                                                                                                                     | 0<br>1.00<br>1.00<br>0                                    | 0                                   | 0                                  |                        | 000                    | 0        | 0   | 0    | 0   | 595         | 0    | 75   |
| Ped-Bike Adj(A_pbT)                                                                                                                                            | 1.00<br>1.00<br>0                                         |                                     |                                    |                        | 8                      | 18       |     |      |     | 1           | 6    | 16   |
| Ped-Bike Adj(A_pbT)                                                                                                                                            | 1.00<br>0                                                 | 1 00                                | 1 00                               | 0                      | 0                      | 0        |     |      |     | 0           | 0    | 0    |
| Derking Due Ad                                                                                                                                                 | 0                                                         | 1 00                                | 1.00                               | 1.00                   |                        | 1.00     |     |      |     | 1.00        |      | 1.00 |
| Parking Bus, Adj                                                                                                                                               |                                                           | 1.00                                | 1.00                               | 1.00                   | 1.00                   | 1.00     |     |      |     | 1.00        | 1.00 | 1.00 |
| Adj Sat Flow, veh/h/ln                                                                                                                                         | ٥                                                         | 1845                                | 1900                               | 1845                   | 1845                   | 0        |     |      |     | 1845        | 1845 | 1900 |
| Adj Flow Rate, veh/h                                                                                                                                           | 0                                                         | 474                                 | 58                                 | 432                    | 368                    | 0        |     |      |     | 700         | 0    | 0    |
| Adj No. of Lanes                                                                                                                                               | 0                                                         | 1                                   | 0                                  | 2                      | 1                      | 0        |     |      |     | 2           | 1    | 0    |
| Peak Hour Factor                                                                                                                                               | 0.95                                                      | 0.95                                | 0.95                               | 0.95                   | 0.95                   | 0.95     |     |      |     | 0.95        | 0.95 | 0.95 |
| Percent Heavy Veh, %                                                                                                                                           | 0                                                         | 3                                   | 3                                  | 3                      | 3                      | 0        |     |      |     | 3           | 3    | 3    |
| Cap, veh/h                                                                                                                                                     | 0                                                         | 512                                 | 63                                 | 960                    | 1209                   | 0        |     |      |     | 812         | 426  | 0    |
| Arrive On Green                                                                                                                                                | 0.00                                                      | 0.32                                | 0.32                               | 0.47                   | 1.00                   | 0.00     |     |      |     | 0.23        | 0.00 | 0.00 |
| Sat Flow, veh/h                                                                                                                                                | 0                                                         | 1613                                | 197                                | 3408                   | 1845                   | 0        |     |      |     | 3514        | 1845 | 0    |
| Grp Volume(v), veh/h                                                                                                                                           | 0                                                         | 0                                   | 532                                | 432                    | 368                    | 0        |     |      |     | 700         | 0    | 0    |
| Grp Sat Flow(s), veh/h/ln                                                                                                                                      | 0                                                         | 0                                   | 1810                               | 1704                   | 1845                   | 0        |     |      |     | 1757        | 1845 | 0    |
| Q Serve(g_s), s                                                                                                                                                | 0.0                                                       | 0.0                                 | 25.6                               | 7.7                    | 0.0                    | 0.0      |     |      |     | 17.2        | 0.0  | 0.0  |
| Cycle Q Clear(g_c), s                                                                                                                                          | 0.0                                                       | 0.0                                 | 25.6                               | 7.7                    | 0.0                    | 0.0      |     |      |     | 17.2        | 0.0  | 0.0  |
| Prop In Lane                                                                                                                                                   | 0.00                                                      | 0.0                                 | 0.11                               | 1.00                   | 0.0                    | 0.0      |     |      |     | 1.00        | 0.0  | 0.0  |
| •                                                                                                                                                              | 0.00                                                      | ٥                                   | 574                                | 960                    | 1209                   | 0.00     |     |      |     | 812         | 426  | 0.00 |
| Lane Grp Cap(c), veh/h                                                                                                                                         | 0.00                                                      | 0<br>0.00                           | 0.93                               | 0.45                   | 0.30                   | 0.00     |     |      |     | 0.86        | 420  | 0.00 |
| V/C Ratio(X)                                                                                                                                                   | 0.00                                                      | 0.00                                | 0.93<br>589                        | 0.45<br>960            | 1209                   | 0.00     |     |      |     | 0.00<br>996 | 523  | 0.00 |
| Avail Cap(c_a), veh/h                                                                                                                                          |                                                           |                                     |                                    |                        |                        |          |     |      |     |             |      |      |
| HCM Platoon Ratio                                                                                                                                              | 1.00                                                      | 1.00                                | 1.00                               | 1.67                   | 1.67                   | 1.00     |     |      |     | 1.00        | 1.00 | 1.00 |
| Upstream Filter(I)                                                                                                                                             | 0.00                                                      | 0.00                                | 1.00                               | 0.93                   | 0.93                   | 0.00     |     |      |     | 1.00        | 0.00 | 0.00 |
| Uniform Delay (d), s/veh                                                                                                                                       | 0.0                                                       | 0.0                                 | 29.7                               | 19.1                   | 0.0                    | 0.0      |     |      |     | 33.2        | 0.0  | 0.0  |
| Incr Delay (d2), s/veh                                                                                                                                         | 0.0                                                       | 0.0                                 | 20.6                               | 0.3                    | 0.6                    | 0.0      |     |      |     | 6.7         | 0.0  | 0.0  |
| Initial Q Delay(d3),s/veh                                                                                                                                      | 0.0                                                       | 0.0                                 | 0.0                                | 0.0                    | 0.0                    | 0.0      |     |      |     | 0.0         | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln                                                                                                                                       | 0.0                                                       | 0.0                                 | 16.0                               | 3.6                    | 0.2                    | 0.0      |     |      |     | 9.1         | 0.0  | 0.0  |
| LnGrp Delay(d),s/veh                                                                                                                                           | 0.0                                                       | 0.0                                 | 50.4                               | 19.5                   | 0.6                    | 0.0      |     |      |     | 39.9        | 0.0  | 0.0  |
| LnGrp LOS                                                                                                                                                      |                                                           |                                     | D                                  | В                      | Α                      |          |     |      |     | D           |      |      |
| Approach Vol, veh/h                                                                                                                                            |                                                           | 532                                 |                                    |                        | 800                    |          |     |      |     |             | 700  |      |
| Approach Delay, s/veh                                                                                                                                          |                                                           | 50.4                                |                                    |                        | 10.8                   |          |     |      |     |             | 39.9 |      |
| Approach LOS                                                                                                                                                   |                                                           | D                                   |                                    |                        | В                      |          |     |      |     |             | D    |      |
| Timer                                                                                                                                                          | 1                                                         | 2                                   | 3                                  | 4                      | 5                      | 6        | 7   | 8    |     |             |      |      |
| Assigned Phs                                                                                                                                                   |                                                           |                                     | 3                                  | 4                      |                        | 6        |     | 8    |     |             |      |      |
| Phs Duration (G+Y+Rc), s                                                                                                                                       |                                                           |                                     | 30.5                               | 33.7                   |                        | 25.9     |     | 64.1 |     |             |      |      |
| Change Period (Y+Rc), s                                                                                                                                        |                                                           |                                     | 5.1                                | 5.1                    |                        | 5.1      |     | 5.1  |     |             |      |      |
| Max Green Setting (Gmax), s                                                                                                                                    |                                                           |                                     | 19.9                               | 29.3                   |                        | 25.5     |     | 47.7 |     |             |      |      |
| Max Q Clear Time (g_c+l1), s                                                                                                                                   |                                                           |                                     | 9.7                                | 27.6                   |                        | 19.2     |     | 2.0  |     |             |      |      |
| Green Ext Time (p_c), s                                                                                                                                        |                                                           |                                     | 1.2                                | 1.0                    |                        | 1.6      |     | 7.1  |     |             |      |      |
| Intersection Summary                                                                                                                                           |                                                           |                                     |                                    |                        |                        |          |     |      |     |             |      |      |
| HCM 2010 Ctrl Delay                                                                                                                                            |                                                           |                                     | 31.2                               |                        |                        |          |     |      |     |             |      |      |
| HCM 2010 LOS                                                                                                                                                   |                                                           |                                     | С                                  |                        |                        |          |     |      |     |             |      |      |
|                                                                                                                                                                |                                                           |                                     |                                    |                        |                        |          |     |      |     |             |      |      |
| Notes                                                                                                                                                          |                                                           |                                     |                                    |                        |                        |          |     |      |     |             |      |      |

5:00 pm Baseline

|                           | ۶       | <b>→</b>   | $\mathbf{F}$ | 4    | +       | *    | 1    | Ť    | ۲    | $\mathbf{F}$ | ŧ   | ∢_  |  |
|---------------------------|---------|------------|--------------|------|---------|------|------|------|------|--------------|-----|-----|--|
| Movement                  | EBL     | EBT        | EBR          | WBL  | WBT     | WBR  | NBL  | NBT  | NBR  | SBL          | SBT | SBR |  |
| Lane Configurations       | ٦       | <b>†</b> † |              |      | <u></u> | 1    |      | ર્સ  | 1    |              |     |     |  |
| Traffic Volume (veh/h)    | 85      | 960        | 0            | 0    | 705     | 455  | 50   | 0    | 310  | 0            | 0   | 0   |  |
| Future Volume (veh/h)     | 85      | 960        | 0            | 0    | 705     | 455  | 50   | 0    | 310  | 0            | 0   | 0   |  |
| Number                    | 7       | 4          | 14           | 3    | 8       | 18   | 5    | 2    | 12   |              |     |     |  |
| Initial Q (Qb), veh       | 0       | 0          | 0            | 0    | 0       | 0    | 0    | 0    | 0    |              |     |     |  |
| Ped-Bike Adj(A_pbT)       | 1.00    |            | 1.00         | 1.00 |         | 1.00 | 1.00 |      | 1.00 |              |     |     |  |
| Parking Bus, Adj          | 1.00    | 1.00       | 1.00         | 1.00 | 1.00    | 1.00 | 1.00 | 1.00 | 1.00 |              |     |     |  |
| Adj Sat Flow, veh/h/ln    | 1845    | 1845       | 0            | 0    | 1845    | 1845 | 1900 | 1845 | 1845 |              |     |     |  |
| Adj Flow Rate, veh/h      | 89      | 1011       | 0            | 0    | 742     | 0    | 53   | 0    | 326  |              |     |     |  |
| Adj No. of Lanes          | 1       | 2          | 0            | 0    | 2       | 1    | 0    | 1    | 1    |              |     |     |  |
| Peak Hour Factor          | 0.95    | 0.95       | 0.95         | 0.95 | 0.95    | 0.95 | 0.95 | 0.95 | 0.95 |              |     |     |  |
| Percent Heavy Veh, %      | 3       | 3          | 0            | 0    | 3       | 3    | 3    | 3    | 3    |              |     |     |  |
| Cap, veh/h                | 114     | 2297       | 0            | 0    | 1895    | 848  | 406  | 0    | 363  |              |     |     |  |
| Arrive On Green           | 0.06    | 0.66       | 0.00         | 0.00 | 1.00    | 0.00 | 0.23 | 0.00 | 0.23 |              |     |     |  |
| Sat Flow, veh/h           | 1757    | 3597       | 0            | 0    | 3597    | 1568 | 1757 | 0    | 1568 |              |     |     |  |
| Grp Volume(v), veh/h      | 89      | 1011       | 0            | 0    | 742     | 0    | 53   | 0    | 326  |              |     |     |  |
| Grp Sat Flow(s),veh/h/li  | n1757   | 1752       | 0            | 0    | 1752    | 1568 | 1757 | 0    | 1568 |              |     |     |  |
| Q Serve(g_s), s           | 4.5     | 12.6       | 0.0          | 0.0  | 0.0     | 0.0  | 2.2  | 0.0  | 18.2 |              |     |     |  |
| Cycle Q Clear(g_c), s     | 4.5     | 12.6       | 0.0          | 0.0  | 0.0     | 0.0  | 2.2  | 0.0  | 18.2 |              |     |     |  |
| Prop In Lane              | 1.00    |            | 0.00         | 0.00 |         | 1.00 | 1.00 |      | 1.00 |              |     |     |  |
| Lane Grp Cap(c), veh/h    | 114     | 2297       | 0            | 0    | 1895    | 848  | 406  | 0    | 363  |              |     |     |  |
| V/C Ratio(X)              | 0.78    | 0.44       | 0.00         | 0.00 | 0.39    | 0.00 | 0.13 | 0.00 | 0.90 |              |     |     |  |
| Avail Cap(c_a), veh/h     | 185     | 2297       | 0            | 0    | 1895    | 848  | 486  | 0    | 434  |              |     |     |  |
| HCM Platoon Ratio         | 1.00    | 1.00       | 1.00         | 1.00 | 2.00    | 2.00 | 1.00 | 1.00 | 1.00 |              |     |     |  |
| Upstream Filter(I)        | 0.34    | 0.34       | 0.00         | 0.00 | 0.93    | 0.00 | 1.00 | 0.00 | 1.00 |              |     |     |  |
| Uniform Delay (d), s/vel  | h 41.5  | 7.5        | 0.0          | 0.0  | 0.0     | 0.0  | 27.4 | 0.0  | 33.6 |              |     |     |  |
| Incr Delay (d2), s/veh    | 4.0     | 0.2        | 0.0          | 0.0  | 0.6     | 0.0  | 0.1  | 0.0  | 19.0 |              |     |     |  |
| Initial Q Delay(d3),s/vel | n 0.0   | 0.0        | 0.0          | 0.0  | 0.0     | 0.0  | 0.0  | 0.0  | 0.0  |              |     |     |  |
| %ile BackOfQ(50%),vel     | h/lr2.3 | 6.1        | 0.0          | 0.0  | 0.1     | 0.0  | 1.1  | 0.0  | 9.8  |              |     |     |  |
| LnGrp Delay(d),s/veh      | 45.4    | 7.7        | 0.0          | 0.0  | 0.6     | 0.0  | 27.6 | 0.0  | 52.6 |              |     |     |  |
| LnGrp LOS                 | D       | Α          |              |      | Α       |      | С    |      | D    |              |     |     |  |
| Approach Vol, veh/h       |         | 1100       |              |      | 742     |      |      | 379  |      |              |     |     |  |
| Approach Delay, s/veh     |         | 10.8       |              |      | 0.6     |      |      | 49.1 |      |              |     |     |  |
| Approach LOS              |         | В          |              |      | А       |      |      | D    |      |              |     |     |  |
| Timer                     | 1       | 2          | 3            | 4    | 5       | 6    | 7    | 8    |      |              |     |     |  |
| Assigned Phs              |         | 2          |              | 4    |         |      | 7    | 8    |      |              |     |     |  |
| Phs Duration (G+Y+Rc)     | ), s    | 25.9       |              | 64.1 |         |      | 10.3 | 53.8 |      |              |     |     |  |
| Change Period (Y+Rc),     | S       | 5.1        |              | 5.1  |         |      | 4.5  | 5.1  |      |              |     |     |  |
| Max Green Setting (Gm     | nax), s | 24.9       |              | 54.9 |         |      | 9.5  | 40.9 |      |              |     |     |  |
| Max Q Clear Time (g_c     | +l1), s | 20.2       |              | 14.6 |         |      | 6.5  | 2.0  |      |              |     |     |  |
| Green Ext Time (p_c), s   | 5       | 0.7        |              | 18.5 |         |      | 0.0  | 18.2 |      |              |     |     |  |
| Intersection Summary      |         |            |              |      |         |      |      |      |      |              |     |     |  |
| HCM 2010 Ctrl Delay       |         |            | 13.9         |      |         |      |      |      |      |              |     |     |  |
| HCM 2010 LOS              |         |            | В            |      |         |      |      |      |      |              |     |     |  |
|                           |         |            |              |      |         |      |      |      |      |              |     |     |  |

|                                       | ۶            | -             | $\mathbf{r}$ | 4        | +           | *      | 1          | 1         | 1    | 1      | ţ         | ∢_     |  |
|---------------------------------------|--------------|---------------|--------------|----------|-------------|--------|------------|-----------|------|--------|-----------|--------|--|
| Movement                              | EBL          | EBT           | EBR          | WBL      | WBT         | WBR    | NBL        | NBT       | NBR  | SBL    | SBT       | SBR    |  |
| Lane Configurations                   | ٦            | _ <b>≜</b> †≱ |              | 5        | <b>≜</b> †₽ |        |            | 4         |      |        | 4         |        |  |
| Traffic Volume (veh/h)                | 0            | 1225          | 45           | 10       | 1130        | 0      | 30         | 0         | 15   | 0      | 0         | 0      |  |
| Future Volume (veh/h)                 | 0            | 1225          | 45           | 10       | 1130        | 0      | 30         | 0         | 15   | 0      | 0         | 0      |  |
| Number                                | 5            | 2             | 12           | 1        | 6           | 16     | 3          | 8         | 18   | 7      | 4         | 14     |  |
| Initial Q (Qb), veh                   | 0            | 0             | 0            | 0        | 0           | 0      | 0          | 0         | 0    | 0      | 0         | 0      |  |
| Ped-Bike Adj(A_pbT)                   | 1.00         | Ū             | 1.00         | 1.00     | ·           | 1.00   | 1.00       | Ū         | 1.00 | 1.00   | ·         | 1.00   |  |
| Parking Bus, Adj                      | 1.00         | 1.00          | 1.00         | 1.00     | 1.00        | 1.00   | 1.00       | 1.00      | 1.00 | 1.00   | 1.00      | 1.00   |  |
| <b>v</b> ,                            | 1845         | 1845          | 1900         | 1845     | 1845        | 1900   | 1900       | 1845      | 1900 | 1900   | 1845      | 1900   |  |
| Adj Flow Rate, veh/h                  | 0            | 1289          | 47           | 11       | 1189        | 0      | 32         | 0         | 16   | 0      | 0         | 0      |  |
| Adj No. of Lanes                      | 1            | 2             | 0            | 1        | 2           | 0      | 0          | 1         | 0    | 0      | 1         | 0      |  |
|                                       | 0.95         | 0.95          | 0.95         | 0.95     | 0.95        | 0.95   | 0.95       | 0.95      | 0.95 | 0.95   | 0.95      | 0.95   |  |
| Percent Heavy Veh, %                  | 0.95         | 0.95          | 0.95         | 0.95     | 0.95        | 0.95   | 0.95       | 0.95      | 0.95 | 0.95   | 0.95      | 0.95   |  |
|                                       | 3<br>2       | د<br>1421     | 52           | د<br>687 | 3014        | 0<br>0 | 3<br>44    | 0<br>0    | 22   | 0<br>0 | 2         | 3<br>0 |  |
| Cap, veh/h                            | 0.00         | 0.82          | 52<br>0.82   | 0.39     | 0.86        | 0.00   | 44<br>0.04 | 0.00      | 0.04 | 0.00   | 2<br>0.00 | 0.00   |  |
|                                       |              |               |              |          |             |        |            |           |      |        |           |        |  |
| · · · · · · · · · · · · · · · · · · · | 1757         | 3449          | 126          | 1757     | 3597        | 0      | 1126       | 0         | 563  | 0      | 1845      | 0      |  |
| Grp Volume(v), veh/h                  | 0            | 654           | 682          | 11       | 1189        | 0      | 48         | 0         | 0    | 0      | 0         | 0      |  |
| Grp Sat Flow(s),veh/h/ln              |              | 1752          | 1822         | 1757     | 1752        | 0      | 1689       | 0         | 0    | 0      | 1845      | 0      |  |
| Q Serve(g_s), s                       | 0.0          | 23.3          | 23.5         | 0.3      | 6.5         | 0.0    | 2.5        | 0.0       | 0.0  | 0.0    | 0.0       | 0.0    |  |
| Cycle Q Clear(g_c), s                 | 0.0          | 23.3          | 23.5         | 0.3      | 6.5         | 0.0    | 2.5        | 0.0       | 0.0  | 0.0    | 0.0       | 0.0    |  |
| Prop In Lane                          | 1.00         |               | 0.07         | 1.00     |             | 0.00   | 0.67       |           | 0.33 | 0.00   |           | 0.00   |  |
| Lane Grp Cap(c), veh/h                | 2            | 722           | 751          | 687      | 3014        | 0      | 66         | 0         | 0    | 0      | 2         | 0      |  |
| V/C Ratio(X)                          | 0.00         | 0.91          | 0.91         | 0.02     | 0.39        | 0.00   | 0.73       | 0.00      | 0.00 | 0.00   | 0.00      | 0.00   |  |
| Avail Cap(c_a), veh/h                 | 98           | 1079          | 1122         | 687      | 3014        | 0      | 103        | 0         | 0    | 0      | 102       | 0      |  |
| HCM Platoon Ratio                     | 2.00         | 2.00          | 2.00         | 1.00     | 1.00        | 1.00   | 1.00       | 1.00      | 1.00 | 1.00   | 1.00      | 1.00   |  |
| Upstream Filter(I)                    | 0.00         | 0.85          | 0.85         | 0.54     | 0.54        | 0.00   | 1.00       | 0.00      | 0.00 | 0.00   | 0.00      | 0.00   |  |
| Uniform Delay (d), s/veh              | 0.0          | 6.7           | 6.7          | 16.8     | 1.3         | 0.0    | 42.8       | 0.0       | 0.0  | 0.0    | 0.0       | 0.0    |  |
| Incr Delay (d2), s/veh                | 0.0          | 15.1          | 14.8         | 0.0      | 0.2         | 0.0    | 14.5       | 0.0       | 0.0  | 0.0    | 0.0       | 0.0    |  |
| Initial Q Delay(d3),s/veh             | 0.0          | 0.0           | 0.0          | 0.0      | 0.0         | 0.0    | 0.0        | 0.0       | 0.0  | 0.0    | 0.0       | 0.0    |  |
| %ile BackOfQ(50%),veh                 |              | 13.2          | 13.7         | 0.2      | 3.1         | 0.0    | 1.5        | 0.0       | 0.0  | 0.0    | 0.0       | 0.0    |  |
| LnGrp Delay(d),s/veh                  | 0.0          | 21.8          | 21.5         | 16.8     | 1.5         | 0.0    | 57.3       | 0.0       | 0.0  | 0.0    | 0.0       | 0.0    |  |
| LnGrp LOS                             |              | C             | C            | B        | A           |        | E          |           |      |        |           |        |  |
| Approach Vol, veh/h                   |              | 1336          | <u> </u>     |          | 1200        |        |            | 48        |      |        | 0         |        |  |
| Approach Delay, s/veh                 |              | 21.6          |              |          | 1200        |        |            | 57.3      |      |        | 0.0       |        |  |
|                                       |              | 21.0<br>C     |              |          | A           |        |            | 57.5<br>E |      |        | 0.0       |        |  |
| Approach LOS                          |              | U             |              |          | A           |        |            |           |      |        |           |        |  |
| Timer                                 | 1            | 2             | 3            | 4        | 5           | 6      | 7          | 8         |      |        |           |        |  |
| Assigned Phs                          | 1            | 2             |              | 4        | 5           | 6      |            | 8         |      |        |           |        |  |
| Phs Duration (G+Y+Rc),                | <b>3</b> 9.8 | 42.2          |              | 0.0      | 0.0         | 82.0   |            | 8.0       |      |        |           |        |  |
| Change Period (Y+Rc),                 |              | 5.1           |              | 4.5      | 4.5         | * 4.6  |            | 4.5       |      |        |           |        |  |
| Max Green Setting (Gma                |              | 55.4          |              | 5.0      | 5.0         | * 57   |            | 5.5       |      |        |           |        |  |
| Max Q Clear Time (g_c+                |              | 25.5          |              | 0.0      | 0.0         | 8.5    |            | 4.5       |      |        |           |        |  |
| Green Ext Time (p_c), s               |              | 11.6          |              | 0.0      | 0.0         | 12.2   |            | 0.0       |      |        |           |        |  |
| Intersection Summary                  |              |               |              |          |             |        |            |           |      |        |           |        |  |
| HCM 2010 Ctrl Delay                   |              |               | 13.0         |          |             |        |            |           |      |        |           |        |  |
| HCM 2010 LOS                          |              |               | B            |          |             |        |            |           |      |        |           |        |  |
|                                       |              |               | -            |          |             |        |            |           |      |        |           |        |  |
| Notes                                 |              |               |              |          |             |        |            |           |      |        |           |        |  |

|                           | ۶      | -         | $\mathbf{F}$  | •            | +           | ٠           | 1           | Ť           | 1    | 1    | ŧ          | ∢_   |  |
|---------------------------|--------|-----------|---------------|--------------|-------------|-------------|-------------|-------------|------|------|------------|------|--|
| Movement                  | EBL    | EBT       | EBR           | WBL          | WBT         | WBR         | NBL         | NBT         | NBR  | SBL  | SBT        | SBR  |  |
| Lane Configurations       | ኘኘ     | ↑         | 1             | ۲.           | <b>↑</b>    | 1           | ሻሻ          | <b>∱</b> î≽ |      | ۲.   | <b>†</b> † | 1    |  |
| Traffic Volume (veh/h)    | 495    | 215       | 535           | 5            | 140         | 145         | 385         | 335         | 15   | 170  | 425        | 615  |  |
| Future Volume (veh/h)     | 495    | 215       | 535           | 5            | 140         | 145         | 385         | 335         | 15   | 170  | 425        | 615  |  |
| Number                    | 7      | 4         | 14            | 3            | 8           | 18          | 5           | 2           | 12   | 1    | 6          | 16   |  |
| Initial Q (Qb), veh       | 0      | 0         | 0             | 0            | 0           | 0           | 0           | 0           | 0    | 0    | 0          | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00   |           | 1.00          | 1.00         |             | 1.00        | 1.00        |             | 1.00 | 1.00 |            | 1.00 |  |
| Parking Bus, Adj          | 1.00   | 1.00      | 1.00          | 1.00         | 1.00        | 1.00        | 1.00        | 1.00        | 1.00 | 1.00 | 1.00       | 1.00 |  |
| Adj Sat Flow, veh/h/ln    | 1845   | 1845      | 1845          | 1845         | 1845        | 1845        | 1845        | 1845        | 1900 | 1845 | 1845       | 1845 |  |
| Adj Flow Rate, veh/h      | 500    | 217       | 540           | 5            | 141         | 146         | 389         | 338         | 15   | 172  | 429        | 621  |  |
| Adj No. of Lanes          | 2      | 1         | 1             | 1            | 1           | 1           | 2           | 2           | 0    | 1    | 2          | 1    |  |
| Peak Hour Factor          | 0.99   | 0.99      | 0.99          | 0.99         | 0.99        | 0.99        | 0.99        | 0.99        | 0.99 | 0.99 | 0.99       | 0.99 |  |
| Percent Heavy Veh, %      | 3      | 3         | 3             | 3            | 3           | 3           | 3           | 3           | 3    | 3    | 3          | 3    |  |
| Cap, veh/h                | 865    | 548       | 695           | 125          | 212         | 180         | 498         | 868         | 38   | 214  | 804        | 757  |  |
| Arrive On Green           | 0.25   | 0.30      | 0.30          | 0.07         | 0.11        | 0.11        | 0.15        | 0.25        | 0.25 | 0.12 | 0.23       | 0.23 |  |
| Sat Flow, veh/h           | 3408   | 1845      | 1568          | 1757         | 1845        | 1568        | 3408        | 3419        | 151  | 1757 | 3505       | 1568 |  |
| Grp Volume(v), veh/h      | 500    | 217       | 540           | 5            | 141         | 146         | 389         | 173         | 180  | 172  | 429        | 621  |  |
| Grp Sat Flow(s), veh/h/lr |        | 1845      | 1568          | 1757         | 1845        | 1568        | 1704        | 1752        | 1818 | 1757 | 1752       | 1568 |  |
| Q Serve(g_s), s           | 9.0    | 6.6       | 20.6          | 0.2          | 5.2         | 4.6         | 7.7         | 5.7         | 5.8  | 6.7  | 7.6        | 9.7  |  |
| Cycle Q Clear(g_c), s     | 9.0    | 6.6       | 20.6          | 0.2          | 5.2         | 4.6         | 7.7         | 5.7         | 5.8  | 6.7  | 7.6        | 9.7  |  |
| Prop In Lane              | 1.00   | 0.0       | 1.00          | 1.00         | •           | 1.00        | 1.00        | •           | 0.08 | 1.00 |            | 1.00 |  |
| Lane Grp Cap(c), veh/h    |        | 548       | 695           | 125          | 212         | 180         | 498         | 445         | 462  | 214  | 804        | 757  |  |
| V/C Ratio(X)              | 0.58   | 0.40      | 0.78          | 0.04         | 0.67        | 0.81        | 0.78        | 0.39        | 0.39 | 0.81 | 0.53       | 0.82 |  |
| Avail Cap(c_a), veh/h     | 1013   | 548       | 695           | 450          | 472         | 401         | 659         | 511         | 530  | 315  | 972        | 833  |  |
| HCM Platoon Ratio         | 1.00   | 1.00      | 1.00          | 1.00         | 1.00        | 1.00        | 1.00        | 1.00        | 1.00 | 1.00 | 1.00       | 1.00 |  |
| Upstream Filter(I)        | 1.00   | 1.00      | 1.00          | 1.00         | 1.00        | 1.00        | 1.00        | 1.00        | 1.00 | 1.00 | 1.00       | 1.00 |  |
| Uniform Delay (d), s/veł  |        | 19.7      | 16.6          | 30.4         | 29.8        | 15.7        | 28.9        | 21.7        | 21.7 | 30.1 | 23.8       | 4.4  |  |
| Incr Delay (d2), s/veh    | 0.6    | 0.5       | 5.5           | 0.1          | 3.6         | 8.5         | 4.4         | 0.6         | 0.5  | 9.1  | 0.6        | 6.1  |  |
| Initial Q Delay(d3),s/veh |        | 0.0       | 0.0           | 0.0          | 0.0         | 0.0         | 0.0         | 0.0         | 0.0  | 0.0  | 0.0        | 0.0  |  |
| %ile BackOfQ(50%),vel     |        | 3.4       | 9.9           | 0.1          | 2.8         | 2.9         | 3.9         | 2.9         | 3.0  | 3.8  | 3.7        | 5.4  |  |
| LnGrp Delay(d),s/veh      | 23.6   | 20.1      | 22.1          | 30.5         | 33.4        | 24.1        | 33.3        | 22.3        | 22.3 | 39.2 | 24.3       | 10.5 |  |
| LnGrp LOS                 | С      | С         | С             | С            | С           | С           | С           | С           | С    | D    | С          | В    |  |
| Approach Vol, veh/h       |        | 1257      |               |              | 292         |             |             | 742         |      |      | 1222       |      |  |
| Approach Delay, s/veh     |        | 22.4      |               |              | 28.7        |             |             | 28.1        |      |      | 19.4       |      |  |
| Approach LOS              |        | 22.4<br>C |               |              | C           |             |             | C           |      |      | B          |      |  |
|                           | 4      |           | 2             | 4            |             | C           | 7           |             |      |      |            |      |  |
| Timer<br>Assigned Phs     | 1      | 2         | <u>3</u><br>3 | 4            | 5<br>5      | 6<br>6      | 7           | 8<br>8      |      |      |            |      |  |
| Phs Duration (G+Y+Rc)     | 1 43 0 | 2<br>22.3 | 3<br>9.5      | 4<br>25.4    | с<br>14.8   | 0<br>20.6   | 22.3        | o<br>12.6   |      |      |            |      |  |
|                           |        | 4.5       | 9.5<br>4.5    |              | 4.5         | 20.6<br>4.5 | 22.3<br>4.5 | 4.5         |      |      |            |      |  |
| Change Period (Y+Rc),     |        |           |               | 4.5          |             |             | 4.5<br>20.9 |             |      |      |            |      |  |
| Max Green Setting (Gm     |        | 20.5      | 18.0<br>2.2   | 20.9<br>22.6 | 13.6<br>9.7 | 19.5        | 20.9        | 18.0<br>7.2 |      |      |            |      |  |
| Max Q Clear Time (g_c     |        | 7.8       |               |              |             | 11.7        |             |             |      |      |            |      |  |
| Green Ext Time (p_c), s   | 5 U.Z  | 6.1       | 0.0           | 0.0          | 0.5         | 4.4         | 4.0         | 0.9         |      |      |            |      |  |
| Intersection Summary      |        |           | 06.4          |              |             |             |             |             |      |      |            |      |  |
| HCM 2010 Ctrl Delay       |        |           | 23.1          |              |             |             |             |             |      |      |            |      |  |
| HCM 2010 LOS              |        |           | С             |              |             |             |             |             |      |      |            |      |  |

### Intersection: 1: US 101 SB On/US 101 NB Off & Kenmar Road

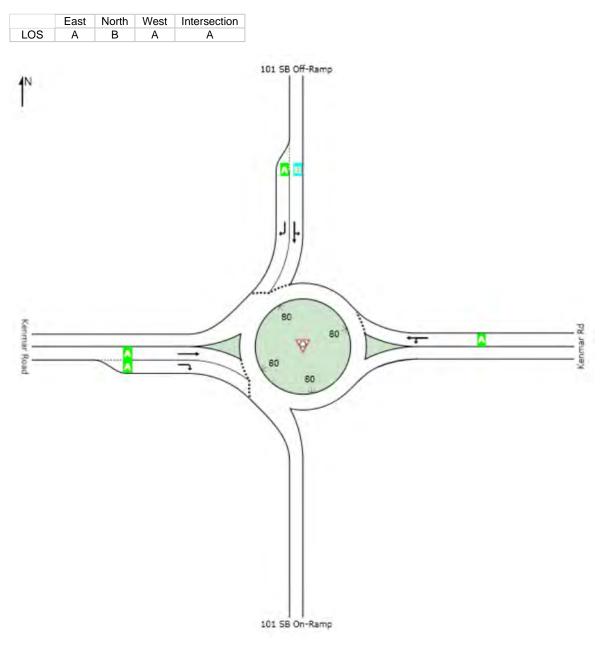
| Movement              | EB  | WB  | WB  | WB  | SB  | SB  |
|-----------------------|-----|-----|-----|-----|-----|-----|
| wovernent             | ED  | VVD | VVD | VVD | 30  | SD  |
| Directions Served     | TR  | L   | L   | Т   | L   | LTR |
| Maximum Queue (ft)    | 342 | 140 | 225 | 220 | 273 | 296 |
| Average Queue (ft)    | 275 | 87  | 111 | 103 | 173 | 170 |
| 95th Queue (ft)       | 373 | 155 | 187 | 199 | 261 | 259 |
| Link Distance (ft)    | 303 |     | 214 | 214 |     | 446 |
| Upstream Blk Time (%) | 18  |     | 1   | 0   |     |     |
| Queuing Penalty (veh) | 0   |     | 3   | 1   |     |     |
| Storage Bay Dist (ft) |     | 80  |     |     | 275 |     |
| Storage Blk Time (%)  |     | 4   | 16  |     | 0   | 0   |
| Queuing Penalty (veh) |     | 9   | 32  |     | 0   | 1   |

### Intersection: 2: US 101 NB Off/US 101 NB One & Kenmar Road/Kenmar Drive

| Movement              | EB  | EB  | EB  | WB  | WB  | WB  | NB  | NB  |
|-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Directions Served     | L   | Т   | Т   | Т   | Т   | R   | LT  | R   |
| Maximum Queue (ft)    | 123 | 220 | 209 | 193 | 196 | 105 | 102 | 226 |
| Average Queue (ft)    | 51  | 90  | 79  | 86  | 72  | 6   | 31  | 83  |
| 95th Queue (ft)       | 103 | 188 | 160 | 173 | 149 | 64  | 76  | 163 |
| Link Distance (ft)    |     | 214 | 214 | 236 | 236 |     | 289 |     |
| Upstream Blk Time (%) |     | 1   | 0   |     | 0   |     |     |     |
| Queuing Penalty (veh) |     | 3   | 0   |     | 0   |     |     |     |
| Storage Bay Dist (ft) | 75  |     |     |     |     | 150 |     | 150 |
| Storage Blk Time (%)  | 3   | 5   |     |     | 1   | 0   |     | 2   |
| Queuing Penalty (veh) | 14  | 4   |     |     | 3   | 1   |     | 1   |

### Intersection: 3: Atterberry lane/Eel River Drive & Kenmar Drive

| NA                    |     |     |    |     |     | ND  |
|-----------------------|-----|-----|----|-----|-----|-----|
| Movement              | EB  | EB  | WB | WB  | WB  | NB  |
| Directions Served     | Т   | TR  | L  | Т   | TR  | LTR |
| Maximum Queue (ft)    | 240 | 223 | 36 | 73  | 165 | 64  |
| Average Queue (ft)    | 51  | 39  | 7  | 22  | 49  | 29  |
| 95th Queue (ft)       | 149 | 130 | 24 | 64  | 129 | 60  |
| Link Distance (ft)    | 236 | 236 |    | 498 | 498 | 322 |
| Upstream Blk Time (%) | 0   | 0   |    |     |     |     |
| Queuing Penalty (veh) | 2   | 1   |    |     |     |     |
| Storage Bay Dist (ft) |     |     | 75 |     |     |     |
| Storage Blk Time (%)  | 1   |     |    | 0   |     |     |
| Queuing Penalty (veh) | 0   |     |    | 0   |     |     |


# **Cumulative Roundabout Alternative**

## LEVEL OF SERVICE

# 😵 Site: Kenmar Road/ SB Ramps

Kenmar Road Interchange Roundabout Concept - Option 1a, 1b, & 2 Cumulative AM Roundabout

#### **All Movement Classes**



Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

### LANE SUMMARY

# 😵 Site: Kenmar Road/ SB Ramps

Kenmar Road Interchange Roundabout Concept - Option 1a, 1b, & 2 Cumulative AM Roundabout

| Lane Use a          | nd Perforr        | nance       | <b>;</b> |              |               |                  |                     |                   |                 |                |                |              |                 |
|---------------------|-------------------|-------------|----------|--------------|---------------|------------------|---------------------|-------------------|-----------------|----------------|----------------|--------------|-----------------|
|                     | Demand F<br>Total | Flows<br>HV | Cap.     | Deg.<br>Satn | Lane<br>Util. | Average<br>Delay | Level of<br>Service | 95% Back o<br>Veh | f Queue<br>Dist | Lane<br>Config | Lane<br>Length | Cap.<br>Adj. | Prob.<br>Block. |
|                     | veh/h             | %           | veh/h    | v/c          | %             | sec              |                     |                   | ft              |                | ft             | %            | %               |
| East: Kenma         | r Rd              |             |          |              |               |                  |                     |                   |                 |                |                |              |                 |
| Lane 1 <sup>d</sup> | 500               | 3.0         | 1377     | 0.363        | 100           | 6.9              | LOS A               | 0.0               | 0.0             | Full           | 1600           | 0.0          | 0.0             |
| Approach            | 500               | 3.0         |          | 0.363        |               | 6.9              | LOS A               | 0.0               | 0.0             |                |                |              |                 |
| North: 101 S        | B Off-Ramp        |             |          |              |               |                  |                     |                   |                 |                |                |              |                 |
| Lane 1 <sup>d</sup> | 326               | 3.0         | 1196     | 0.273        | 100           | 11.7             | LOS B               | 1.6               | 40.9            | Full           | 1600           | 0.0          | 0.0             |
| Lane 2              | 37                | 3.0         | 786      | 0.047        | 100           | 7.4              | LOS A               | 0.2               | 5.5             | Short          | 200            | 0.0          | NA              |
| Approach            | 363               | 3.0         |          | 0.273        |               | 11.2             | LOS B               | 1.6               | 40.9            |                |                |              |                 |
| West: Kenma         | ar Road           |             |          |              |               |                  |                     |                   |                 |                |                |              |                 |
| Lane 1 <sup>d</sup> | 158               | 3.0         | 1073     | 0.147        | 100           | 6.7              | LOS A               | 0.9               | 22.9            | Full           | 1600           | 0.0          | 0.0             |
| Lane 2              | 42                | 3.0         | 719      | 0.059        | 100           | 7.9              | LOS A               | 0.3               | 7.6             | Short          | 200            | 0.0          | NA              |
| Approach            | 200               | 3.0         |          | 0.147        |               | 7.0              | LOS A               | 0.9               | 22.9            |                |                |              |                 |
| Intersection        | 1063              | 3.0         |          | 0.363        |               | 8.4              | LOS A               | 1.6               | 40.9            |                |                |              |                 |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

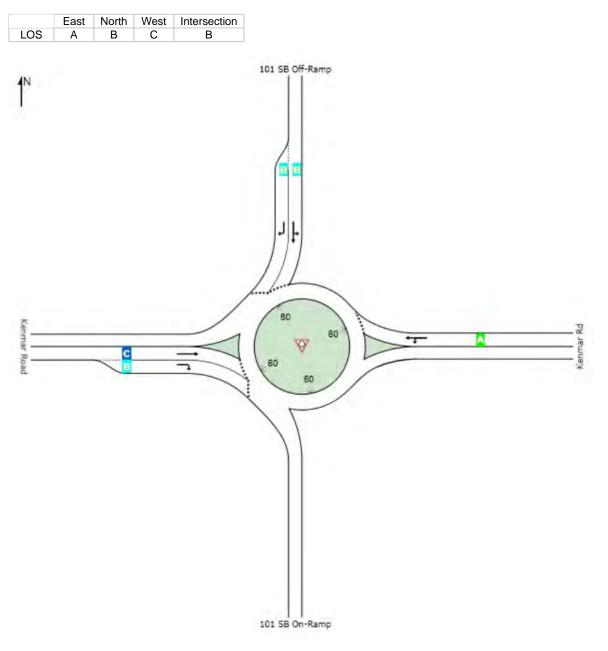
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach


SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:01:04 PM Project: O:\PRJ\2132\Sidra\Kenmar.sip6

# LEVEL OF SERVICE

# 😵 Site: Kenmar Road/SB Ramps PM

Kenmar Road Interchange Roundabout Concept - Option 1a & 1b Cumulative PM Roundabout

#### **All Movement Classes**



Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

### LANE SUMMARY

# 🕅 Site: Kenmar Road/SB Ramps PM

Kenmar Road Interchange Roundabout Concept - Option 1a & 1b Cumulative PM Roundabout

| Lane Use a          | Lane Use and Performance |     |       |             |            |         |          |            |       |        |        |           |        |  |
|---------------------|--------------------------|-----|-------|-------------|------------|---------|----------|------------|-------|--------|--------|-----------|--------|--|
|                     | Demand F                 |     | 0     | Deg.        | Lane       | Average | Level of | 95% Back o |       | Lane   | Lane   | Cap.      | Prob.  |  |
|                     | Total<br>veh/h           | HV  | Cap.  | Satn<br>v/c | Util.<br>% | Delay   | Service  | Veh        | Dist  | Config | Length | Adj.<br>% | Block. |  |
| East: Kenma         |                          | %   | veh/h | V/C         | 70         | Sec     | _        |            | ft    | _      | ft     | 70        | %      |  |
| Lane 1 <sup>d</sup> | 800                      | 3.0 | 1377  | 0.581       | 100        | 7.1     | LOS A    | 0.0        | 0.0   | Full   | 1600   | 0.0       | 0.0    |  |
| Approach            | 800                      | 3.0 |       | 0.581       |            | 7.1     | LOS A    | 0.0        | 0.0   |        |        |           |        |  |
| North: 101 St       | B Off-Ramp               |     |       |             |            |         |          |            |       |        |        |           |        |  |
| Lane 1 <sup>d</sup> | 627                      | 3.0 | 985   | 0.637       | 100        | 19.0    | LOS B    | 7.3        | 187.2 | Full   | 1600   | 0.0       | 0.0    |  |
| Lane 2              | 79                       | 3.0 | 661   | 0.119       | 100        | 10.2    | LOS B    | 0.6        | 16.0  | Short  | 200    | 0.0       | NA     |  |
| Approach            | 706                      | 3.0 |       | 0.637       |            | 18.0    | LOS B    | 7.3        | 187.2 |        |        |           |        |  |
| West: Kenma         | ar Road                  |     |       |             |            |         |          |            |       |        |        |           |        |  |
| Lane 1 <sup>d</sup> | 474                      | 3.0 | 607   | 0.781       | 100        | 31.0    | LOS C    | 12.7       | 324.1 | Full   | 1600   | 0.0       | 0.0    |  |
| Lane 2              | 58                       | 3.0 | 422   | 0.137       | 100        | 14.0    | LOS B    | 0.9        | 23.0  | Short  | 200    | 0.0       | NA     |  |
| Approach            | 532                      | 3.0 |       | 0.781       |            | 29.2    | LOS C    | 12.7       | 324.1 |        |        |           |        |  |
| Intersection        | 2038                     | 3.0 |       | 0.781       |            | 16.6    | LOS B    | 12.7       | 324.1 |        |        |           |        |  |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

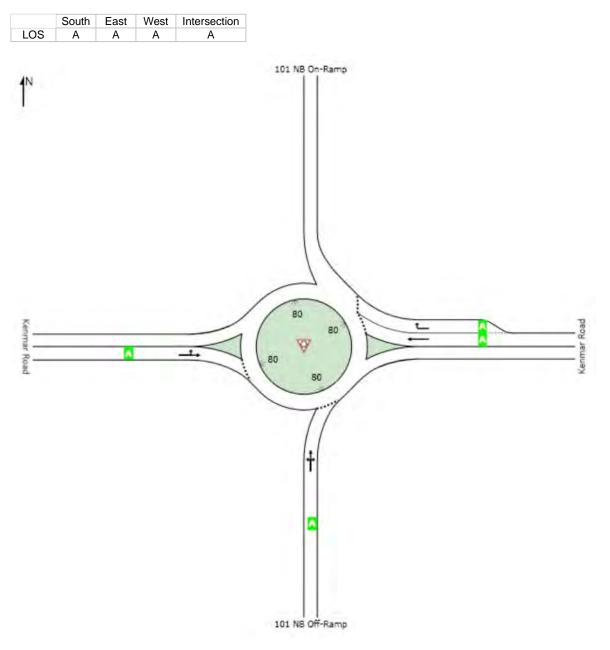
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach


SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:04:10 PM Project: O:\PRJ\2132\Sidra\Kenmar.sip6

## LEVEL OF SERVICE

# 🕅 Site: Kenmar Road/ NB Ramps

Kenmar Road Interchange Roundabout Concept - Option 1a & 1b Cumulative AM Roundabout

#### **All Movement Classes**



Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

### LANE SUMMARY

# Site: Kenmar Road/ NB Ramps

Kenmar Road Interchange Roundabout Concept - Option 1a & 1b Cumulative AM Roundabout

| Lane Use and Performance |                            |                  |               |                     |                    |                         |                     |                   |                       |                |                      |                   |                      |
|--------------------------|----------------------------|------------------|---------------|---------------------|--------------------|-------------------------|---------------------|-------------------|-----------------------|----------------|----------------------|-------------------|----------------------|
|                          | Demand F<br>Total<br>veh/h | Flows<br>HV<br>% | Cap.<br>veh/h | Deg.<br>Satn<br>v/c | Lane<br>Util.<br>% | Average<br>Delay<br>sec | Level of<br>Service | 95% Back o<br>Veh | f Queue<br>Dist<br>ft | Lane<br>Config | Lane<br>Length<br>ft | Cap.<br>Adj.<br>% | Prob.<br>Block.<br>% |
| South: 101 NB Off-Ramp   |                            |                  |               |                     |                    |                         |                     |                   |                       |                |                      |                   |                      |
| Lane 1 <sup>d</sup>      | 330                        | 3.0              | 952           | 0.346               | 100                | 8.1                     | LOS A               | 2.0               | 51.6                  | Full           | 1600                 | 0.0               | 0.0                  |
| Approach                 | 330                        | 3.0              |               | 0.346               |                    | 8.1                     | LOS A               | 2.0               | 51.6                  |                |                      |                   |                      |
| East: Kenmar Road        |                            |                  |               |                     |                    |                         |                     |                   |                       |                |                      |                   |                      |
| Lane 1                   | 489                        | 3.0              | 1276          | 0.383               | 100                | 4.8                     | LOS A               | 2.6               | 66.4                  | Full           | 1600                 | 0.0               | 0.0                  |
| Lane 2 <sup>d</sup>      | 750                        | 3.0              | 1506          | 0.498               | 100                | 4.9                     | LOS A               | 4.0               | 102.4                 | Short          | 200                  | 0.0               | NA                   |
| Approach                 | 1239                       | 3.0              |               | 0.498               |                    | 4.8                     | LOS A               | 4.0               | 102.4                 |                |                      |                   |                      |
| West: Kenmar Road        |                            |                  |               |                     |                    |                         |                     |                   |                       |                |                      |                   |                      |
| Lane 1 <sup>d</sup>      | 511                        | 3.0              | 1377          | 0.371               | 100                | 4.6                     | LOS A               | 0.0               | 0.0                   | Full           | 1600                 | 0.0               | 0.0                  |
| Approach                 | 511                        | 3.0              |               | 0.371               |                    | 4.6                     | LOS A               | 0.0               | 0.0                   |                |                      |                   |                      |
| Intersection             | 2080                       | 3.0              |               | 0.498               |                    | 5.3                     | LOS A               | 4.0               | 102.4                 |                |                      |                   |                      |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

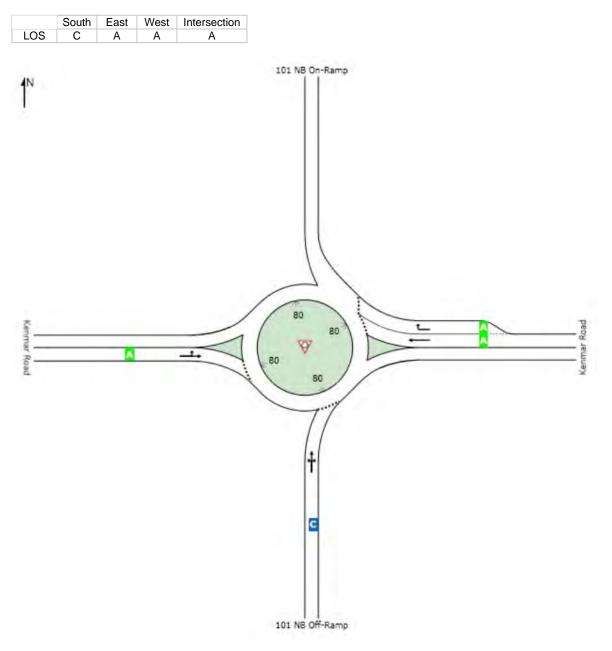
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach


SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:00:00 PM Project: O:\PRJ\2132\T2132\Sidra\Kenmar.sip6

# LEVEL OF SERVICE

# 😵 Site: Kenmar Road/NB Ramps PM

Kenmar Road Interchange Roundabout Concept - Option 1a & 1b Cumulative PM Roundabout

#### **All Movement Classes**



Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

### LANE SUMMARY

# 🕅 Site: Kenmar Road/NB Ramps PM

Kenmar Road Interchange Roundabout Concept - Option 1a & 1b Cumulative PM Roundabout

| Lane Use and Performance |              |     |       |       |       |                  |         |                   |       |        |        |      |        |
|--------------------------|--------------|-----|-------|-------|-------|------------------|---------|-------------------|-------|--------|--------|------|--------|
|                          | Demand Flows |     | Deg.  |       | Lane  | Average Level of |         | 95% Back of Queue |       | Lane   | Lane   | Cap. | Prob.  |
|                          | Total        | ΗV  | Cap.  | Satn  | Util. | Delay            | Service | Veh               | Dist  | Config | Length | Adj. | Block. |
|                          | veh/h        | %   | veh/h | v/c   | %     | sec              |         |                   | ft    |        | ft     | %    | %      |
| South: 101 NB Off-Ramp   |              |     |       |       |       |                  |         |                   |       |        |        |      |        |
| Lane 1 <sup>d</sup>      | 380          | 3.0 | 569   | 0.668 | 100   | 28.8             | LOS C   | 8.0               | 204.8 | Full   | 1600   | 0.0  | 0.0    |
| Approach                 | 380          | 3.0 |       | 0.668 |       | 28.8             | LOS C   | 8.0               | 204.8 |        |        |      |        |
| East: Kenmar Road        |              |     |       |       |       |                  |         |                   |       |        |        |      |        |
| Lane 1 <sup>d</sup>      | 742          | 3.0 | 1445  | 0.514 | 100   | 5.1              | LOS A   | 4.1               | 104.5 | Full   | 1600   | 0.0  | 0.0    |
| Lane 2                   | 479          | 3.0 | 1210  | 0.396 | 100   | 5.3              | LOS A   | 2.7               | 67.8  | Short  | 200    | 0.0  | NA     |
| Approach                 | 1221         | 3.0 |       | 0.514 |       | 5.2              | LOS A   | 4.1               | 104.5 |        |        |      |        |
| West: Kenmar Road        |              |     |       |       |       |                  |         |                   |       |        |        |      |        |
| Lane 1 <sup>d</sup>      | 1100         | 3.0 | 1377  | 0.799 | 100   | 4.7              | LOS A   | 0.0               | 0.0   | Full   | 1600   | 0.0  | 0.0    |
| Approach                 | 1100         | 3.0 |       | 0.799 |       | 4.7              | LOS A   | 0.0               | 0.0   |        |        |      |        |
| Intersection             | 2701         | 3.0 |       | 0.799 |       | 8.3              | LOS A   | 8.0               | 204.8 |        |        |      |        |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

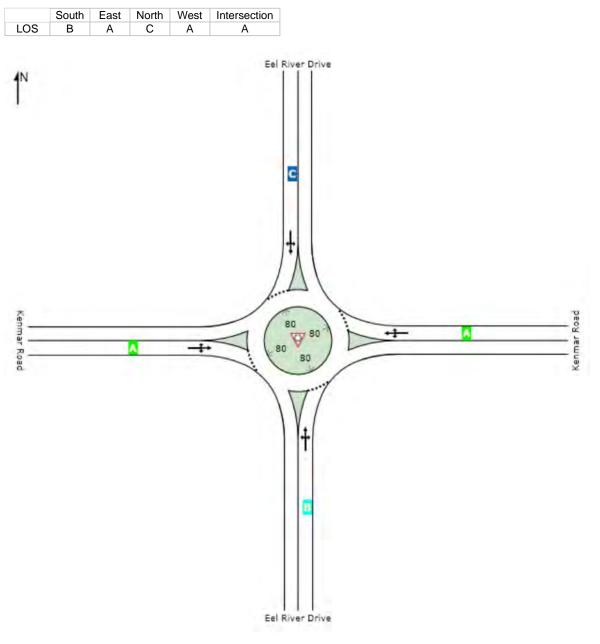
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach


SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:08:03 PM Project: O:\PRJ\2132\T2132\Sidra\Kenmar.sip6

# LEVEL OF SERVICE

# Site: Kenmar Road/Eel River Drive AM

Kenmar Road Interchange Roundabout Concept - Option 1a Cumulative AM Roundabout

#### **All Movement Classes**



Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

### LANE SUMMARY

## 😵 Site: Kenmar Road/Eel River Drive AM

Kenmar Road Interchange Roundabout Concept - Option 1a Cumulative AM Roundabout

| Lane Use an         | d Perfor                   | nance            | ;             |                     |                    |                         |                     |                   |                       |                |                      |                   |                      |
|---------------------|----------------------------|------------------|---------------|---------------------|--------------------|-------------------------|---------------------|-------------------|-----------------------|----------------|----------------------|-------------------|----------------------|
|                     | Demand F<br>Total<br>veh/h | Flows<br>HV<br>% | Cap.<br>veh/h | Deg.<br>Satn<br>v/c | Lane<br>Util.<br>% | Average<br>Delay<br>sec | Level of<br>Service | 95% Back o<br>Veh | f Queue<br>Dist<br>ft | Lane<br>Config | Lane<br>Length<br>ft | Cap.<br>Adj.<br>% | Prob.<br>Block.<br>% |
| South: Eel Riv      | er Drive                   |                  |               |                     |                    |                         |                     |                   |                       |                |                      |                   |                      |
| Lane 1 <sup>d</sup> | 52                         | 3.0              | 763           | 0.069               | 100                | 11.8                    | LOS B               | 0.4               | 9.8                   | Full           | 1600                 | 0.0               | 0.0                  |
| Approach            | 52                         | 3.0              |               | 0.069               |                    | 11.8                    | LOS B               | 0.4               | 9.8                   |                |                      |                   |                      |
| East: Kenmar        | Road                       |                  |               |                     |                    |                         |                     |                   |                       |                |                      |                   |                      |
| Lane 1 <sup>d</sup> | 1223                       | 3.0              | 1324          | 0.924               | 100                | 5.7                     | LOS A               | 33.2              | 848.7                 | Full           | 1600                 | 0.0               | 0.0                  |
| Approach            | 1223                       | 3.0              |               | 0.924               |                    | 5.7                     | LOS A               | 33.2              | 848.7                 |                |                      |                   |                      |
| North: Eel Riv      | er Drive                   |                  |               |                     |                    |                         |                     |                   |                       |                |                      |                   |                      |
| Lane 1 <sup>d</sup> | 3                          | 3.0              | 248           | 0.014               | 100                | 21.6                    | LOS C               | 0.1               | 2.6                   | Full           | 1600                 | 0.0               | 0.0                  |
| Approach            | 3                          | 3.0              |               | 0.014               |                    | 21.6                    | LOS C               | 0.1               | 2.6                   |                |                      |                   |                      |
| West: Kenmar        | Road                       |                  |               |                     |                    |                         |                     |                   |                       |                |                      |                   |                      |
| Lane 1 <sup>d</sup> | 762                        | 3.0              | 1346          | 0.566               | 100                | 4.4                     | LOS A               | 6.2               | 157.9                 | Full           | 1600                 | 0.0               | 0.0                  |
| Approach            | 762                        | 3.0              |               | 0.566               |                    | 4.4                     | LOS A               | 6.2               | 157.9                 |                |                      |                   |                      |
| Intersection        | 2041                       | 3.0              |               | 0.924               |                    | 5.4                     | LOS A               | 33.2              | 848.7                 |                |                      |                   |                      |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

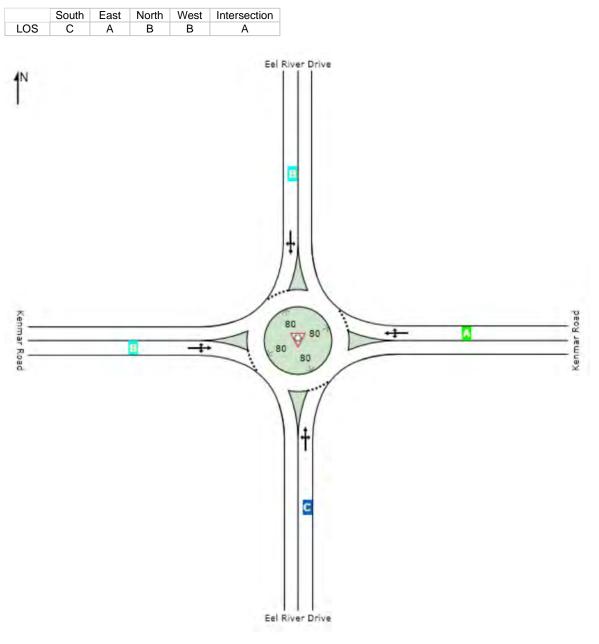
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:02:49 PM


Project: O:\PRJ\2132\T2132\Sidra\Kenmar.sip6

## LEVEL OF SERVICE

## Site: Kenmar Road/Eel River Drive PM

Kenmar Road Interchange Roundabout Concept - Option 1a Cumulative PM Roundabout

#### **All Movement Classes**



Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

### LANE SUMMARY

## 😵 Site: Kenmar Road/Eel River Drive PM

Kenmar Road Interchange Roundabout Concept - Option 1a Cumulative PM Roundabout

| Lane Use ar         | nd Perfor      | nance   | ;             |             |            |              |          |            |            |        |              |           |                   |
|---------------------|----------------|---------|---------------|-------------|------------|--------------|----------|------------|------------|--------|--------------|-----------|-------------------|
|                     | Demand F       |         | 0.00          | Deg.        | Lane       | Average      | Level of | 95% Back c |            | Lane   | Lane         | Cap.      | Prob.             |
|                     | Total<br>veh/h | HV<br>% | Cap.<br>veh/h | Satn<br>v/c | Util.<br>% | Delay<br>sec | Service  | Veh        | Dist<br>ft | Config | Length<br>ft | Adj.<br>% | Block.<br>%       |
| South: Eel Riv      |                | /0      | ven/m         | V/C         | /0         | 360          |          |            | п          |        | 11           | /0        | /0                |
| Lane 1 <sup>d</sup> | 48             | 3.0     | 216           | 0.225       | 100        | 26.8         | LOS C    | 1.8        | 45.0       | Full   | 1600         | 0.0       | 0.0               |
| Approach            | 48             | 3.0     |               | 0.225       |            | 26.8         | LOS C    | 1.8        | 45.0       |        |              |           |                   |
| East: Kenmar        | Road           |         |               |             |            |              |          |            |            |        |              |           |                   |
| Lane 1 <sup>d</sup> | 1201           | 3.0     | 1323          | 0.908       | 100        | 5.4          | LOS A    | 31.4       | 803.7      | Full   | 1600         | 0.0       | 0.0               |
| Approach            | 1201           | 3.0     |               | 0.908       |            | 5.4          | LOS A    | 31.4       | 803.7      |        |              |           |                   |
| North: Eel Riv      | er Drive       |         |               |             |            |              |          |            |            |        |              |           |                   |
| Lane 1 <sup>d</sup> | 3              | 3.0     | 275           | 0.011       | 100        | 19.6         | LOS B    | 0.1        | 2.2        | Full   | 1600         | 0.0       | 0.0               |
| Approach            | 3              | 3.0     |               | 0.011       |            | 19.6         | LOS B    | 0.1        | 2.2        |        |              |           |                   |
| West: Kenma         | r Road         |         |               |             |            |              |          |            |            |        |              |           |                   |
| Lane 1 <sup>d</sup> | 1338           | 3.0     | 1358          | 0.986       | 100        | 10.2         | LOS B    | 148.8      | 3810.3     | Full   | 1600         | 0.0       | <mark>45.4</mark> |
| Approach            | 1338           | 3.0     |               | 0.986       |            | 10.2         | LOS B    | 148.8      | 3810.3     |        |              |           |                   |
| Intersection        | 2591           | 3.0     |               | 0.986       |            | 8.3          | LOS A    | 148.8      | 3810.3     |        |              |           |                   |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

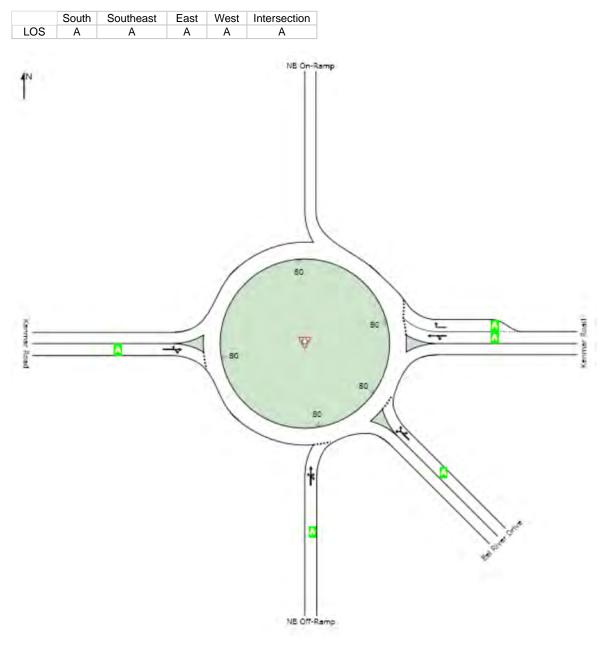
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:06:46 PM


Project: O:\PRJ\2132\T2132\Sidra\Kenmar.sip6

## LEVEL OF SERVICE

## V Site: Kenmar Road/Eel River Drive/NB Ramps AM

Kenmar Road Interchange Roundabout Concept - Option 2 Cumulative AM Roundabout

#### **All Movement Classes**



Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

### LANE SUMMARY

## 😵 Site: Kenmar Road/Eel River Drive/NB Ramps AM

Kenmar Road Interchange Roundabout Concept - Option 2 Cumulative AM Roundabout

| Lane Use a          | nd Perfor                  | nance            | <b>;</b>      |                     |                    |                         |                     |                    |                     |                |                      |                   |                      |
|---------------------|----------------------------|------------------|---------------|---------------------|--------------------|-------------------------|---------------------|--------------------|---------------------|----------------|----------------------|-------------------|----------------------|
|                     | Demand F<br>Total<br>veh/h | Flows<br>HV<br>% | Cap.<br>veh/h | Deg.<br>Satn<br>v/c | Lane<br>Util.<br>% | Average<br>Delay<br>sec | Level of<br>Service | 95% Back of<br>Veh | Queue<br>Dist<br>ft | Lane<br>Config | Lane<br>Length<br>ft | Cap.<br>Adj.<br>% | Prob.<br>Block.<br>% |
| South: NB Of        | ff-Ramp                    |                  |               |                     |                    |                         |                     |                    |                     |                |                      |                   |                      |
| Lane 1 <sup>d</sup> | 305                        | 3.0              | 951           | 0.321               | 100                | 7.8                     | LOS A               | 1.9                | 48.0                | Full           | 1600                 | 0.0               | 0.0                  |
| Approach            | 305                        | 3.0              |               | 0.321               |                    | 7.8                     | LOS A               | 1.9                | 48.0                |                |                      |                   |                      |
| SouthEast: E        | el River Dri               | ve               |               |                     |                    |                         |                     |                    |                     |                |                      |                   |                      |
| Lane 1 <sup>d</sup> | 47                         | 3.0              | 720           | 0.066               | 100                | 9.9                     | LOS A               | 0.4                | 9.8                 | Full           | 1600                 | 0.0               | 0.0                  |
| Approach            | 47                         | 3.0              |               | 0.066               |                    | 9.9                     | LOS A               | 0.4                | 9.8                 |                |                      |                   |                      |
| East: Kenma         | r Road                     |                  |               |                     |                    |                         |                     |                    |                     |                |                      |                   |                      |
| Lane 1              | 468                        | 3.0              | 1258          | 0.372               | 100                | 5.1                     | LOS A               | 2.4                | 61.3                | Full           | 1600                 | 0.0               | 0.0                  |
| Lane 2 <sup>d</sup> | 695                        | 3.0              | 1484          | 0.468               | 100                | 5.0                     | LOS A               | 3.5                | 88.3                | Short          | 200                  | 0.0               | NA                   |
| Approach            | 1163                       | 3.0              |               | 0.468               |                    | 5.0                     | LOS A               | 3.5                | 88.3                |                |                      |                   |                      |
| West: Kenma         | ar Road                    |                  |               |                     |                    |                         |                     |                    |                     |                |                      |                   |                      |
| Lane 1 <sup>d</sup> | 474                        | 3.0              | 1356          | 0.349               | 100                | 4.7                     | LOS A               | 2.3                | 59.8                | Full           | 1600                 | 0.0               | 0.0                  |
| Approach            | 474                        | 3.0              |               | 0.349               |                    | 4.7                     | LOS A               | 2.3                | 59.8                |                |                      |                   |                      |
| Intersection        | 1989                       | 3.0              |               | 0.468               |                    | 5.5                     | LOS A               | 3.5                | 88.3                |                |                      |                   |                      |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

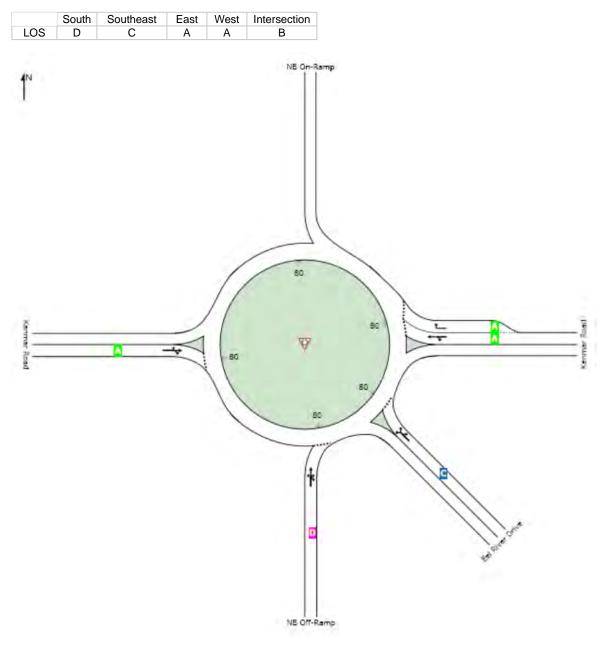
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach


SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:10:28 PM Project: O:\PRJ\2132\T2132\Sidra\Kenmar.sip6

## LEVEL OF SERVICE

## 😵 Site: Kenmar/Eel River Drive/NB Ramps PM

Kenmar Road Interchange Roundabout Concept - Option 2 Cumulative PM Roundabout

#### **All Movement Classes**



Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

### LANE SUMMARY

## V Site: Kenmar/Eel River Drive/NB Ramps PM

Kenmar Road Interchange Roundabout Concept - Option 2 Cumulative PM Roundabout

| Lane Use a          | nd Perform                 | nance            | 9             |                     |                    |                         |                     |                   |                       |                |                      |                   |                      |
|---------------------|----------------------------|------------------|---------------|---------------------|--------------------|-------------------------|---------------------|-------------------|-----------------------|----------------|----------------------|-------------------|----------------------|
|                     | Demand F<br>Total<br>veh/h | Flows<br>HV<br>% | Cap.<br>veh/h | Deg.<br>Satn<br>v/c | Lane<br>Util.<br>% | Average<br>Delay<br>sec | Level of<br>Service | 95% Back o<br>Veh | f Queue<br>Dist<br>ft | Lane<br>Config | Lane<br>Length<br>ft | Cap.<br>Adj.<br>% | Prob.<br>Block.<br>% |
| South: NB O         | ff-Ramp                    |                  |               |                     |                    |                         |                     |                   |                       |                |                      |                   |                      |
| Lane 1 <sup>d</sup> | 380                        | 3.0              | 495           | 0.768               | 100                | 37.3                    | LOS D               | 10.8              | 276.2                 | Full           | 1600                 | 0.0               | 0.0                  |
| Approach            | 380                        | 3.0              |               | 0.768               |                    | 37.3                    | LOS D               | 10.8              | 276.2                 |                |                      |                   |                      |
| SouthEast: E        | el River Dri               | ve               |               |                     |                    |                         |                     |                   |                       |                |                      |                   |                      |
| Lane 1 <sup>d</sup> | 47                         | 3.0              | 250           | 0.189               | 100                | 32.1                    | LOS C               | 1.3               | 33.6                  | Full           | 1600                 | 0.0               | 0.0                  |
| Approach            | 47                         | 3.0              |               | 0.189               |                    | 32.1                    | LOS C               | 1.3               | 33.6                  |                |                      |                   |                      |
| East: Kenma         | r Road                     |                  |               |                     |                    |                         |                     |                   |                       |                |                      |                   |                      |
| Lane 1 <sup>d</sup> | 753                        | 3.0              | 1418          | 0.531               | 100                | 5.4                     | LOS A               | 4.2               | 107.2                 | Full           | 1600                 | 0.0               | 0.0                  |
| Lane 2              | 479                        | 3.0              | 1179          | 0.406               | 100                | 5.5                     | LOS A               | 2.7               | 68.7                  | Short          | 200                  | 0.0               | NA                   |
| Approach            | 1232                       | 3.0              |               | 0.531               |                    | 5.4                     | LOS A               | 4.2               | 107.2                 |                |                      |                   |                      |
| West: Kenma         | ar Road                    |                  |               |                     |                    |                         |                     |                   |                       |                |                      |                   |                      |
| Lane 1 <sup>d</sup> | 1100                       | 3.0              | 1362          | 0.808               | 100                | 4.9                     | LOS A               | 16.1              | 413.2                 | Full           | 1600                 | 0.0               | 0.0                  |
| Approach            | 1100                       | 3.0              |               | 0.808               |                    | 4.9                     | LOS A               | 16.1              | 413.2                 |                |                      |                   |                      |
| Intersection        | 2759                       | 3.0              |               | 0.808               |                    | 10.0                    | LOS B               | 16.1              | 413.2                 |                |                      |                   |                      |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:09:16 PM Project: O:\PRJ\2132\T2132\Sidra\Kenmar.sip6

## LEVEL OF SERVICE

## Site: Kenmar Road/Ross Hill Road/Fortuna Boulevard AM

Kenmar Road Interchange Roundabout Concept Cumulative AM Roundabout

#### **All Movement Classes**



Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

### LANE SUMMARY

😵 Site: Kenmar Road/Ross Hill Road/Fortuna Boulevard AM

Kenmar Road Interchange Roundabout Concept Cumulative AM Roundabout

| Lane Use and Performance |                            |                  |               |                     |                    |                         |                     |                    |                       |                |                      |                   |                      |
|--------------------------|----------------------------|------------------|---------------|---------------------|--------------------|-------------------------|---------------------|--------------------|-----------------------|----------------|----------------------|-------------------|----------------------|
|                          | Demand F<br>Total<br>veh/h | lows=<br>HV<br>% | Cap.<br>veh/h | Deg.<br>Satn<br>v/c | Lane<br>Util.<br>% | Average<br>Delay<br>sec | Level of<br>Service | 95% Back of<br>Veh | f Queue<br>Dist<br>ft | Lane<br>Config | Lane<br>Length<br>ft | Cap.<br>Adj.<br>% | Prob.<br>Block.<br>% |
| South: Ross H            |                            | /0               | VEH/H         | V/C                 | /0                 | 360                     |                     |                    | п                     |                | 11                   | /0                | /0                   |
| Lane 1 <sup>d</sup>      | 551                        | 2.0              | 1121          | 0.492               | 100                | 8.7                     | LOS A               | 4.0                | 100.5                 | Full           | 1600                 | 0.0               | 0.0                  |
| Lane 2                   | 483                        | 2.0              | 922           | 0.524               | 100                | 10.7                    | LOS B               | 4.4                | 111.7                 | Full           | 1600                 | 0.0               | 0.0                  |
| Approach                 | 1034                       | 2.0              |               | 0.524               |                    | 9.7                     | LOS A               | 4.4                | 111.7                 |                |                      |                   |                      |
| East: Kenmar             | Rd                         |                  |               |                     |                    |                         |                     |                    |                       |                |                      |                   |                      |
| Lane 1 <sup>d</sup>      | 290                        | 2.0              | 675           | 0.429               | 100                | 11.4                    | LOS B               | 2.6                | 64.9                  | Full           | 1600                 | 0.0               | 0.0                  |
| Lane 2                   | 275                        | 2.0              | 525           | 0.524               | 100                | 16.8                    | LOS B               | 3.1                | 79.1                  | Short          | 200                  | 0.0               | NA                   |
| Approach                 | 565                        | 2.0              |               | 0.524               |                    | 14.0                    | LOS B               | 3.1                | 79.1                  |                |                      |                   |                      |
| North: S Fortu           | na Blvd                    |                  |               |                     |                    |                         |                     |                    |                       |                |                      |                   |                      |
| Lane 1                   | 341                        | 2.0              | 635           | 0.536               | 100                | 14.7                    | LOS B               | 4.9                | 125.1                 | Full           | 1600                 | 0.0               | 0.0                  |
| Lane 2 <sup>d</sup>      | 409                        | 2.0              | 860           | 0.476               | 100                | 10.3                    | LOS B               | 4.4                | 111.8                 | Full           | 1600                 | 0.0               | 0.0                  |
| Approach                 | 750                        | 2.0              |               | 0.536               |                    | 12.3                    | LOS B               | 4.9                | 125.1                 |                |                      |                   |                      |
| West: Kenmar             | Rd                         |                  |               |                     |                    |                         |                     |                    |                       |                |                      |                   |                      |
| Lane 1 <sup>d</sup>      | 403                        | 2.0              | 1172          | 0.344               | 100                | 6.4                     | LOS A               | 2.6                | 66.3                  | Full           | 1600                 | 0.0               | 0.0                  |
| Lane 2                   | 347                        | 2.0              | 979           | 0.354               | 100                | 7.5                     | LOS A               | 2.5                | 64.6                  | Short          | 200                  | 0.0               | NA                   |
| Approach                 | 750                        | 2.0              |               | 0.354               |                    | 6.9                     | LOS A               | 2.6                | 66.3                  |                |                      |                   |                      |
| Intersection             | 3099                       | 2.0              |               | 0.536               |                    | 10.4                    | LOS B               | 4.9                | 125.1                 |                |                      |                   |                      |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

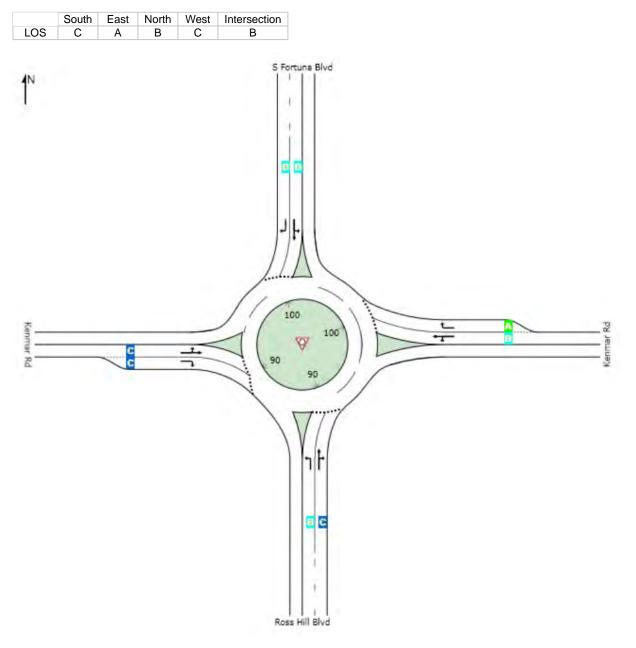
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach


SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:13:46 PM Project: O:\PRJ\2132\T2132\Sidra\Kenmar.sip6

## LEVEL OF SERVICE

## Site: Kenmar Road/Ross Hill Road/Fortuna Boulevard PM

Kenmar Road Interchange Roundabout Concept Cumulative AM Roundabout

#### **All Movement Classes**



Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

### LANE SUMMARY

😵 Site: Kenmar Road/Ross Hill Road/Fortuna Boulevard PM

Kenmar Road Interchange Roundabout Concept Cumulative AM Roundabout

| Lane Use and Performance |                   |                        |       |              |               |                  |                     |                   |                 |                |                |              |                 |
|--------------------------|-------------------|------------------------|-------|--------------|---------------|------------------|---------------------|-------------------|-----------------|----------------|----------------|--------------|-----------------|
|                          | Demand F<br>Total | lows <sup>-</sup> Iows | Cap.  | Deg.<br>Satn | Lane<br>Util. | Average<br>Delav | Level of<br>Service | 95% Back o<br>Veh | f Queue<br>Dist | Lane<br>Config | Lane<br>Length | Cap.<br>Adj. | Prob.<br>Block. |
|                          | veh/h             | %                      | veh/h | v/c          | %             | Sec              | 0011100             | Volt              | ft              | Conng          | ft             | %            | %               |
| South: Ross              | Hill Blvd         |                        |       |              |               |                  |                     |                   |                 |                |                |              |                 |
| Lane 1 <sup>d</sup>      | 389               | 2.0                    | 652   | 0.596        | 100           | 16.3             | LOS B               | 6.7               | 169.4           | Full           | 1600           | 0.0          | 0.0             |
| Lane 2                   | 354               | 2.0                    | 501   | 0.706        | 100           | 26.2             | LOS C               | 8.2               | 207.2           | Full           | 1600           | 0.0          | 0.0             |
| Approach                 | 742               | 2.0                    |       | 0.706        |               | 21.0             | LOS C               | 8.2               | 207.2           |                |                |              |                 |
| East: Kenma              | r Rd              |                        |       |              |               |                  |                     |                   |                 |                |                |              |                 |
| Lane 1                   | 146               | 2.0                    | 539   | 0.272        | 100           | 10.5             | LOS B               | 1.4               | 34.9            | Full           | 1600           | 0.0          | 0.0             |
| Lane 2 <sup>d</sup>      | 146               | 2.0                    | 673   | 0.217        | 100           | 7.9              | LOS A               | 1.2               | 29.8            | Short          | 200            | 0.0          | NA              |
| Approach                 | 293               | 2.0                    |       | 0.272        |               | 9.2              | LOS A               | 1.4               | 34.9            |                |                |              |                 |
| North: S Fort            | una Blvd          |                        |       |              |               |                  |                     |                   |                 |                |                |              |                 |
| Lane 1                   | 601               | 2.0                    | 849   | 0.708        | 100           | 17.4             | LOS B               | 8.7               | 221.9           | Full           | 1600           | 0.0          | 0.0             |
| Lane 2 <sup>d</sup>      | 621               | 2.0                    | 1045  | 0.594        | 100           | 11.3             | LOS B               | 6.2               | 157.9           | Full           | 1600           | 0.0          | 0.0             |
| Approach                 | 1222              | 2.0                    |       | 0.708        |               | 14.3             | LOS B               | 8.7               | 221.9           |                |                |              |                 |
| West: Kenma              | ar Rd             |                        |       |              |               |                  |                     |                   |                 |                |                |              |                 |
| Lane 1 <sup>d</sup>      | 717               | 2.0                    | 903   | 0.794        | 100           | 21.4             | LOS C               | 12.8              | 324.5           | Full           | 1600           | 0.0          | 0.0             |
| Lane 2                   | 540               | 2.0                    | 717   | 0.754        | 100           | 22.5             | LOS C               | 10.0              | 253.5           | Short          | 200            | 0.0          | NA              |
| Approach                 | 1258              | 2.0                    |       | 0.794        |               | 21.9             | LOS C               | 12.8              | 324.5           |                |                |              |                 |
| Intersection             | 3515              | 2.0                    |       | 0.794        |               | 18.0             | LOS B               | 12.8              | 324.5           |                |                |              |                 |

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: OMNI-MEANS LTD | Processed: Thursday, August 25, 2016 2:15:54 PM Project: O:\PRJ\2132\T2132\Sidra\Kenmar.sip6

Attachment C - Review of Geometric Design Standards



## Memorandum

#### June 22, 2016

| Project:     | Fortuna Highway 101/Riverwalk Connectivity Study |         |                |
|--------------|--------------------------------------------------|---------|----------------|
| Subject:     | Review of Safety and Design Standards            |         |                |
| Client:      | Humboldt County Association of Governments       | Job no. | : 11109149     |
| Prepared by: | David Caisse, P.E and Josh Wolf, P.E.            | Tel:    | (707) 443-8326 |

### Introduction / Objective

This memo is intended to provide a brief summary of the existing conditions and identify potential nonstandard features for the Highway 101 interchanges at 12<sup>th</sup> Street and Kenmar Road. Existing facilities were compared against the applicable standards and guidelines for the roadway being analyzed. For example, standards for the Highway 101 on and off ramps and other State owned facilities are based on the Caltrans Highway Design Manual. Local facilities are based on the local agency or Federal guidance or standards (generally whichever are more stringent). Local facilities located within the State right-of-way crossing over or under a freeway or expressway and connecting to the state facility are based on the State's design standards. Below is a list of public standards which are commonly used.

### **Common Public Design Standards and Guidelines**

#### State of California

*Caltrans Highway Design Manual* – This manual was developed by the California Department of Transportation (Caltrans) to establish uniform policies and procedures to carry out the State highway design functions of the department. Design standards include items such as roadway geometry, pavement engineering, drainage, bicycle transportation and other miscellaneous design standards.

*California Manual on Uniform Traffic Control Devices (CA MUTCD)* – This manual provides uniform standards and specifications for all official traffic control devices in California. Design standards include items such as signs, markings, signal and temporary traffic control for vehicular, rail and bicycle facilities. The CA MUTCD is based on Federal Highway Administrations (FHWA) *2009 National Manual on Uniform Traffic Control Devices* with California revisions and amendments.

#### Federal

AASHTO Geometric Design of Highways and Streets – Similar to the Highway Design Manual, these guidelines are intended to provide roadway design standards with operational efficiency, comfort, safety and convenience of the motorist in mind. Design standards include items such as highway function, design controls and elements of design for various functional classifications of roadways (freeways, arterials, collectors, local roads, etc.).



US Department of Justice's ADA Standards for Accessible Design – These standards are based on the Americans with Disabilities Act of 1990 (ADA) and provide standards to prohibit discrimination and ensure equal opportunity for persons with disabilities. Design elements include standards for accessible routes, general site and building elements (residential and commercial) and recreational facilities.

AASHTO Guide for the Development of Bicycle Facilities – This manual was developed to provide an overview of planning and design considerations, as well as recommendations for operation and maintenance of various types of bicycle facilities.

*NACTO Urban Bikeway Design Guide* – Similar to the AASHTO Guide for the Development of Bicycle Facilities, this manual was developed to provide guidance for the planning and design of bicycle facilities. This manual however, was developed by cities for cities based on the experience of the best cycling cities in the world.

As discussed later in this memo, there are currently no pedestrian or bicycle facilities in the immediate vicinity of the interchanges, therefore the later three of the manuals identified above were not used when evaluating the existing conditions.

### **Condition Assessment**

A reconnaissance level condition assessment was performed and used to identify fundamental deficiencies as compared to the current design standards. The results presented below are based on a preliminary level characterization to provide background information and guidance for evaluating the existing conditions. For example, the characterization is based on notable qualitative characteristics visually observed and/or measured during a site walk, rather than a detailed investigation or survey of the existing conditions.

The characteristics noted are based on observable features that are relevant to the evaluation of the current layout. The characterization is intended to serve as a planning tool to provide additional information to be considered when recommending improvement alternatives. The primary factors being investigated are items such as horizontal alignment, geometric cross section, design vehicles, clearances, and sight distance.

### Results

The results of the condition assessment for each segment of roadway can be found on the following pages.



#### 12th Street and US Highway 101 Interchange

12<sup>th</sup> Street/Riverwalk Drive

| Roadway Segment: Riverwalk Dr/  | 12th St                                                                                 |                                     |                    |                                     |
|---------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------|--------------------|-------------------------------------|
|                                 | Existing Roadway<br>Characteristics                                                     |                                     |                    |                                     |
| Facility Type                   | Local Facility                                                                          |                                     | /                  |                                     |
| Functional Classification       | Minor Arterial / Major<br>Collector                                                     |                                     |                    | 12-5                                |
| No. of Lanes                    | 2                                                                                       |                                     |                    | Hans Bank III A                     |
| Rural/Urban                     | Rural                                                                                   | Design                              | Meets              | Second and the second second        |
| Bike Facilities (Y/N)           | N                                                                                       | Standards                           | Standards          | Reference to Standard               |
| Pedestrian Facilities (Y/N)     | N                                                                                       |                                     | $(\sqrt{y} = yes)$ |                                     |
| Posted Speed/Design Speed (mph) | 30/35                                                                                   | 45 <sup>1</sup>                     |                    | HDM Index 101.1                     |
| Lane Width (ft)                 | 12                                                                                      | 12                                  | 1                  | HDM Index 301.1 / AASHTO            |
| Overcrossing Width (ft)         | 28                                                                                      | 32                                  |                    | HDM Index 308.1                     |
| Right Shoulder Width (ft)       | Var. 2' - 8' (between NB<br>and SB ramps)                                               | 4                                   |                    | HDM Index 302.1 & 308.1 /<br>AASHTO |
| Curve Radii (ft)                | 300+/-                                                                                  | 425                                 |                    | HDM Index 203.2                     |
| Decision Sight Distance (ft)    | 400 <sup>2</sup>                                                                        | 525                                 |                    | HDM Index 201.7                     |
| Intersection Spacing (ft)       | 0' (Between SB ramps<br>and Dinsmore Dr) & 300'<br>(between NB ramps and<br>Newburg Rd) | 500                                 |                    | HDM Index 504.3                     |
| Horizontal Clearance (ft)       | 4'+ (w/out curb) & 1.5'+<br>(w/ curb)                                                   | 4' (w/out curb) &<br>1.5' (w/ curb) | J                  | HDM Index 309.1                     |
| Vertical Clearance (ft - in)    | 15' - 5" <sup>3</sup>                                                                   | 16' - 6"                            |                    | HDM Index 309.2                     |
| Stopping Sight Distance (ft)    | 250+                                                                                    | 250                                 | 1                  | HDM Index 201.1                     |
| Design Vehicle                  | Cal Legal - 50 <sup>4</sup>                                                             | Cal Legal - 50                      |                    | HDM Index 404.4                     |

1 Design Standard applies to connections to freeways or expressways

<sup>2</sup> The roadway geometry could probably accommodate the minimum Decision Sight Distance, but some trees might need trimming or be removed. This location is an overcrossing so the vertical clearance shown here is for US Hwy 101.

<sup>4</sup> A Cal Legal - 50 Truck could probably navigate the turns, but may be required to travel outside the lane slightly and use the gore area or adjacent shoulder.

- Posted Speed/Design Speed When feasible, the design speed of local facilities connecting to a ٠ freeway or expressway should be 45 mph, but shall be a minimum of 35 mph.
- Overcrossing Width The adjacent sections of roadway approaching the overcrossing are urban ٠ in nature and contain 12' travel lanes with 8' shoulders. At the overcrossing, the section narrows to 12' travel lanes, 2' paved shoulders and a concrete curb/vehicular railing which begins at the edge of the shoulder.



- Right Shoulder Width The shoulder width decreases to only 2' within the overcrossing area and again on the Strongs Creek Bridge (which is located at the southern extents of this segment). All other portions of this segment have shoulders which meet the minimum design standard of 4' wide. The widths vary, but are generally around 8' in width.
- Intersection Spacing -
  - At the southern extent of this segment, Dinsmore Road intersects Riverwalk Drive immediately adjacent to the SB ramps. Due to its proximity and configuration, Dinsmore Road appears more like a 5<sup>th</sup> leg of the Riverwalk Drive and SB ramp intersection rather than its own. Drivers appear to be confused and have been observed traveling directly from Dinsmore Drive to the SB ramp or northward towards the downtown area.
  - At the northern extent of the segment, the NB on and off ramps are located approximately 300' south of the Newburg Road and 12<sup>th</sup> Street intersection. The preferred distance between intersections (from curb return to curb return) is 500', but shall be a minimum of 400'.
- Curve Radii 12<sup>th</sup> Street is a relatively straight section of road, but contains a few curves near the interchange. The first curve heading south towards Highway 101 is slightly smaller than recommended based on the speed of the roadway through that section.
- Decision Sight Distance Near the overcrossing, there are a number of large conifers that restrict visibility. The sight distance could be improved and would likely meet the standards if the trees were trimmed or removed.
- Vertical Clearance Since this is an overcrossing, the vertical clearance described here is for the vehicles on Highway 101.
- Design Vehicle In all cases, it appears as though a Cal Legal-50 truck could navigate the turns and stay within the paved roadway area; however, due to the tight radii entering and exiting the ramps and turning on and off the side streets (Dinsmore Drive and Newburg Road), large trucks would need to encroach slightly into the oncoming travel lane and or gore area.



#### Newburg Road

| Roadway Segment: Newburg Rd     |                                     |                                     |                    |                                                                                                                |
|---------------------------------|-------------------------------------|-------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------|
|                                 | Existing Roadway<br>Characteristics |                                     |                    |                                                                                                                |
| Facility Type                   | Local Facility                      |                                     |                    |                                                                                                                |
| Functional Classification       | Major Collector                     |                                     |                    |                                                                                                                |
| No. of Lanes                    | 2                                   |                                     |                    | The Property of the second |
| Rural/Urban                     | Rural                               |                                     | Meets              |                                                                                                                |
| Bike Facilities (Y/N)           | N                                   | Design Standards                    | Standards          | Reference to Standard                                                                                          |
| Pedestrian Facilities (Y/N)     | Y (north side only)                 |                                     | $(\sqrt{y} = yes)$ |                                                                                                                |
| Posted Speed/Design Speed (mph) | 25/30                               | 25                                  | J                  | AASHTO                                                                                                         |
| Lane Width (ft)                 | 12                                  | 12                                  | J                  | HDM Index 301.1 / AASHTO                                                                                       |
| Right Shoulder Width (ft)       | 8/4                                 |                                     | J                  | HDM Index 302.1 & 308.1 /<br>AASHTO                                                                            |
| Curve Radii (ft)                | 300+                                | 300                                 | J                  | HDM Index 203.2                                                                                                |
| Decision Sight Distance (ft)    | 450+                                | 450                                 | J                  | HDM Index 201.7                                                                                                |
| Angle of Intersection (Degree)  | 45                                  | 75                                  |                    | HDM Index 403.3                                                                                                |
| Horizontal Clearance (ft)       | 3'+/- (in areas w/out curb)         | 4' (w/out curb) &<br>1.5' (w/ curb) |                    | HDM Index 309.1                                                                                                |
| Stopping Sight Distance (ft)    | 200+                                | 200                                 | J                  | NDM Index 201.1                                                                                                |
| Design Vehicle                  | Cal Legal - 50 <sup>1</sup>         | Cal Legal - 50                      |                    | HDM Index 404.4                                                                                                |

<sup>1</sup> A Cal Legal - 50 Truck could probably navigate the turns, but would be required travel outside its lane.

- Angle of Intersection Newberg Intersects 12<sup>th</sup> Street at a 45 degree angle. Provided there are no physical constraints, the interior angle should be 90 degrees or as close to 90 degrees as practical, but should not be less than 75 degrees.
  - Horizontal Clearance The southern half of the roadway contains a number of utility poles that are very close to the edge of the travel lane.
- Design Vehicle Newberg Road intersects 12<sup>th</sup> Street at an acute angle. Due to the angle and tight radii, large trucks need to encroach into oncoming travel lane to navigate the turns and stay within the existing pavement.



#### **Dinsmore Drive**

| Roadway Segment: Dinsmore Dr    |                                     | _              |                    |                                     |
|---------------------------------|-------------------------------------|----------------|--------------------|-------------------------------------|
|                                 | Existing Roadway<br>Characteristics |                |                    | De AL                               |
| Facility Type                   | Local Facility                      |                |                    |                                     |
| Functional Classification       | Local Road                          |                |                    |                                     |
| No. of Lanes                    | 2                                   |                | /                  |                                     |
| Rural/Urban                     | Rural                               | Design         | Meets              |                                     |
| Bike Facilities (Y/N)           | N                                   | Standards      | Standards          | Reference to Standard               |
| Pedestrian Facilities (Y/N)     | N                                   | Standarus      | $(\sqrt{y} = yes)$ |                                     |
| Posted Speed/Design Speed (mph) | 25/30                               | 25             | 1                  | AASHTO                              |
| Lane Width (ft)                 | 12                                  | 12             | 1                  | HDM Index 301.1 / AASHTO            |
| Right Shoulder Width (ft)       | 2                                   | X              | 1                  | HDM Index 302.1 & 308.1 /<br>AASHTO |
| Curve Radii (ft)                | 300+                                | 300            | 1                  | HDM Index 203.2                     |
| Decision Sight Distance (ft)    | 450+                                | 450            | 1                  | HDM Index 201.7                     |
| Horizontal Clearance (ft)       | 4'+/- 1                             | 4'             | X                  | HDM Index 309.1                     |
| Stopping Sight Distance (ft)    | 200+                                | 200            |                    | HDM Index 201.1                     |
| Design Vehicle                  | Cal Legal - 50 <sup>2</sup>         | Cal Legal - 50 |                    | NDM Index 404.4                     |

<sup>1</sup> Power poles are very close to the edge of the pavepient.

<sup>2</sup> A Cal Legal - 50 Truck could probably navigate the turns, but would be required travel outside its lane.

• Design Vehicle Dinsmore Drive intersects 12<sup>th</sup> Street as one of the five legs of this intersection. As a result, the intersection is tight and confusing. Due to the tight radius and close proximity of the bridge to the intersection, large trucks heading or coming from the south leg of the intersection are required to swing wide and encroach into oncoming travel lanes.



### US Highway 101 Northbound Ramp

| Roadway Segment: US Hwy 101 Vo  | orthbound (On and off ram)            | 9 <b>5)</b>                         |                    |                                     |
|---------------------------------|---------------------------------------|-------------------------------------|--------------------|-------------------------------------|
|                                 | Existing Roadway<br>Sharacteristics   |                                     |                    | JAN AND                             |
| Facility Type                   | Freeway Expressway                    |                                     |                    |                                     |
| Functional Classification       | Freeway / Expressway                  |                                     |                    |                                     |
| No. of Lanes                    | 1                                     |                                     |                    | THE PARTY                           |
| Rural/Urban                     | Rural                                 | X                                   | Meets              | the statement of the statement      |
| Bike Facilities (Y/N)           | N                                     | Design                              | Standards          | Reference to Standard               |
| Pedestrian Facilities (Y/N)     | N                                     | Standards                           | $(\sqrt{y} = yes)$ |                                     |
| Posted Speed/Design Speed (mph) | 35/40                                 | 25/50 <sup>1</sup>                  |                    | HDM Index 504.3                     |
| Lane Width (ft)                 | 12                                    | 12                                  | 1                  | HDM Index 301.1                     |
| Right Shoulder Width (ft)       | 8                                     | 8                                   |                    | HDM Index 302.1 & 308.1 /<br>AASHTO |
| Curve Radii (ft)                | 400 / 600                             | 550                                 |                    | NDM Index 203.2                     |
| Decision Sight Distance (ft)    | 425+/-                                | 600                                 |                    | HDM Index 201.7                     |
| Horizontal Clearance (ft)       | 4'+ (w/out curb) & 1.5'+<br>(w/ curb) | 4' (w/out curb) &<br>1.5' (w/ curb) | J                  | HDM Index 309.1                     |
| Stopping Sight Distance (ft)    | 300+                                  | 300                                 | 1                  | HDM Index 201.1                     |
| Design Vehicle                  | STAA <sup>2</sup>                     | STAA                                |                    | HDM Index 404.4                     |

<sup>1</sup> Design speed should be 25 mph when traffic is expected to make a turning movement at the terminus and 50 mph when entering, exiting a ramp or when a "through" movement is provided at the terminus.

<sup>2</sup> An STAA truck could probably navigate the turns, but would be required travel outside its lane.

- Posted Speed/Design Speed The design speed of ramp can vary depending on the alignment and controls at each end. An acceptable approach is to set 25 mph and 50 mph design speeds for the ramp terminus and exit nose, respectively. The NB off ramp terminates at an intersection where traffic is expected to make a turning movement; therefore, the design speed should be 25 mph nearing this portion of the ramp.
- Curve Radii The design standard for the minimum curve radius of the northbound on and off
  ramps are based on the posted speed limit entering the on ramp from Highway 101. The curve
  radius identified below as not meeting the standard are is located on the northbound on ramp just
  before entering Highway 101. This particular section of road has no posted speed limit, but traffic
  entering Highway 101 at this location is accelerating and approaching speeds in excess of 40
  mph. If considerations are made for improvements to this interchange, this radius should be
  increased to meet the current design standards.
- Decision Sight Distance Similar to the 12<sup>th</sup> Street overcrossing, there are a number of large



conifers (Redwoods) along the right side of the off ramp that restrict visibility. The sight distance could be improved and would likely meet the standards if the trees were trimmed or removed.

 Design Vehicle – In all cases, it appears as though an STAA truck could navigate the turns and stay within the pavement; however, due to the tight radii entering and exiting the ramps and turning on and off 12<sup>th</sup> Street, large trucks would need to encroach slightly into the oncoming travel lane or gore area.



#### JS Highway 101 Southbound Ramp Roadway Segment: US Hwy 101 Southbound (On and off ramps) **Existing Roadway** Characteristics Facility Type Freeway / Expressway Functional Classification Freeway / Expressway No. of Lanes Rural/Urban Rural Meets Design Bike Facilities (Y/N) N Standards **Reference to Standard** Standards Pedestrian Facilities (Y/N) $(\sqrt{-\text{yes}})$ N 25/50 1 Posted Speed/Design Speed (mph) 25/30 HDM Index 504.3 Lane Width (ft) HDM Index 301.1 12 12 HDM Index 302.1 & 308.1 / Right Shoulder Width (ft) 8 8 AASHTO Curve Radii (ft) 300/650 300 HDM Index 203.2 \* Decision Sight Distance (ft) HDM Index 201.7 450+ 450 1 4'+ (w/out curb) & 1.5'+ 4' (w/out curb) & Horizontal Clearance (ft) HDM Index 309.1 (w/ curb) 1.5' (w/ curb) J HDM Index 201.1 Stopping Sight Distance (ft) 200 +200 1 STAA<sup>2</sup> Design Vehicle HDM Index 404.4 STAA

<sup>1</sup> Design speed should be 25 mph when traffic is expected to make a turning movement at the terminus and 50 mph when entering, exiting a ramp or when a "through" movement is provided at the terminus.

<sup>2</sup> An STAA truck could probably navigate the turns, but would be required travel outside its lane.

- Posted Speed/Design Speed The design speed of ramp can vary depending on the alignment and controls at each end. An acceptable approach is to set 25 mph and 50 mph design speeds for the ramp terminus and exit nose, respectively. The SB off ramp terminates at an intersection where traffic is expected to make a turning movement; therefore, the design speed should be 25 mph nearing this portion of the ramp.
- Design Vehicle In all cases, it appears as though an STAA truck could navigate the turns and stay within the pavement; however, due to the tight radii entering and exiting the ramps and turning on and off 12<sup>th</sup> Street or Dinsmore Drive, large trucks would need to encroach slightly into the oncoming travel lanes or gore area.



#### Kenmar Road and US Highway 101 Interchange

#### Kenmar Road

| Roadway Segment: <mark>Kenmar Rd</mark> | 1                                                 |                                     |                    |                                     |
|-----------------------------------------|---------------------------------------------------|-------------------------------------|--------------------|-------------------------------------|
|                                         | Existing Roadway<br>Characteristics               |                                     |                    |                                     |
| Facility Type                           | Local Facility                                    |                                     |                    | LI AL                               |
| Functional Classification               | Other Principal Arterial /<br>Major Collector     |                                     |                    | 1103                                |
| No. of Lanes                            | 2                                                 |                                     |                    |                                     |
| Rural/Urban                             | Rural                                             |                                     | Meets              |                                     |
| Bike Facilities (Y/N)                   | N                                                 | Design Standards                    | Standards          | Reference to Standard               |
| Pedestrian Facilities (Y/N)             | N                                                 |                                     | $(\sqrt{y} = yes)$ |                                     |
| Posted Speed/Design Speed (mph)         | 35/40                                             | 45 <sup>1</sup>                     |                    | HDM Index 101.1                     |
| Lane Width (ft)                         | 12                                                | 12                                  | 1                  | HDM Index 301.1 / AASHTO            |
| Right Shoulder Width (ft)               | 8                                                 | 4                                   | J                  | HDM Index 302.1 & 308.1 /<br>AASHTO |
| Curve Radii (ft)                        | 600 / 75                                          | 550                                 | 11                 | HDM Index 203.2                     |
| Decision Sight Distance (ft)            | 230+/-                                            | 600                                 |                    | HDM Index 201.7                     |
| Horizontal Clearance (ft)               | 4'+ (w/out curb) & 1.5'+<br>(w/ curb) or shielded | 4' (w/out curb) & 1.5'<br>(w/ curb) | J                  | HDM Index 309.1                     |
| Vertical Clearance (ft - in)            | 14' - 10" <sup>2</sup>                            | 15                                  | 1                  | HDM Index 309.2                     |
| Stopping Sight Distance (ft)            | 125+/-                                            | 300                                 |                    | HDM Index 201.1                     |
| Design Vehicle                          | Cal Legal - 50 <sup>3</sup>                       | Cal Legal - 50                      | 1                  | HDM Index 404.4                     |

<sup>1</sup> Design Standard applies to connections to freeways or expressways

<sup>2</sup> This location is an undercrossing so the vertical clearance shown here is for Kenmar Rd.

<sup>3</sup> A Cal Legal - 50 Truck could probably navigate the turns, but would be required travel outside its lane.

- Posted Speed/Design Speed When feasible, the design speed of local facilities connecting to a freeway or expressway should be 45 mph, but shall be a minimum of 35 mph.
- Curve Radii Most of Kenmar is relatively straight, but near the southern portion of the interchange there is a tight radius. The curve radius here is significantly smaller than recommended based on the speed of the roadway through that section.
- Decision Sight Distance As a result of the tight radius identified above and dense vegetation growing outside of the right of way, visibility is obstructed.
- Vertical Clearance Kenmar Road is an undercrossing at this location so the vertical clearance described here is for the vehicles on Kenmar Road.
- Stopping Sight Distance Similar to Decision Sight Distance, the tight radius and dense vegetation obstructs visibility reducing the available stopping sight distance.



• Design Vehicle – In all cases, it appears as though a Cal Legal-50 truck could navigate the turns and stay within the paved roadway area; however, due to the tight radii entering and exiting the ramps and small curve radius identified above, large trucks would need to make wide turns and encroach slightly into the oncoming travel lane or gore area.



### Eel River Drive

| Roadway Segment: <mark>Eel River Dr</mark> |                                                       | 6                                   |                                        |                                     |
|--------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------------------|-------------------------------------|
|                                            | Existing Roadway<br>Characteristics<br>Local Facility |                                     |                                        |                                     |
| Facility Type                              |                                                       |                                     |                                        |                                     |
| Functional Classification                  | Major Collector                                       |                                     |                                        |                                     |
| No. of Lanes                               | 2                                                     |                                     |                                        |                                     |
| Rural/Urban                                | Rural                                                 |                                     | Meets<br>Standards<br>$(\sqrt{-} yes)$ | Reference to Standard               |
| Bike Facilities (Y/N)                      | N                                                     | Design Standards                    |                                        |                                     |
| Pedestrian Facilities (Y/N)                | N                                                     |                                     |                                        |                                     |
| Posted Speed/Design Speed (mph)            | 30/35                                                 | 30                                  | 1                                      | AASHTO                              |
| Lane Width (ft)                            | 11                                                    | 9                                   | 1                                      | HDM Index 301.1 / AASHTO            |
| Right Shoulder Width (ft)                  | 2+                                                    | 2                                   | J                                      | HDM Index 302.1 & 308.1 /<br>AASHTO |
| Curve Radii (ft)                           | 85                                                    | 425                                 |                                        | HDM Index 203.2                     |
| Decision Sight Distance (ft)               | 525+                                                  | 525                                 | 1                                      | HDM Index 201.7                     |
| Intersection Spacing (ft)                  | 150' (Between NB ramps<br>and Eel River Dr)           | 500'                                |                                        | HDM Index 504.3                     |
| Horizontal Clearance (ft)                  | 4'+/-                                                 | 4' (w/out curb) & 1.5'<br>(w/ curb) | J                                      | HDM Index 309.1                     |
| Stopping Sight Distance (ft)               | 250+                                                  | 250                                 | J                                      | HDM Index 201.1                     |
| Design Vehicle                             | Cal Legal - 50 <sup>1</sup>                           | Cal Legal - 50                      |                                        | HDM Index 404.4                     |

- Curve Radii Most of Eel River Drive is relatively straight, but near its intersection with Kenmar Road there is a tight radius. The curve radius here is significantly smaller than recommended based on the speed of the roadway through that section; however, at this point the road is approaching the STOP sign so speeds would be lower. If considerations are made for improvements to this interchange, the curve radius or approach angle should be evaluated.
- Intersection Spacing The SB on and off ramps are located approximately 150' south of the Eel River Drive and Kenmar Road intersection. The preferred distance between intersections (from curb return to curb return) is 500', but shall be a minimum of 400'.
- Design Vehicle Eel River Drive intersects Kenmar Road at an acute angle. Due to the angle and tight radii, large trucks need to encroach into the oncoming travel lane to navigate the turns and stay within the existing paved roadway.



#### US Highway 101 Northbound Ramp

| Roadway Segment: US Hwy 101 No  | orthbound (On and off ramp<br>Existing Roadway<br>Characteristics | s)                                  |                                      |                                     |
|---------------------------------|-------------------------------------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|
| Facility Type                   | Freeway / Expressway                                              |                                     |                                      |                                     |
| Functional Classification       | Freeway / Expressway                                              |                                     |                                      | 4 1 2 1                             |
| No. of Lanes                    | 1                                                                 |                                     |                                      |                                     |
| Rural/Urban                     | Rural                                                             | Design Standards                    | $Meets$ Standards $(\sqrt{y} = yes)$ | Reference to Standard               |
| Bike Facilities (Y/N)           | N                                                                 |                                     |                                      |                                     |
| Pedestrian Facilities (Y/N)     | N                                                                 |                                     |                                      |                                     |
| Posted Speed/Design Speed (mph) | 35/40                                                             | 25/50 <sup>1</sup>                  |                                      | HDM Index 504.3                     |
| Lane Width (ft)                 | 12                                                                | 12                                  | 1                                    | HDM Index 301.1                     |
| Right Shoulder Width (ft)       | 8                                                                 | 8                                   | J                                    | HDM Index 302.1 & 308.1 /<br>AASHTO |
| Curve Radii (ft)                | N/A                                                               | 550                                 | 1                                    | HDM Index 203.2                     |
| Decision Sight Distance (ft)    | 600+                                                              | 600                                 | 1                                    | HDM Index 201.7                     |
| Horizontal Clearance (ft)       | 4'+ (w/out curb) & 1.5'+<br>(w/ curb)                             | 4' (w/out curb) & 1.5'<br>(w/ curb) | J                                    | HDM Index 309.1                     |
| Stopping Sight Distance (ft)    | 300+                                                              | 300                                 | 1                                    | HDM Index 201.1                     |
| Design Vehicle                  | STAA <sup>2</sup>                                                 | STAA                                |                                      | HDM Index 404.4                     |

<sup>1</sup> Design speed should be 25 mph when traffic is expected to make a turning movement at the terminus and 50 mph when entering, exiting a ramp or when a "through" movement is provided at the terminus.

<sup>2</sup> An STAA truck could probably navigate the turns, but would be required travel outside its lane.

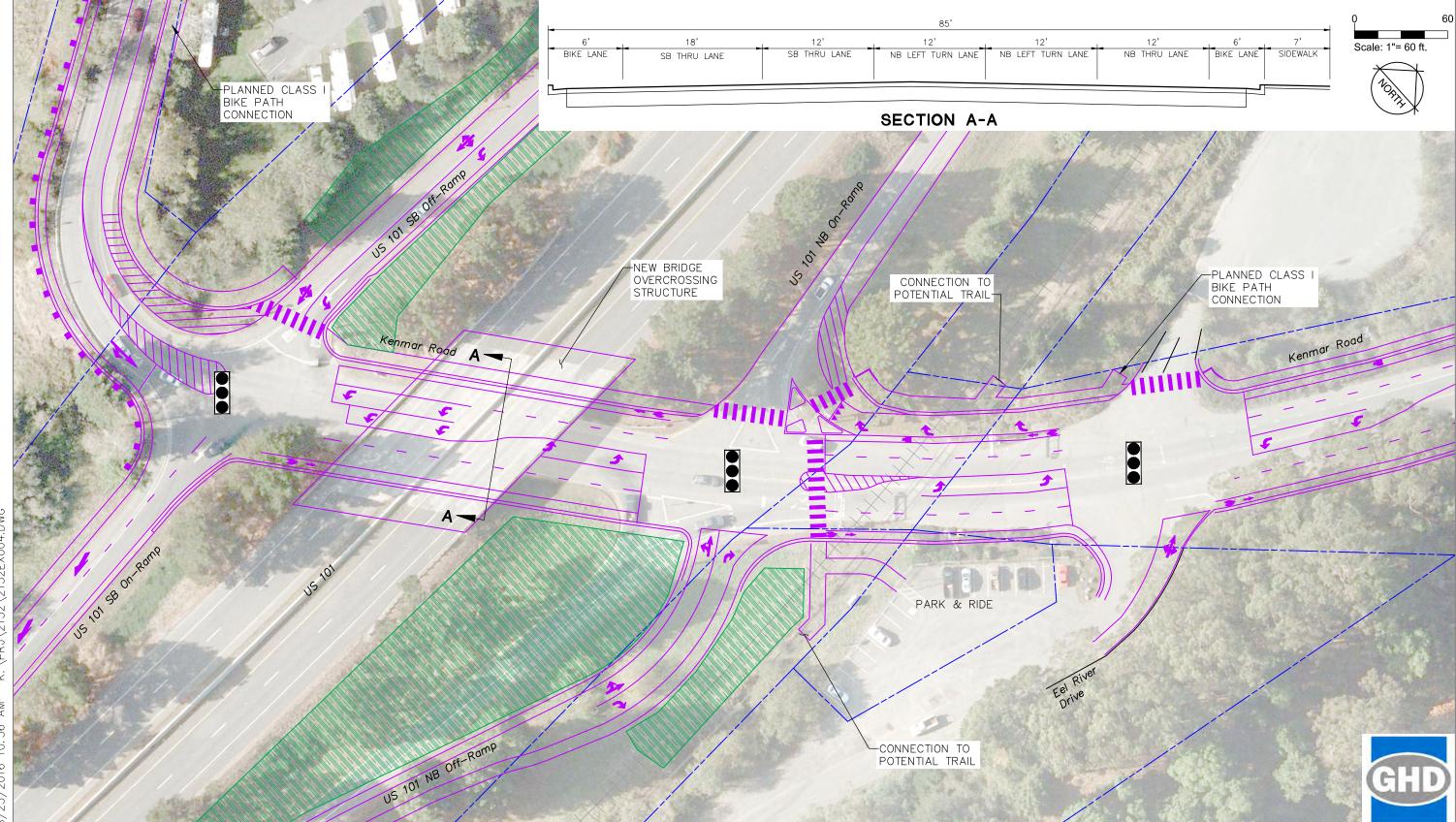
- Posted Speed/Design Speed The design speed of ramp can vary depending on the alignment and controls at each end. An acceptable approach is to set 25 mph and 50 mph design speeds for the ramp terminus and exit nose, respectively. The NB off ramp terminates at an intersection where traffic is expected to make a turning movement; therefore, the design speed should be 25 mph nearing this portion of the ramp.
- Design Vehicle In all cases, it appears as though an STAA truck could navigate the turns and stay within the pavement; however, due to the tight radii entering and exiting the ramps and turning on and off Kenmar Road, large trucks would need to encroach slightly into the oncoming travel lane or gore area.



#### US Highway 101 Southbound Ramp

| Roadway Segment: US Hwy 101 So  | uthbound (On and off ramp             | 5)                                  |                                          |                                     |
|---------------------------------|---------------------------------------|-------------------------------------|------------------------------------------|-------------------------------------|
|                                 | Existing Roadway<br>Characteristics   |                                     |                                          |                                     |
| Facility Type                   | Freeway / Expressway                  |                                     |                                          | and the second                      |
| Functional Classification       | Freeway / Expressway                  |                                     |                                          |                                     |
| No. of Lanes                    | 1                                     |                                     |                                          |                                     |
| Rural/Urban                     | Rural                                 | Design Standards                    | Meets<br>Standards<br>$(\sqrt{y} = yes)$ | Reference to Standard               |
| Bike Facilities (Y/N)           | N                                     |                                     |                                          |                                     |
| Pedestrian Facilities (Y/N)     | N                                     |                                     |                                          |                                     |
| Posted Speed/Design Speed (mph) | 35/40 <sup>1</sup>                    | 25/50 <sup>2</sup>                  |                                          | HDM Index 504.3                     |
| Lane Width (ft)                 | 12                                    | 12                                  | 1                                        | HDM Index 301.1                     |
| Right Shoulder Width (ft)       | 8                                     | 8                                   | J                                        | HDM Index 302.1 & 308.1 /<br>AASHTO |
| Curve Radii (ft)                | N/A                                   | 550                                 | 1                                        | HDM Index 203.2                     |
| Decision Sight Distance (ft)    | 600+                                  | 600                                 | 1                                        | HDM Index 201.7                     |
| Horizontal Clearance (ft)       | 4'+ (w/out curb) & 1.5'+<br>(w/ curb) | 4' (w/out curb) & 1.5'<br>(w/ curb) | J                                        | HDM Index 309.1                     |
| Stopping Sight Distance (ft)    | 300+                                  | 300                                 | J                                        | HDM Index 201.1                     |
| Design Vehicle                  | STAA <sup>3</sup>                     | STAA                                | 1.1.1.1                                  | HDM Index 404.4                     |

<sup>1</sup> The southbound on ramp didn't have a speed limit sign, but was assumed to be 35 mph based on the northbound on ramp and ramp geometry.

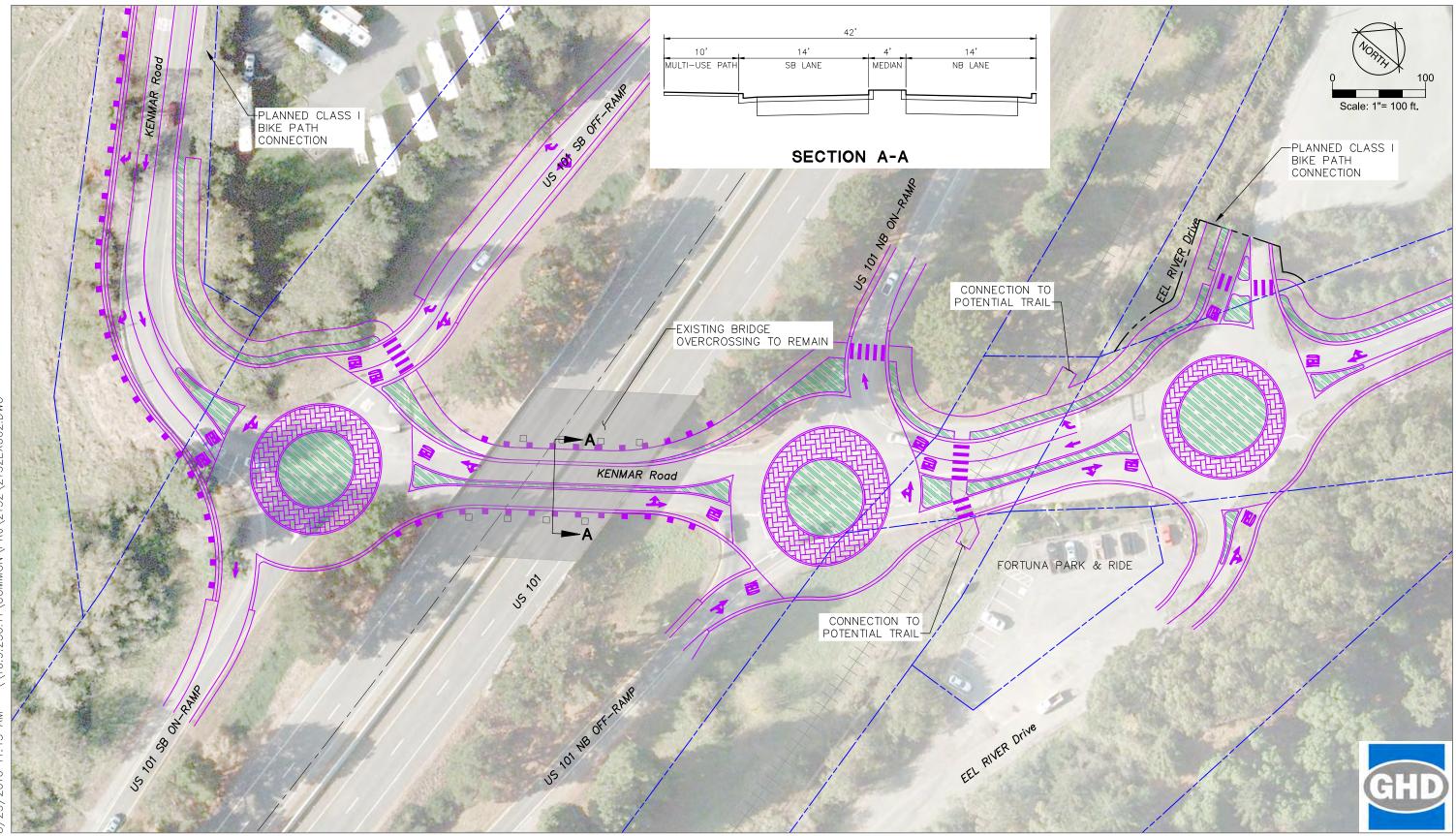

<sup>2</sup> Design speed should be 25 mph when traffic is expected to make a turning movement at the terminus and 50 mph when entering, exiting a ramp or when a "through" movement is provided at the terminus.

<sup>3</sup> An STAA truck could probably navigate the turns, but would be required travel outside its lane.

- Posted Speed/Design Speed The design speed of ramp can vary depending on the alignment and controls at each end. An acceptable approach is to set 25 mph and 50 mph design speeds for the ramp terminus and exit nose, respectively. The SB off ramp terminates at an intersection where traffic is expected to make a turning movement; therefore, the design speed should be 25 mph nearing this portion of the ramp.
- Design Vehicle In all cases, it appears as though an STAA truck could navigate the turns and stay within the pavement; however, due to the tight radii entering and exiting the ramps and turning on and off Kenmar Road, large trucks would need to encroach into the oncoming travel lane or gore area.

Attachment D - Conceptual Design Drawings

# **KENMAR Road INTERCHANGE SIGNAL CONCEPT**

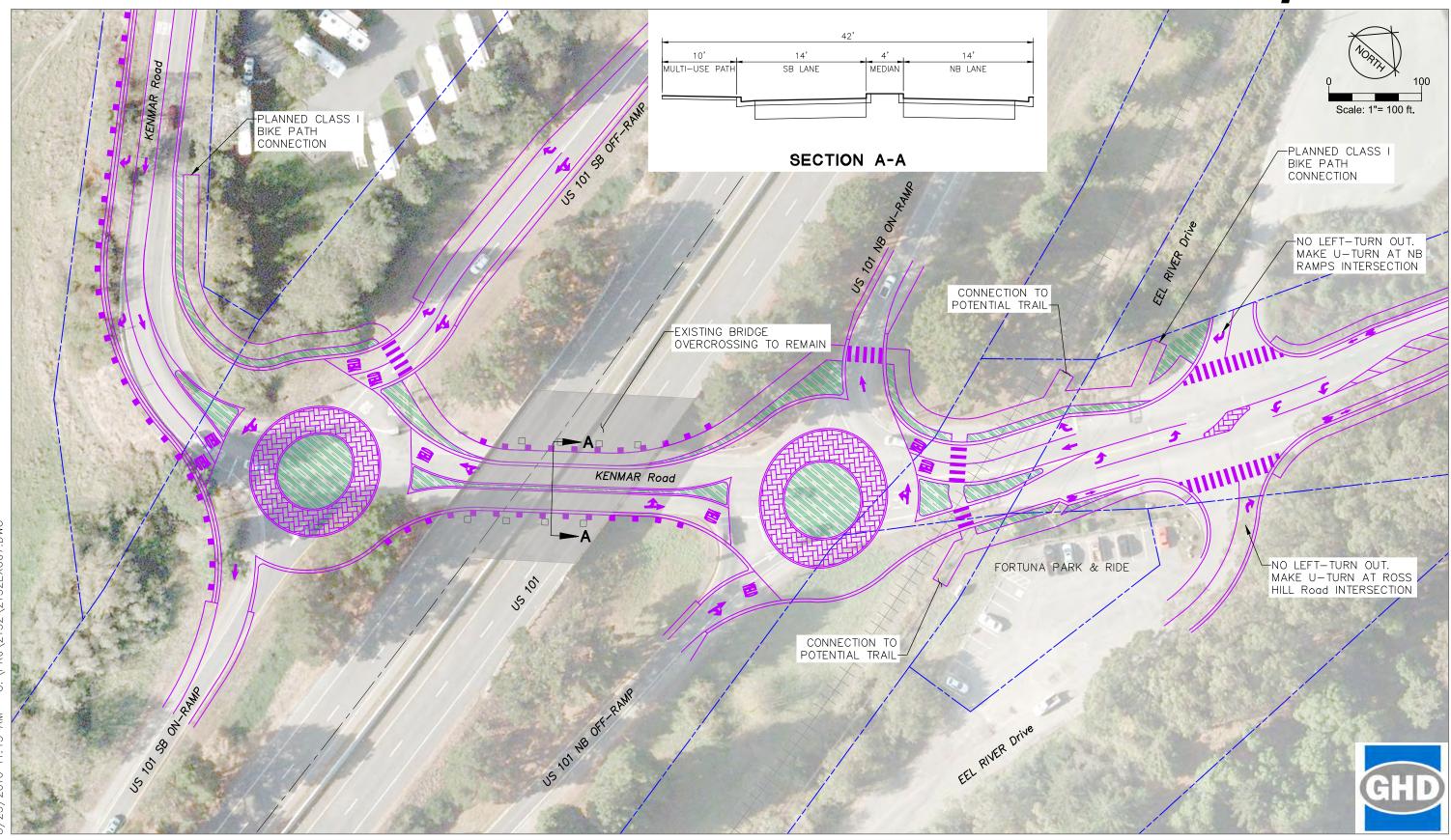



# **US 101/RIVERWALK AREA CONNECTIVITY PROJECT** Fortuna, California



August 26, 2016 2132EX004.dwg

# **KENMAR Rd. INTERCHANGE ROUNDABOUT CONCEPTS - Option 1a**



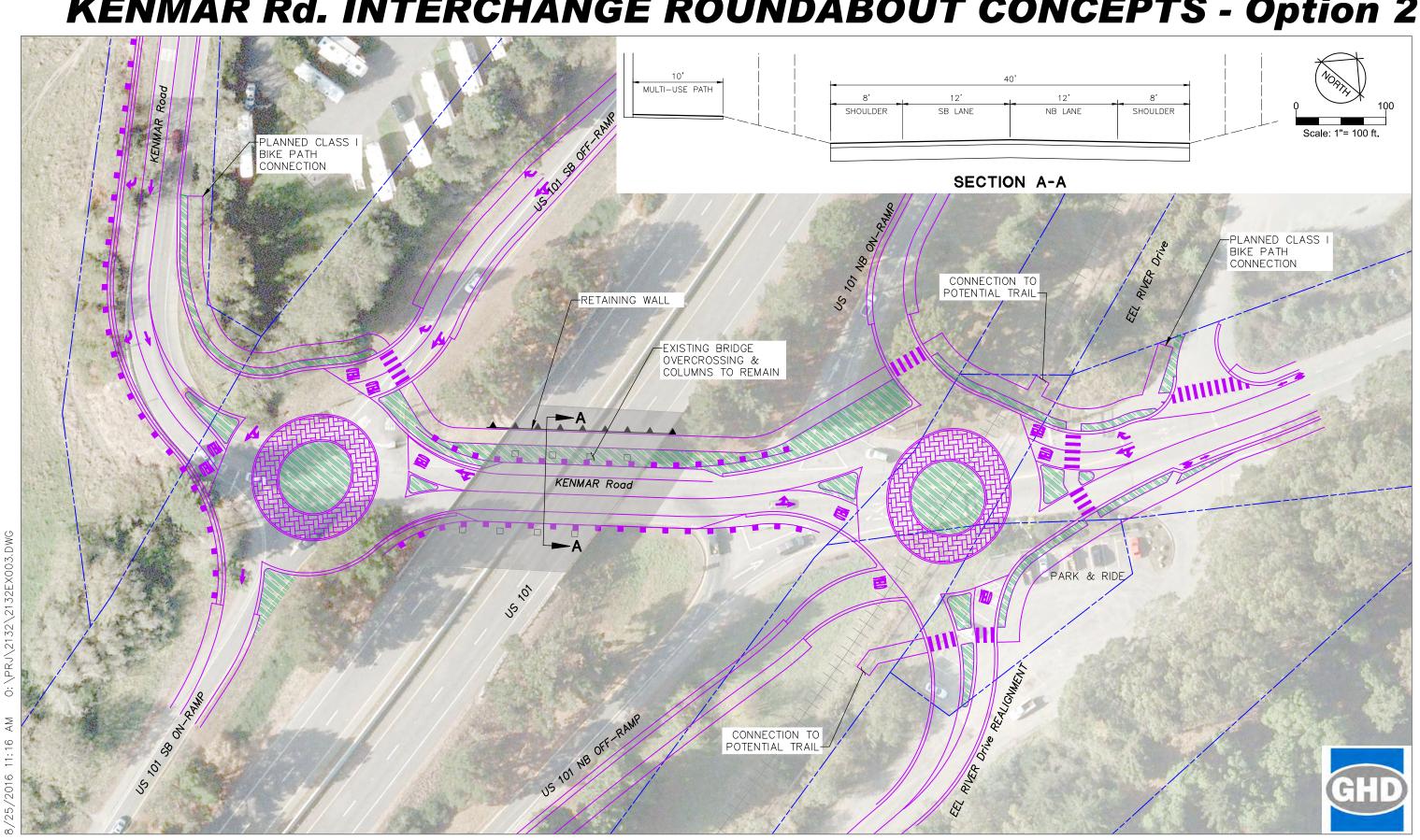

# **US 101/RIVERWALK AREA CONNECTIVITY PROJECT** Fortuna, California



August 26, 2016 2132EX002.dwg

# **KENMAR Rd. INTERCHANGE ROUNDABOUT CONCEPTS - Option 1b**




# **US 101/RIVERWALK AREA CONNECTIVITY PROJECT** Fortuna, California

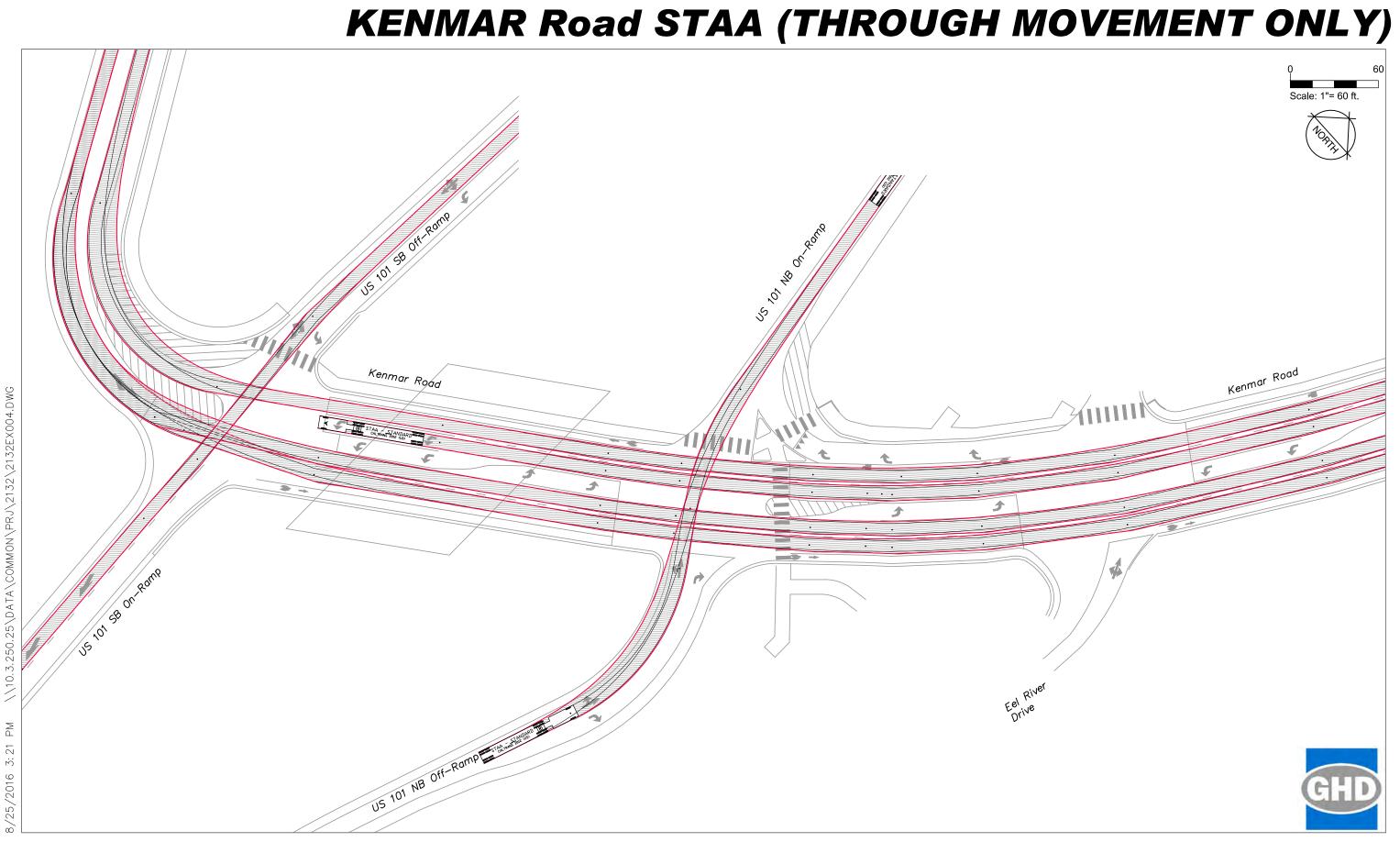




August 26, 2016 2132EX007.dwg

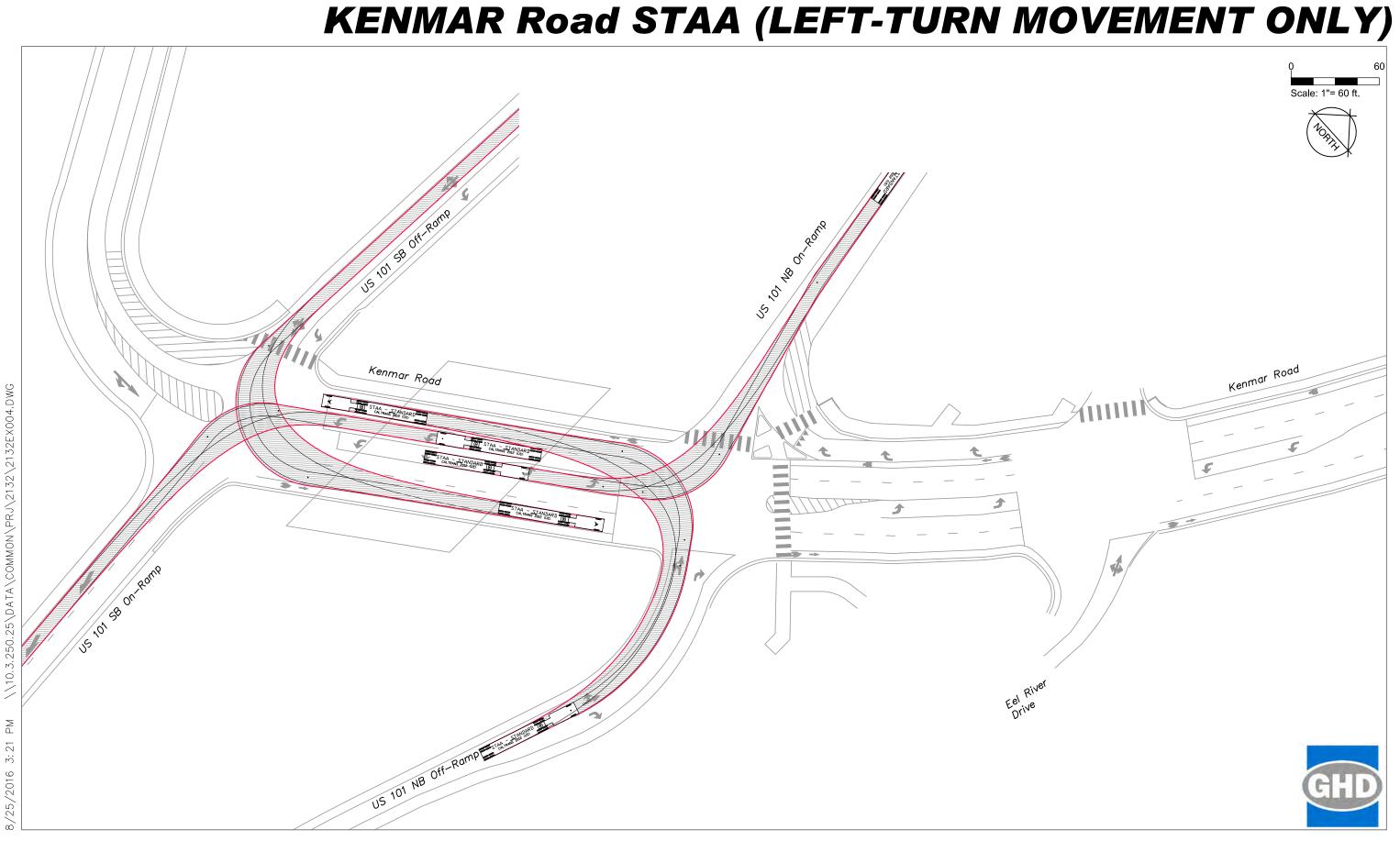
# **KENMAR Rd. INTERCHANGE ROUNDABOUT CONCEPTS - Option 2**




## US 101/RIVERWALK AREA CONNECTIVITY PROJECT Fortuna, California






August 26, 2016 2132EX003.dwg

Attachment E - Truck Turning Analysis



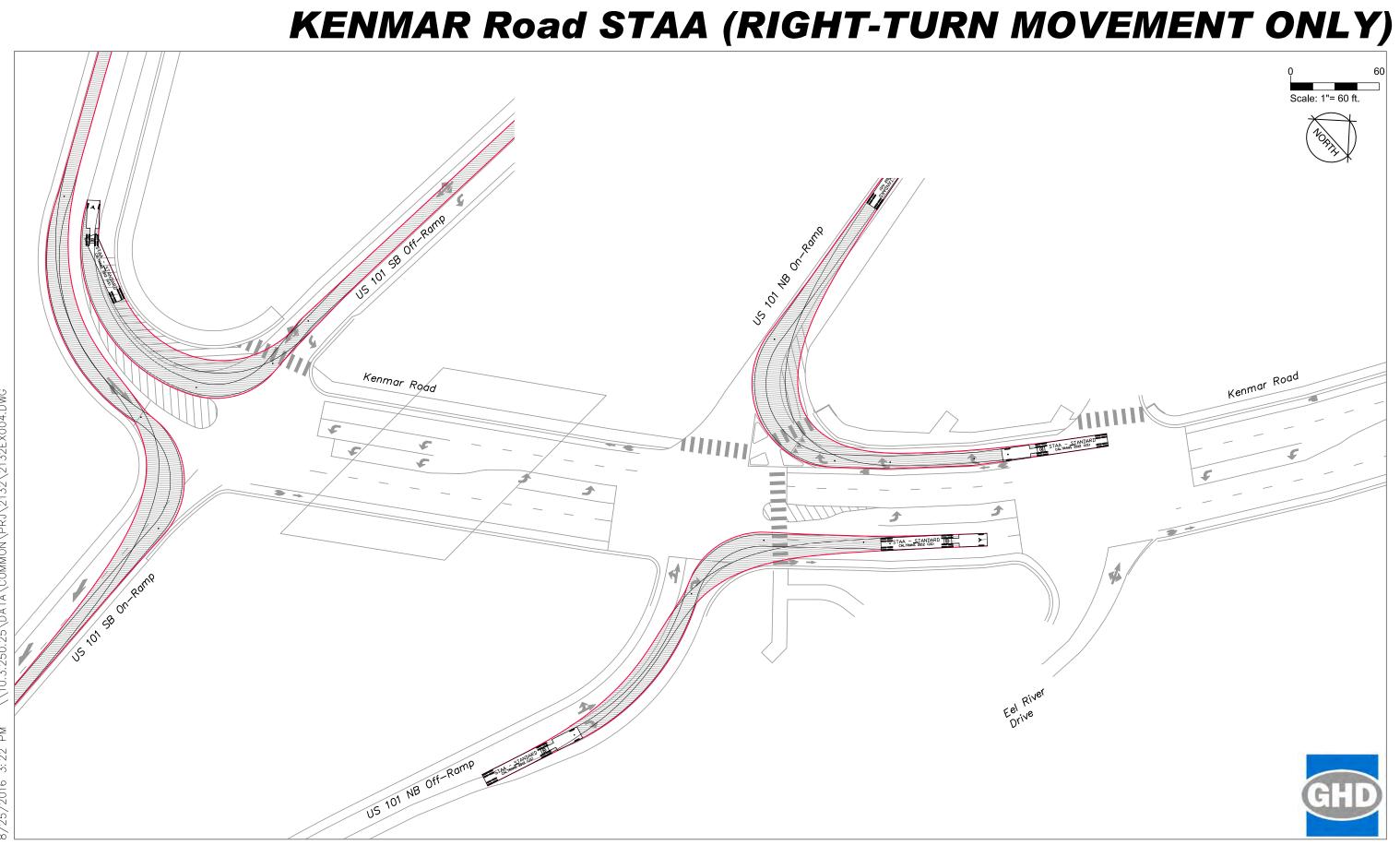
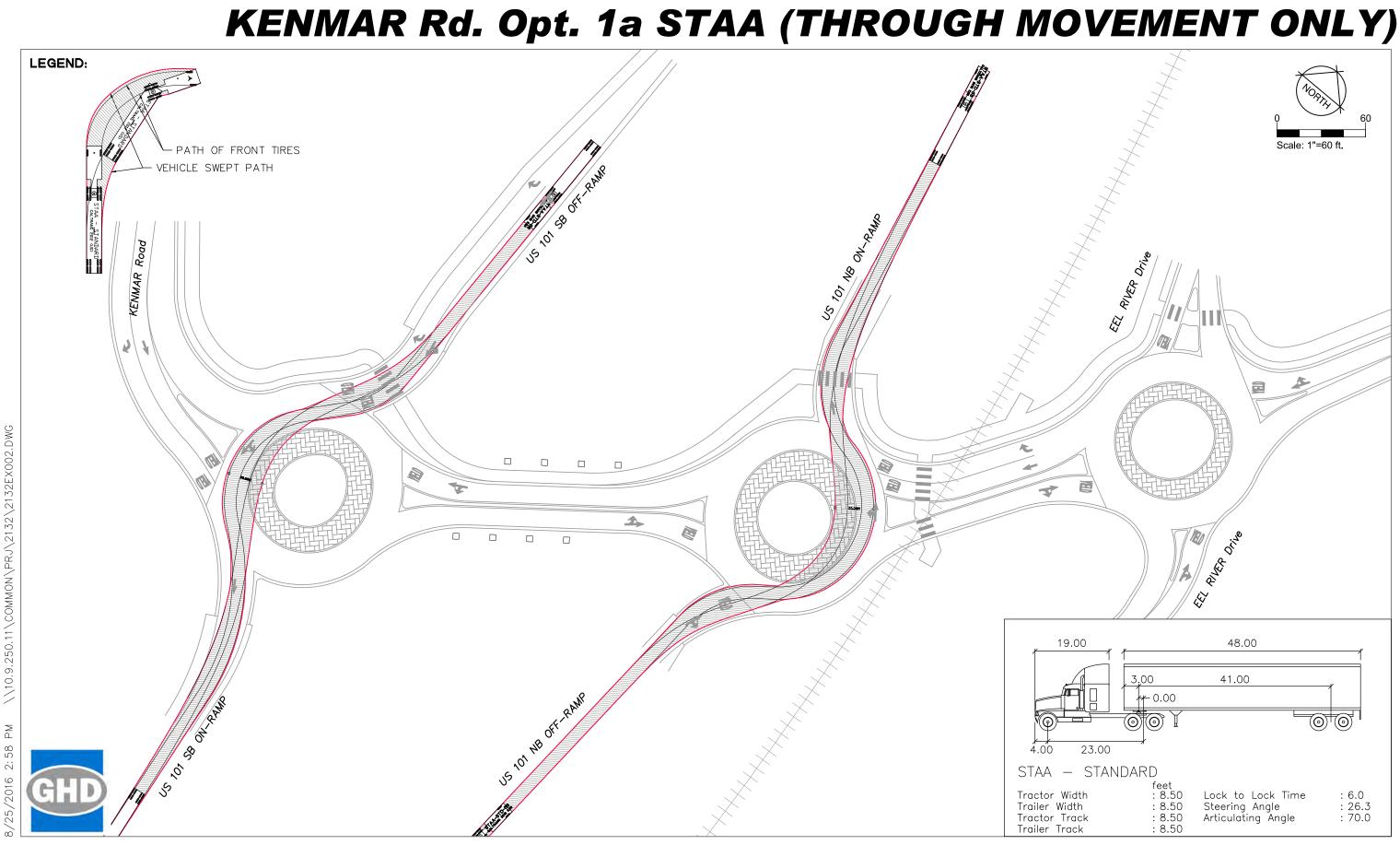

August 26, 2016 2132EX004.dwg

Figure B1

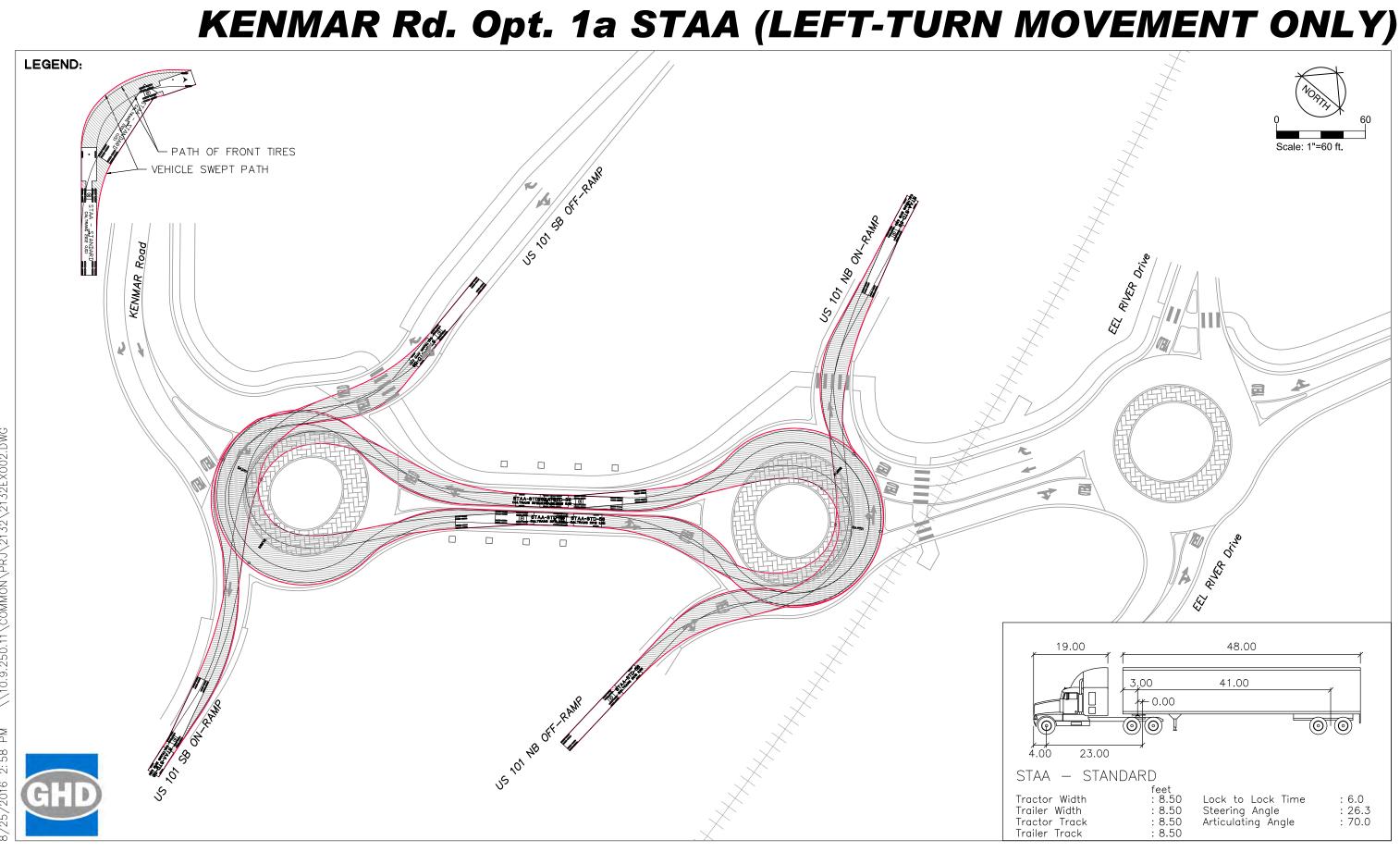





August 26, 2016 2132EX004.dwg





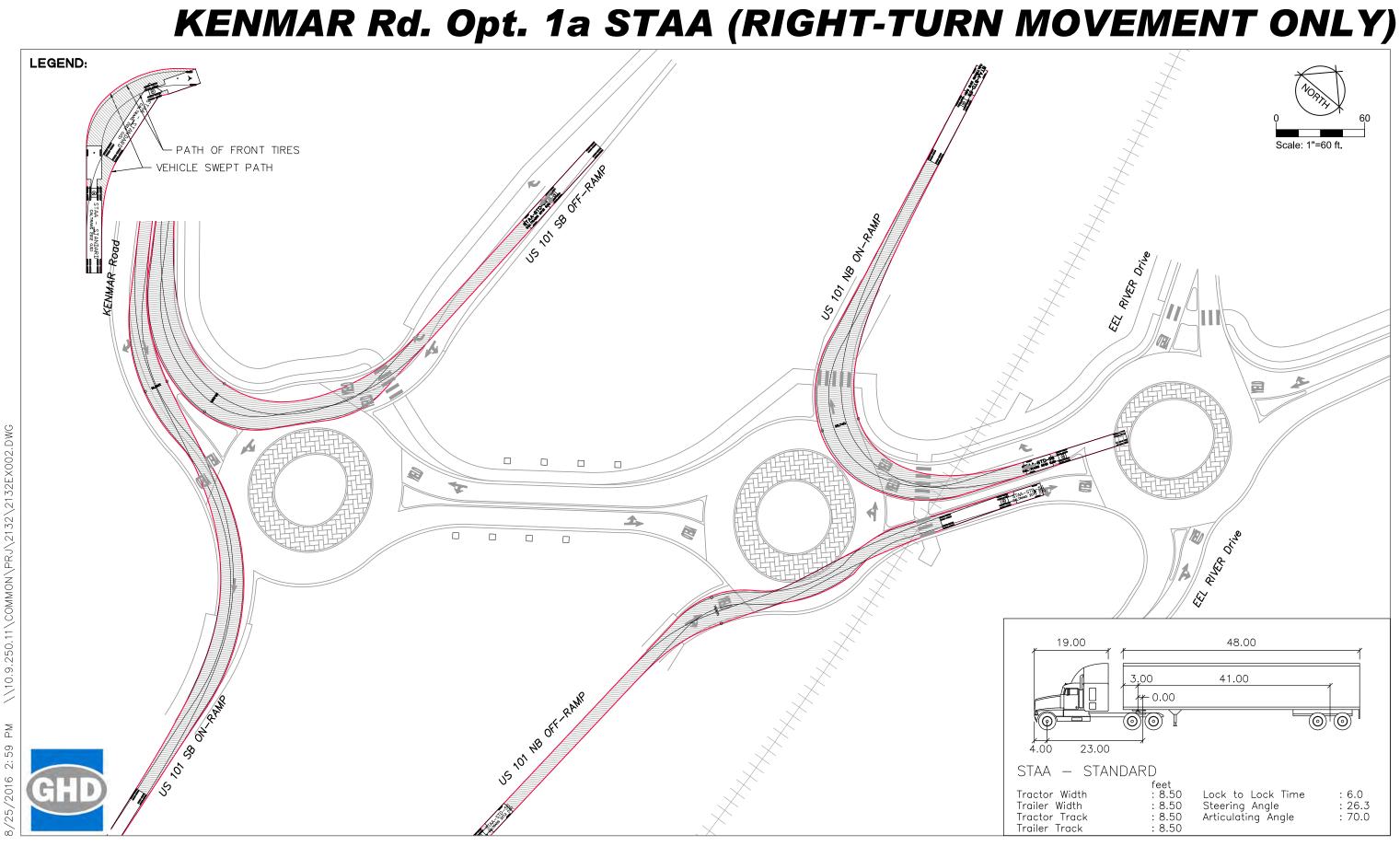

August 26, 2016 2132EX004.dwg



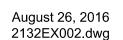


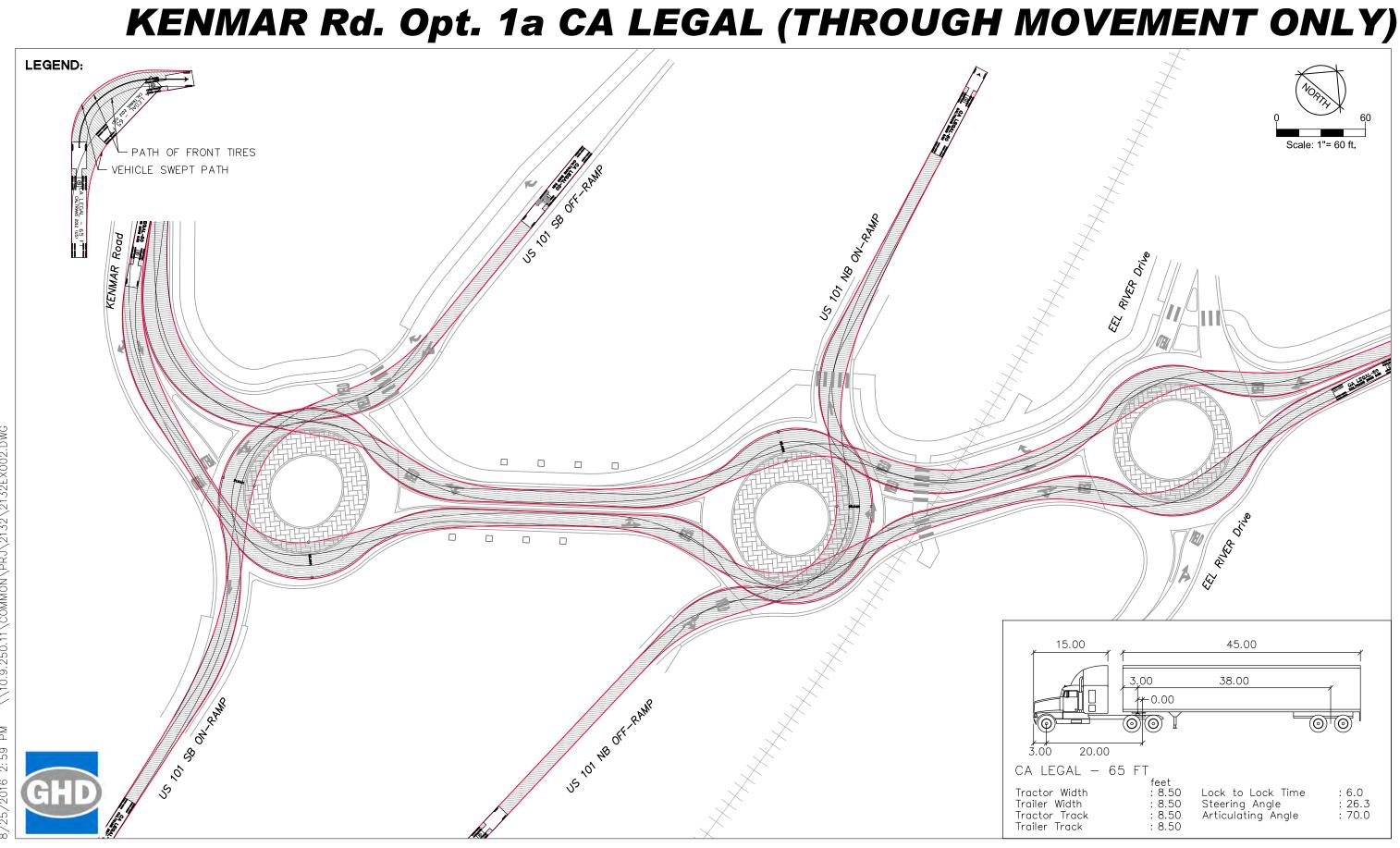

August 26, 2016 2132EX002.dwg

omni • means





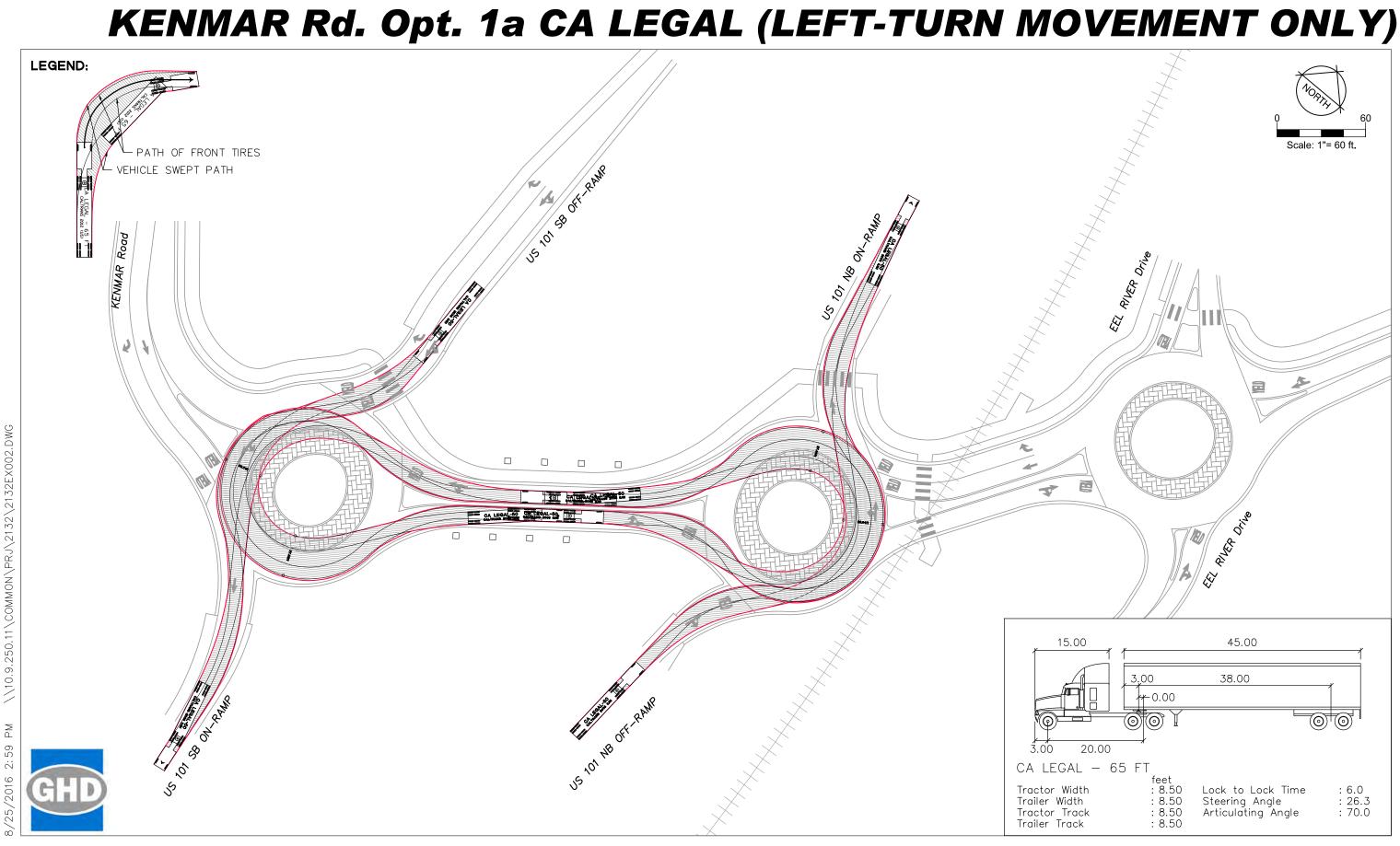





omni • means

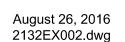
2132EX002.dwg

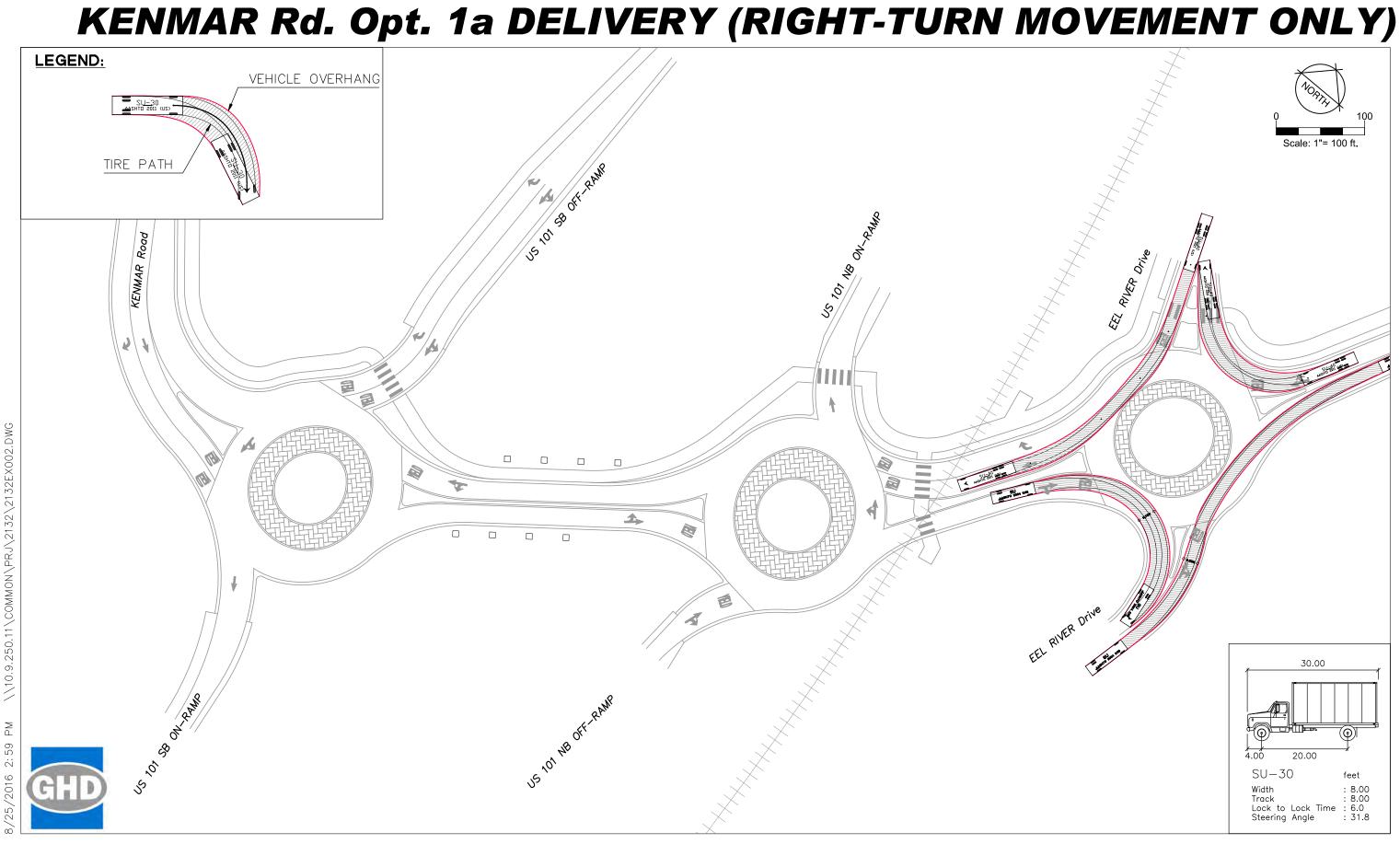








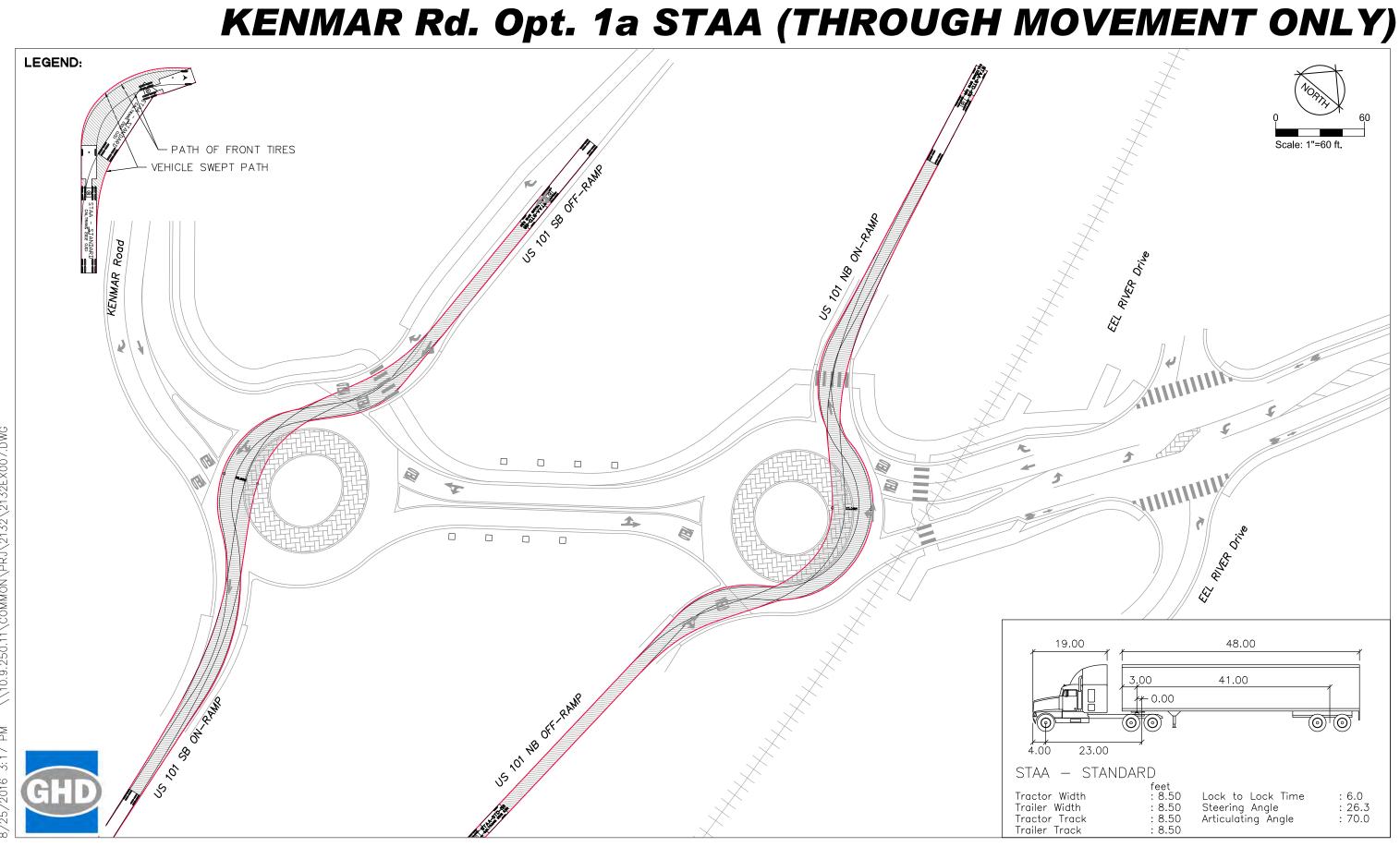



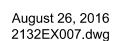

August 26, 2016 2132EX002.dwg

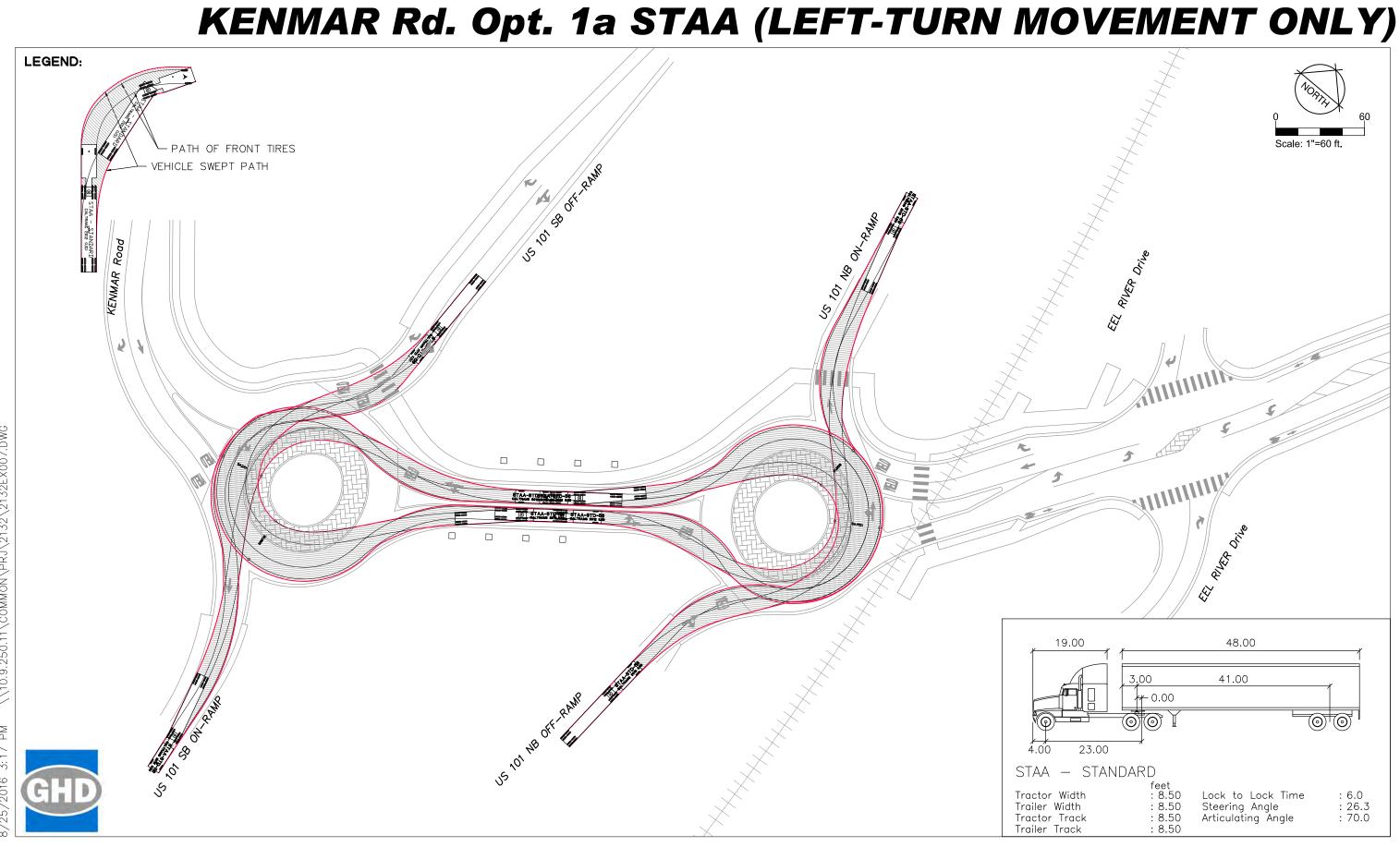




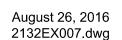


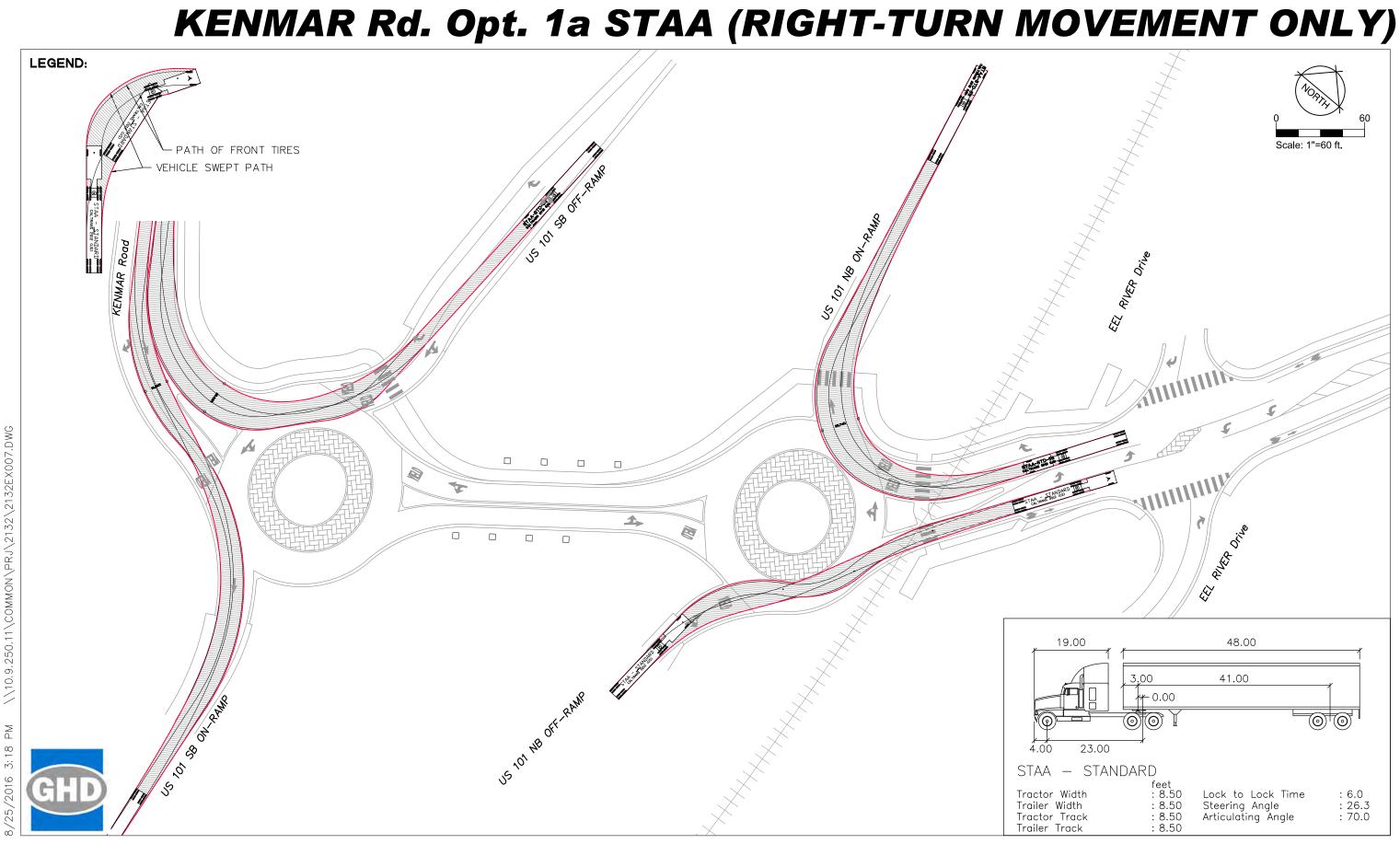


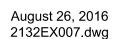



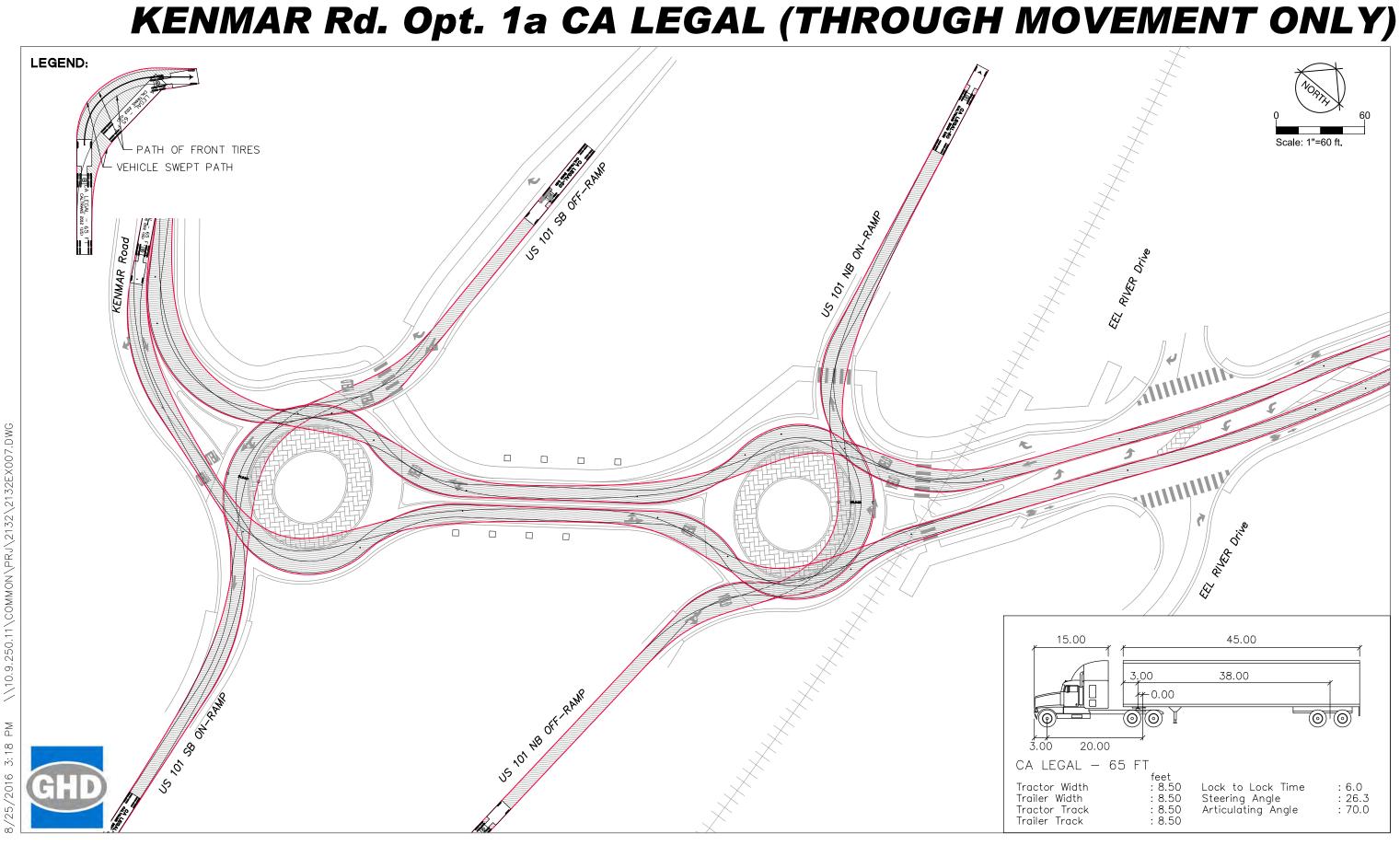

August 26, 2016 2132EX002.dwg



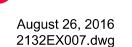



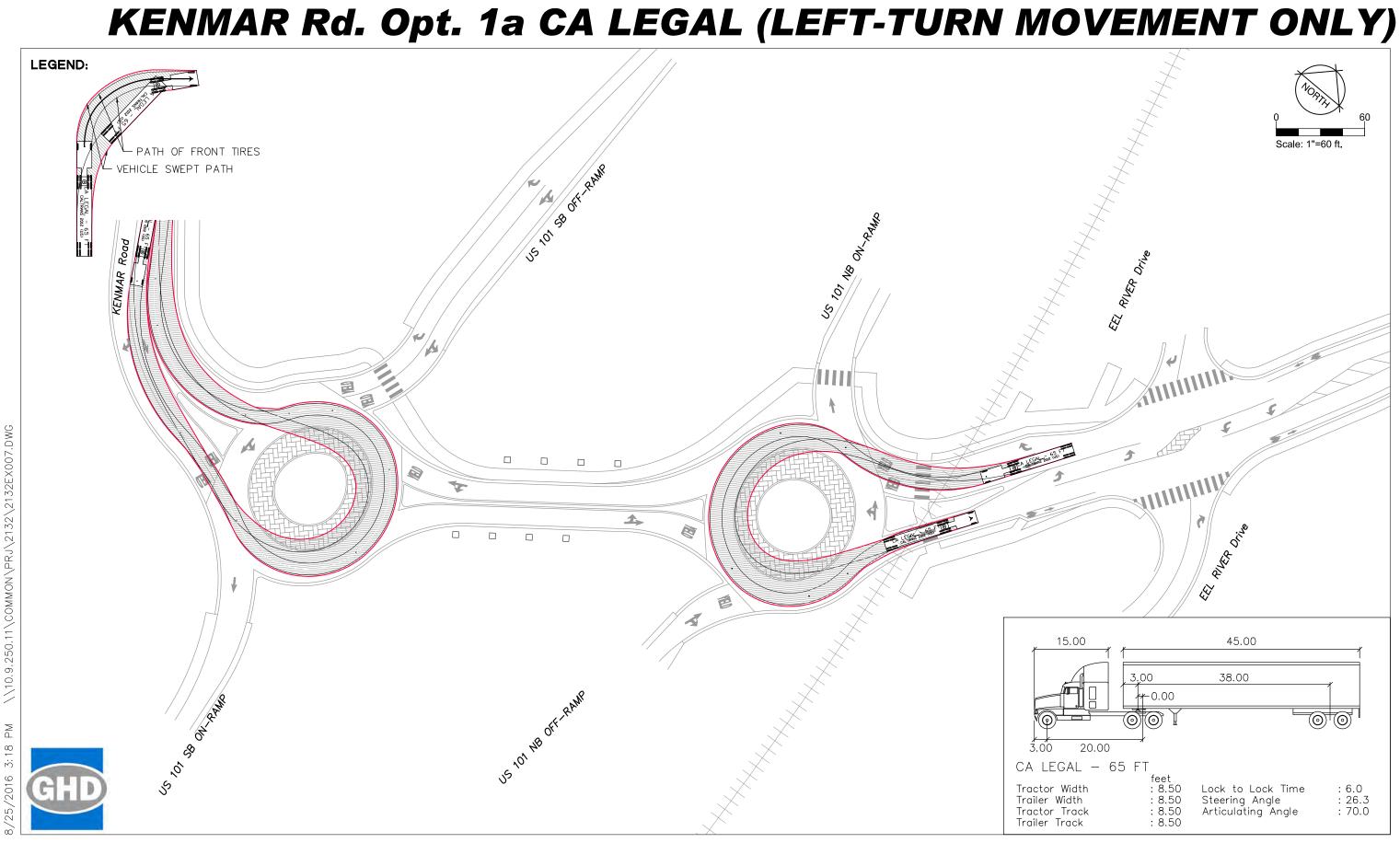


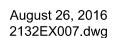



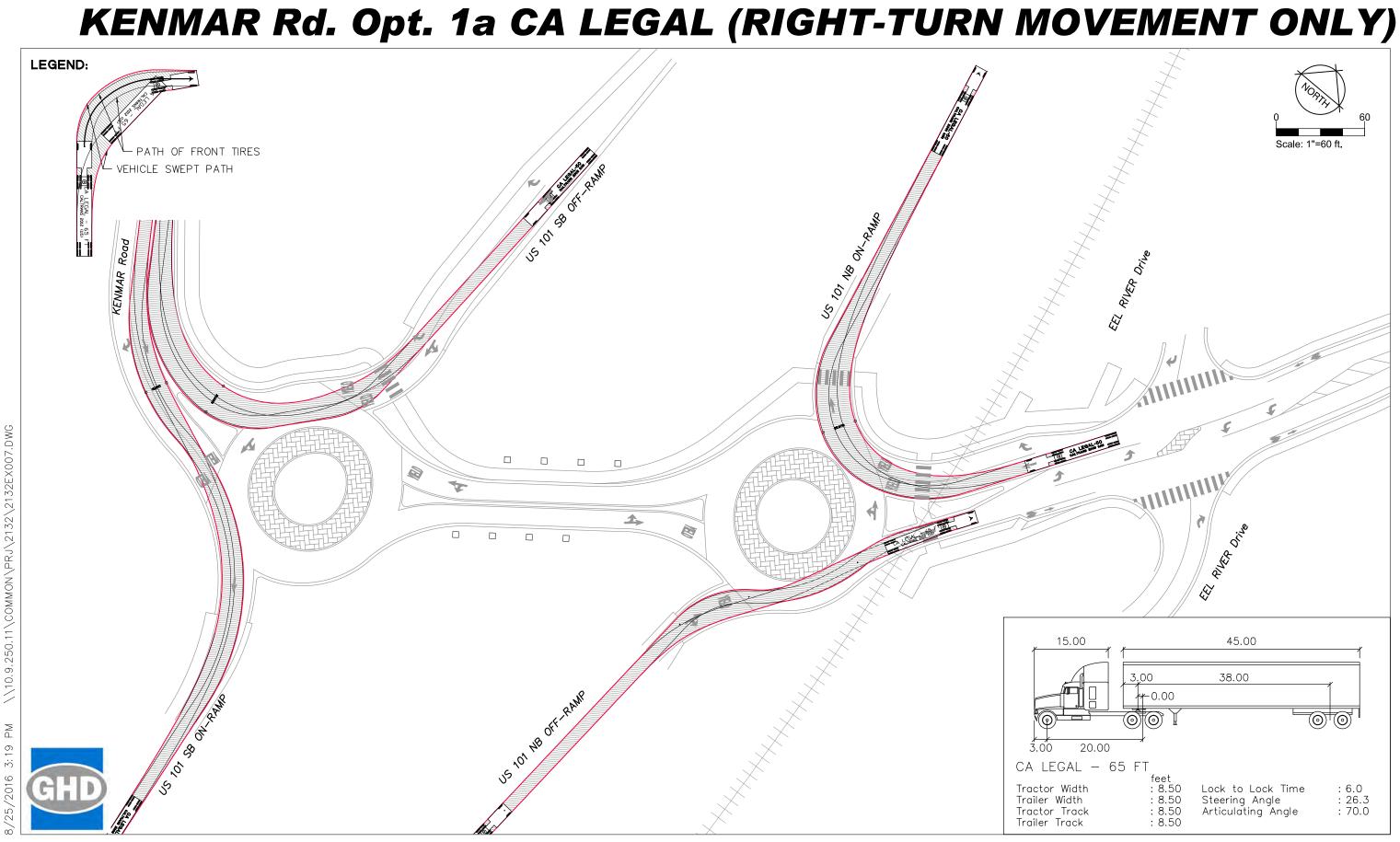


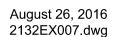



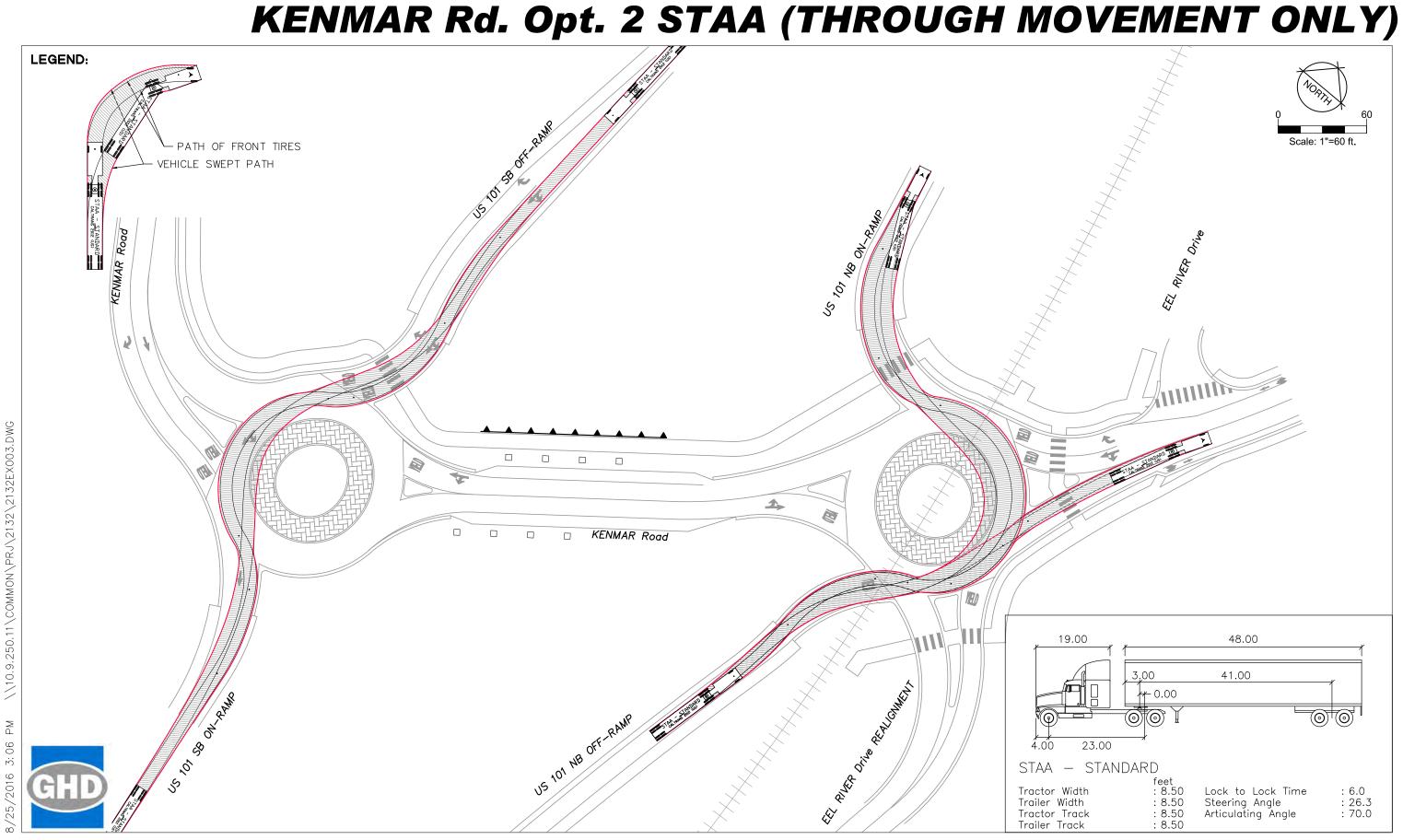


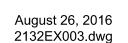



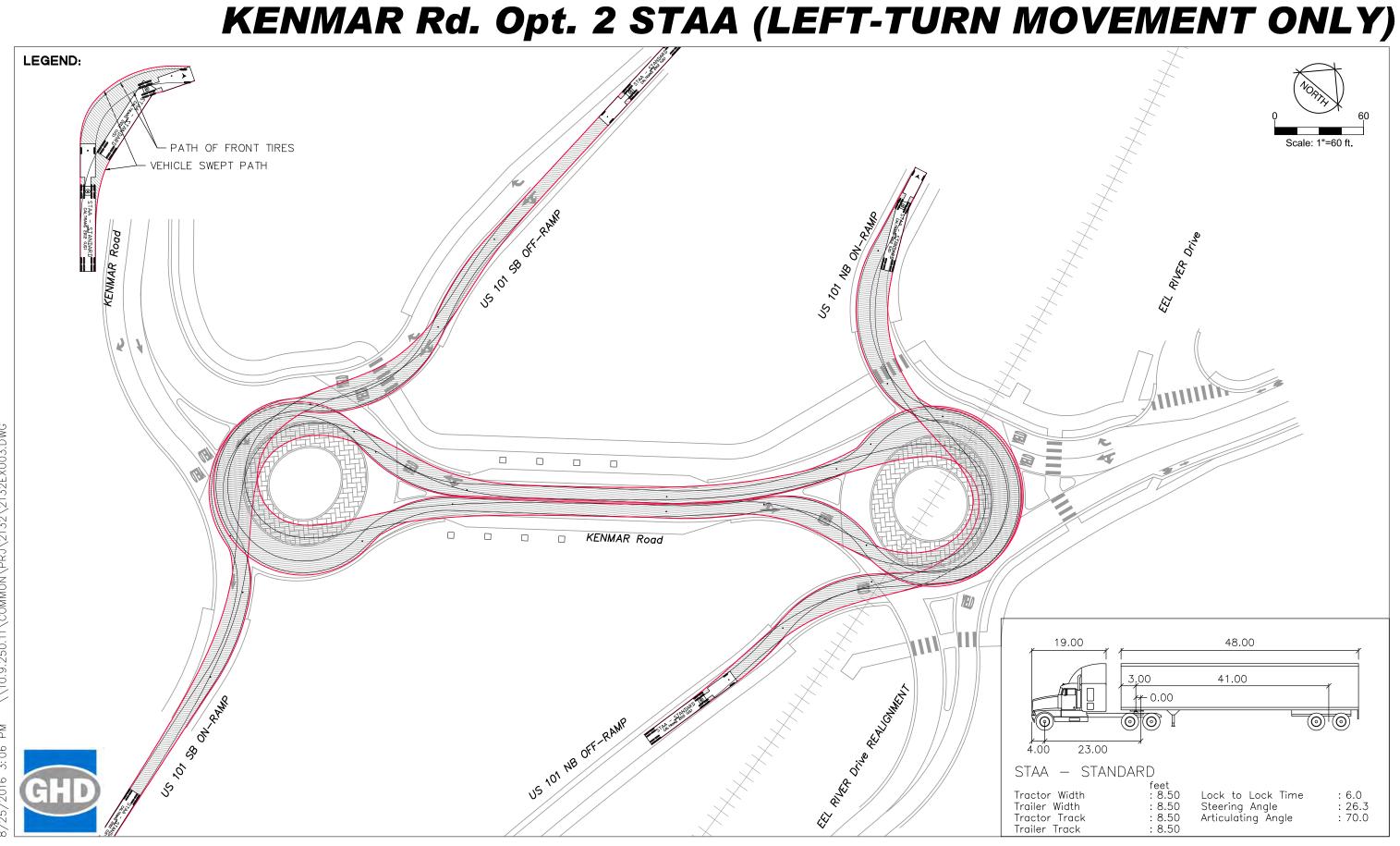


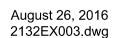



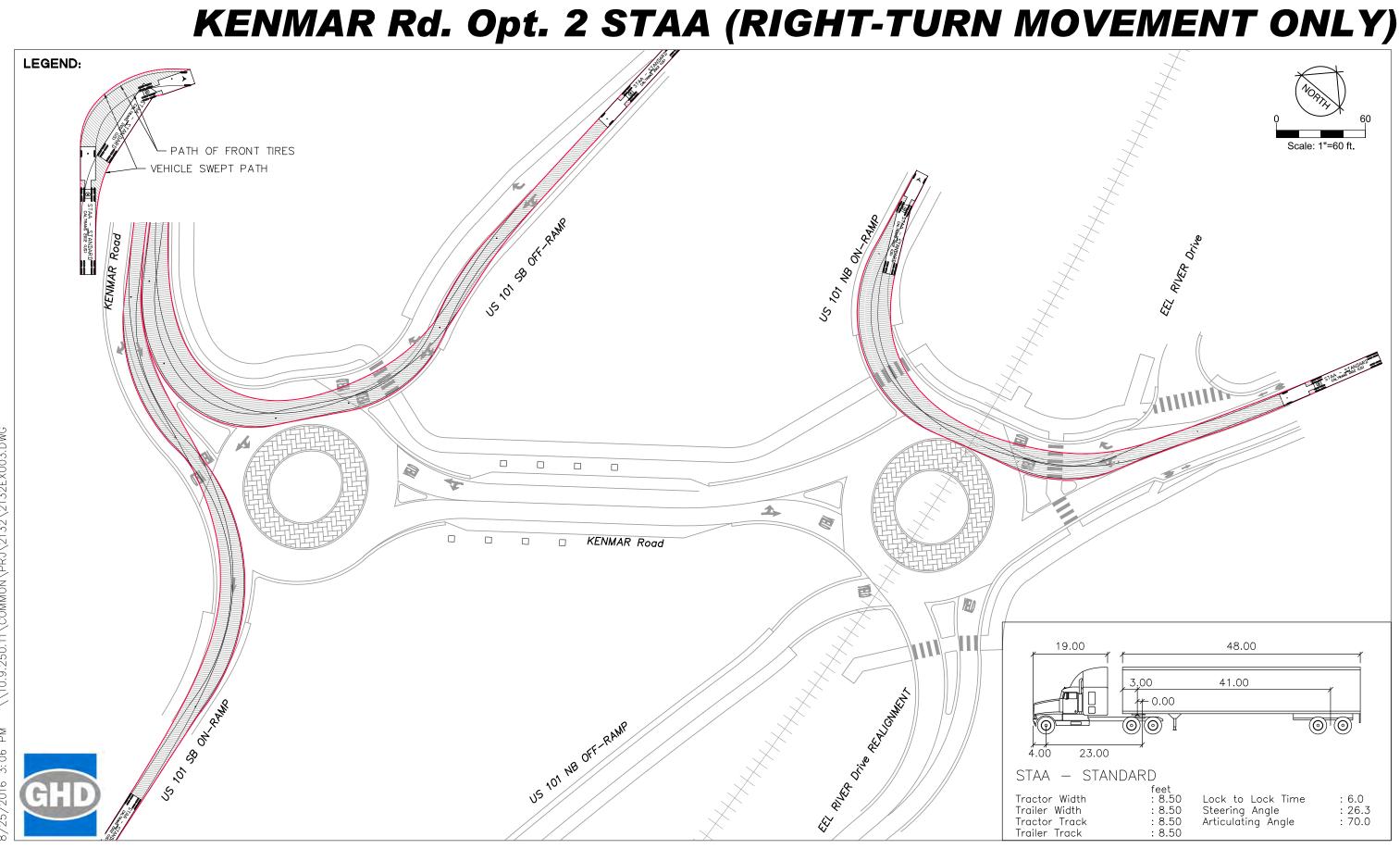


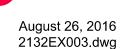



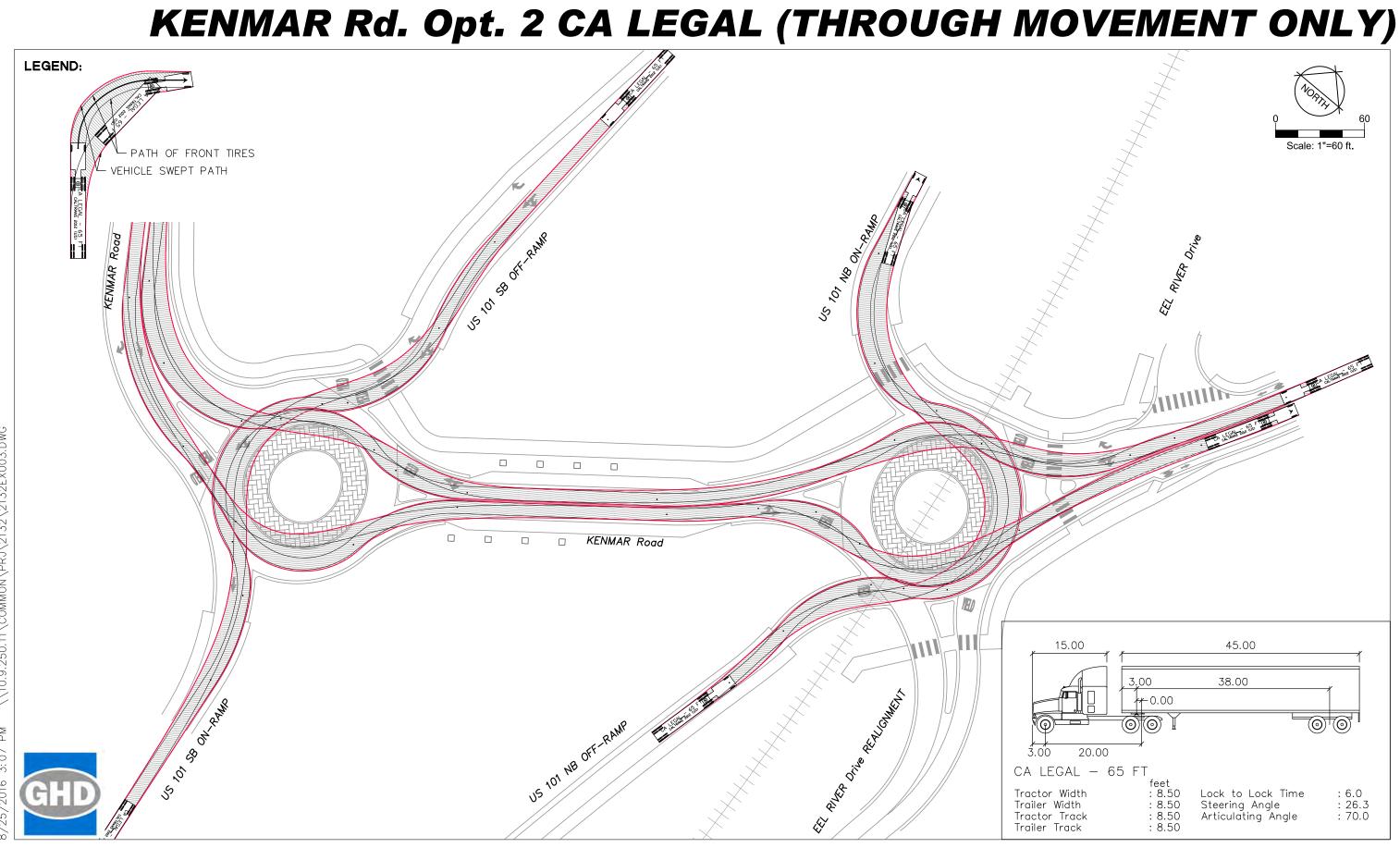


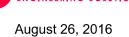





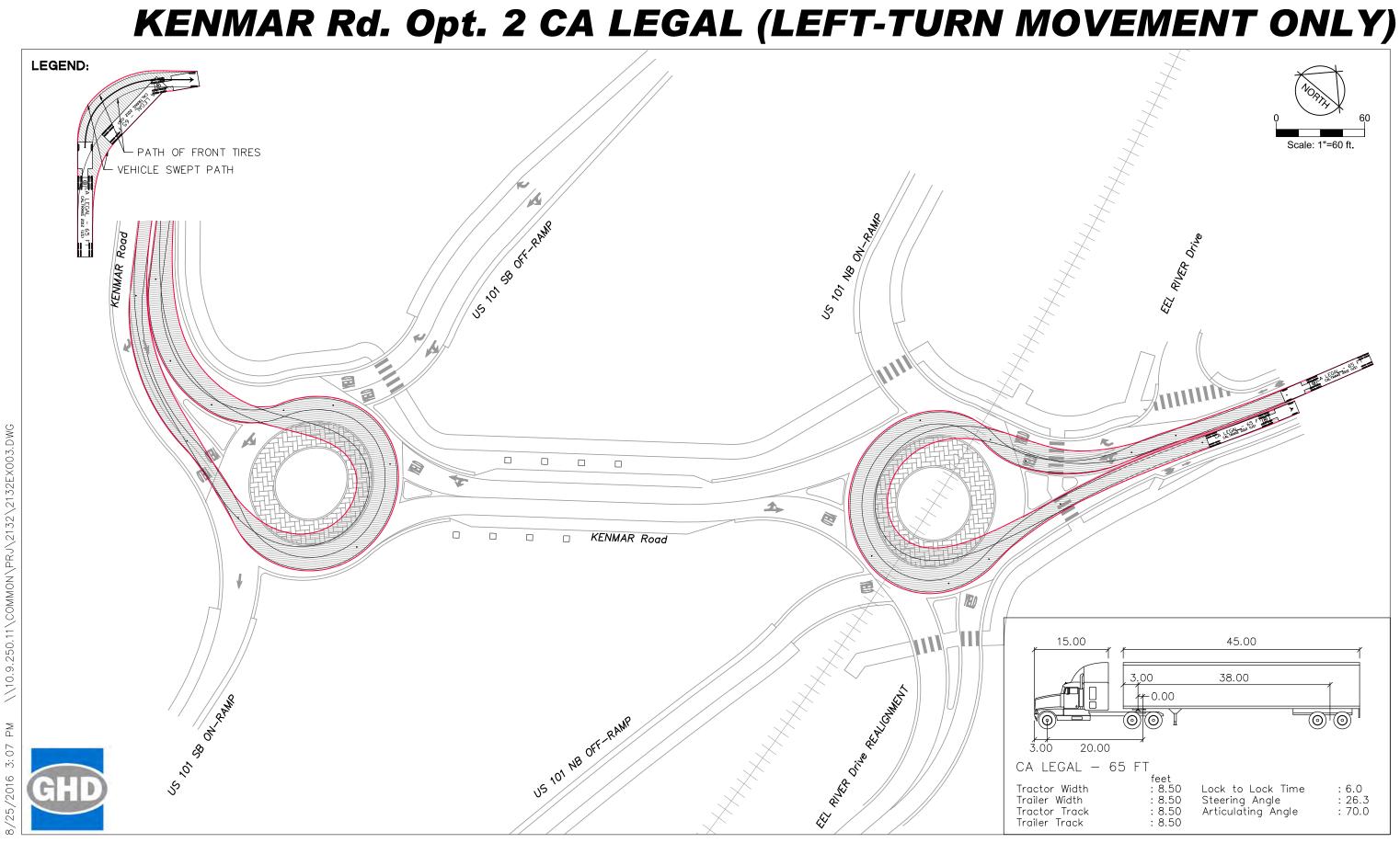





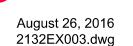



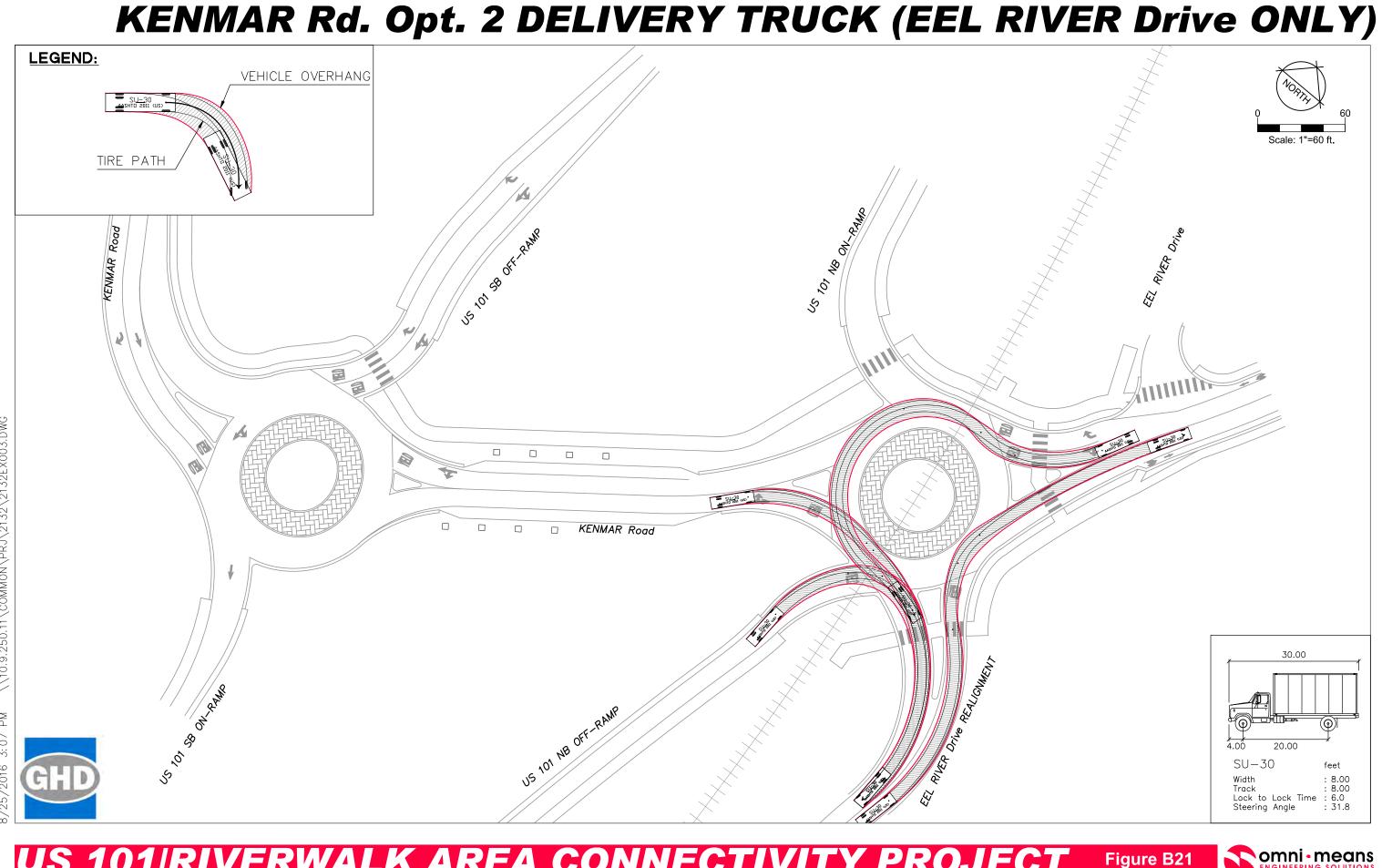




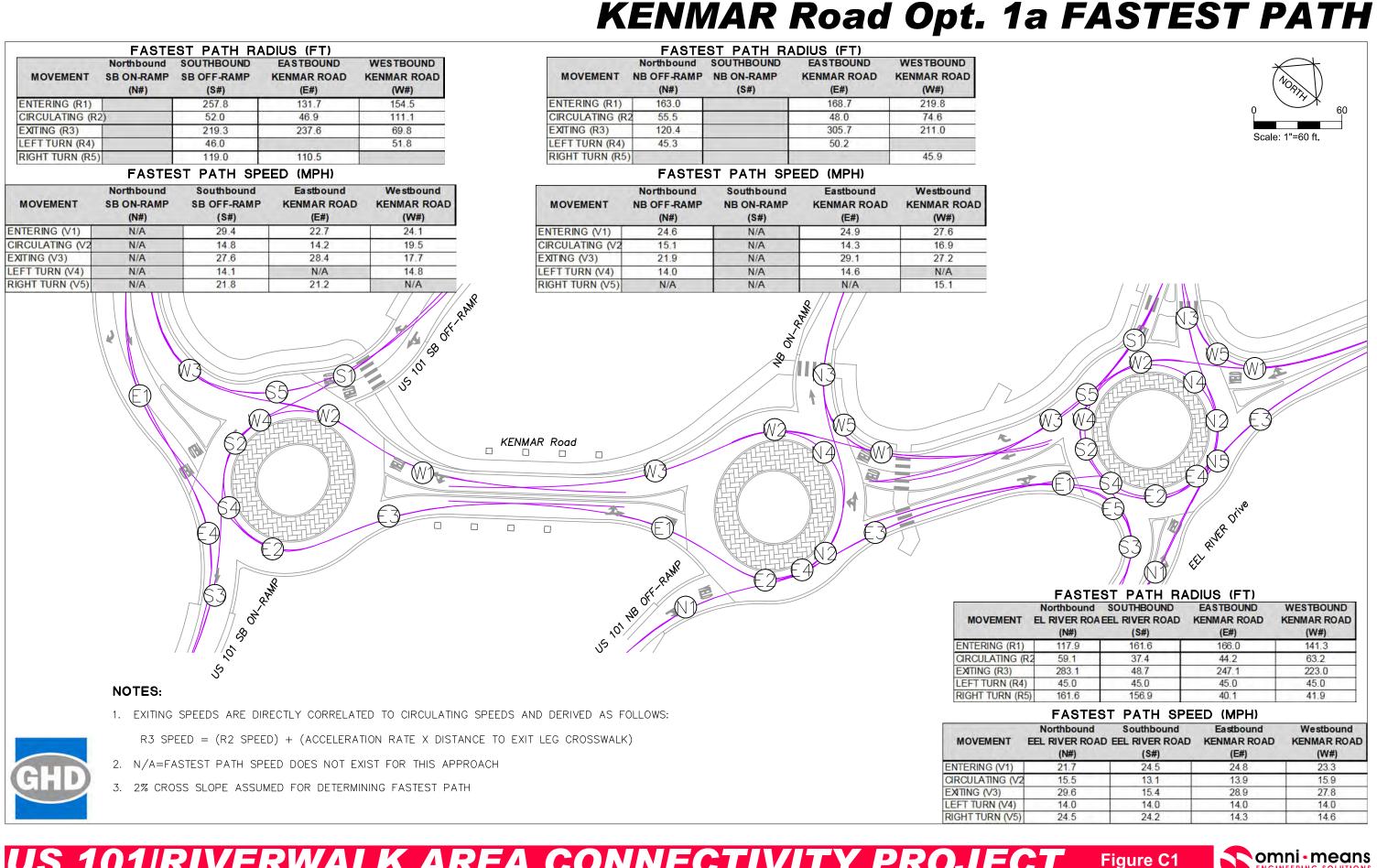


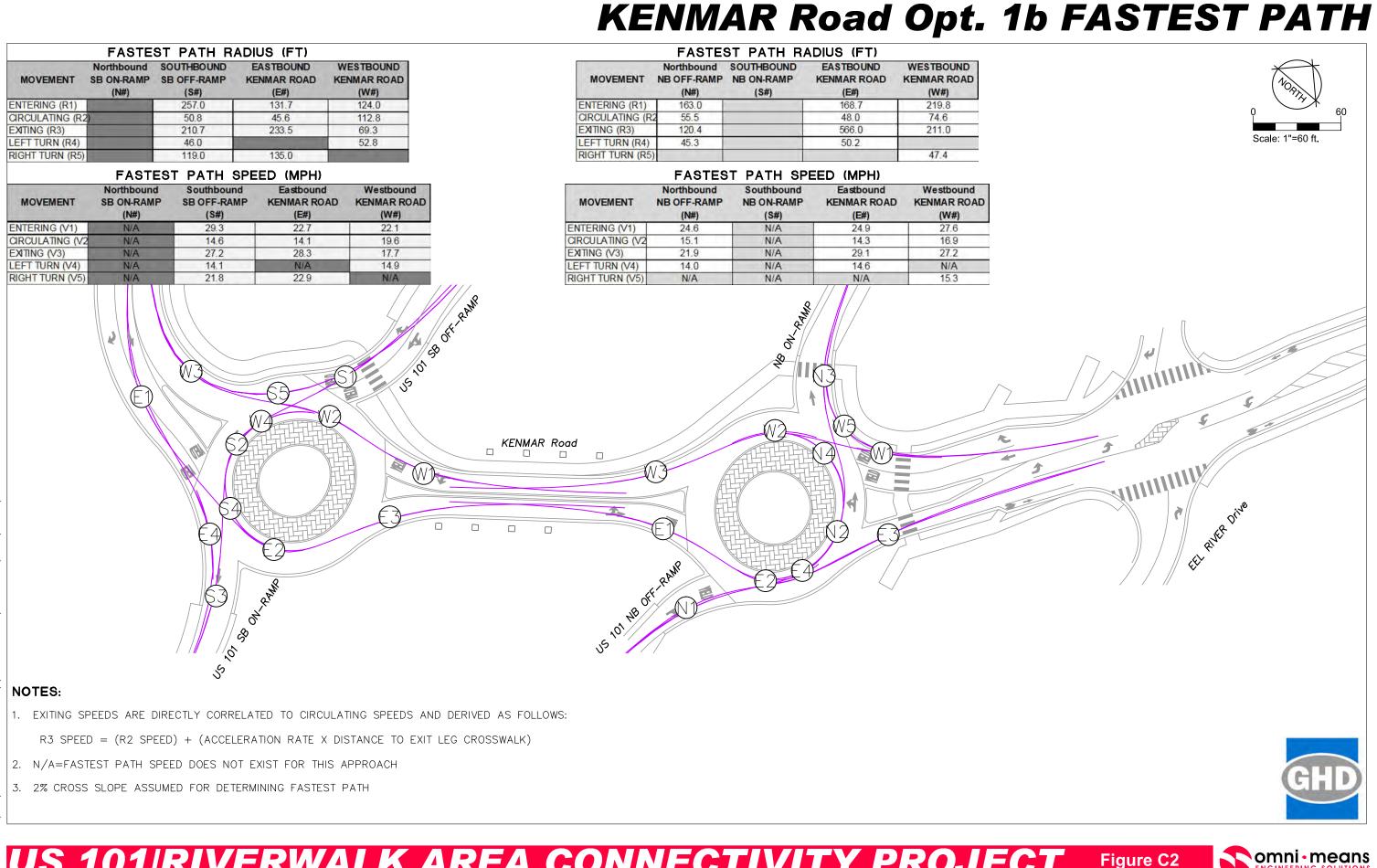


omni • means

2132EX003.dwg



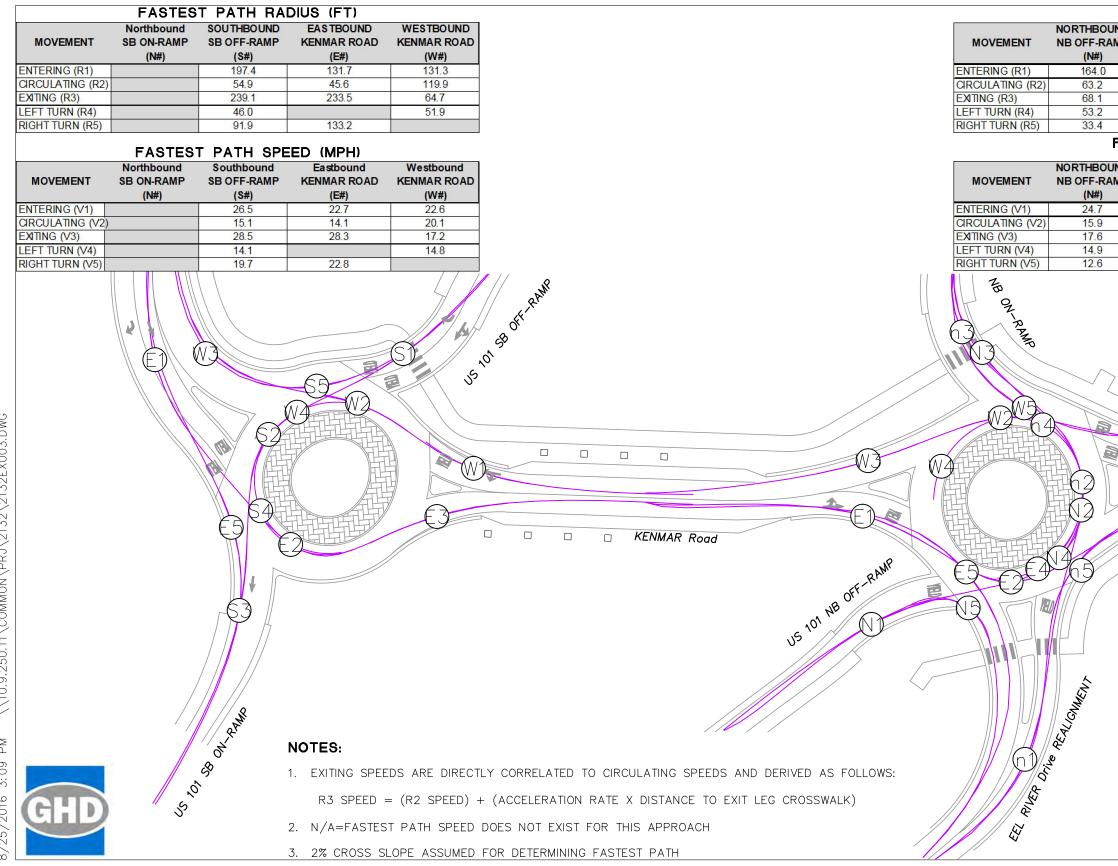





August 26, 2016 2132EX003.dwg

**Attachment F - Fast Path Exhibits** 



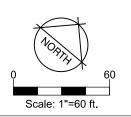

August 26, 2016 2132EX002.dwg



August 26, 2016 2132EX007.dwg

# **KENMAR Road Opt. 2 FASTEST PATH**




### US 101/RIVERWALK AREA CONNECTIVITY PROJECT Fortuna, California

| FA | STEST PAT       | H RADIUS (FT | -)          |             |
|----|-----------------|--------------|-------------|-------------|
| ND | ORTHWES TBOUN   | SOUTHBOUND   | EASTBOUND   | WESTBOUND   |
| ΛP | EEL RIVER DRIVE | NB ON-RAMP   | KENMAR ROAD | KENMAR ROAD |
|    | (n#)            | (S#)         | (E#)        | (W#)        |
|    | 127.6           |              | 153.0       | 195.5       |
|    | 63.2            |              | 50.5        | 98.1        |
|    | 79.5            |              | 1000.0      | 381.5       |
|    | 63.7            |              | 49.4        | 53.0        |
|    | 81.6            |              | 112.0       | 81.1        |

### FASTEST PATH SPEED (MPH)

| ND<br>MP | NORTHWESTBOUND<br>EEL RIVER DRIVE<br>(n#) | Southbound<br>NB ON-RAMP<br>(S#) | Eastbound<br>KENMAR ROAD<br>(E#) | Westbound<br>KENMAR ROAD<br>(W#) |
|----------|-------------------------------------------|----------------------------------|----------------------------------|----------------------------------|
|          | 22.4                                      |                                  | 24.0                             | 26.4                             |
|          | 15.9                                      |                                  | 14.6                             | 18.7                             |
|          | 18.6                                      |                                  | 29.2                             | 31.4                             |
|          | 15.9                                      |                                  | 14.5                             | 14.9                             |
|          | 17.4                                      |                                  | 19.6                             | 17.4                             |

EEL RIVER





August 26, 2016 2132EX003.dwg

Attachment G - Preliminary Structures Analysis

### **Morrison Structures**

1890 Park Marina Drive, Ste 104 Redding, CA 96001

### **Structure Memorandum**

From: Bob Morrison, Jr., S.E., Morrison Structures, Redding, California

To: Josh Wolf, P.E, GHD, Eureka, California

Date: September 15, 2016

Re: Highway 101 Fortuna Downtown and Riverwalk Area Complete Streets and Connectivity Planning Study U.S. 101/Kenmar Road Undercrossing HUM-101-59.50

### **General**

The purpose of this memorandum is to provide structure information for the proposed alternatives for the Fortuna-Kenmar Road Undercrossing Interchange Improvements. The level of study we have conducted is a Project Study Report-Project Development Support (PSR-PDS) Cost Estimate. The purpose of our study was to determine preliminary scope, feasibility, rough cost range, and a list of potential project risks for the proposed structures work.

The Route U.S. 101 spans over Kenmar Road on a bridge (Kenmar Road Undercrossing, Br. No. 04-0128) at the interchange. The bridge is skewed approximately 34 degrees to the right and is a 3-span, 133-foot-long, concrete tee-beam structure, with a span arrangement of 34, 64, and 34 feet. The structure was constructed in 1962. End supports are diaphragm abutments on concrete pile foundations, and intermediate supports are 4-column bents on concrete pile foundations. The structure is in good condition with sufficiency rating equal to 98 and health index equal to 100. Kenmar Road currently passes under the 65 foot main span with a 14-foot 10-inch vertical clearance. The 40-foot-width of Kenmar Road currently accommodates two 12 foot travel lanes and two 8-foot shoulders. There are no sidewalks along either side of Kenmar Road.



Kenmar Road Undercrossing Looking West

### <u>Alternative 1 – Signal Concept for Kenmar Corridor (*Replace Kenmar Road Undercrossing at US* <u>101/Kenmar Road Interchange)</u></u>

The proposed Alternative 1 improvement intends to add traffic signals and improve Kenmar Road in the City of Fortuna by widening the roadway, maintain profile grade, and adding a pedestrian sidewalk along the north side of the roadway. The widening would accommodate five 12-foot traffic-lanes, 5-foot shoulders each side of the roadway and a 7-foot-wide sidewalk along the north side of the road. The overall width of Kenmar Road improvement is approximately 77 feet including the sidewalk. In order to provide for widening and improving Kenmar Road to this extent, it will be necessary to replace the existing 3-span undercrossing. The existing bridge is in fair condition, however its' main span is insufficient dimension to accommodate the Kenmore Road improvements.

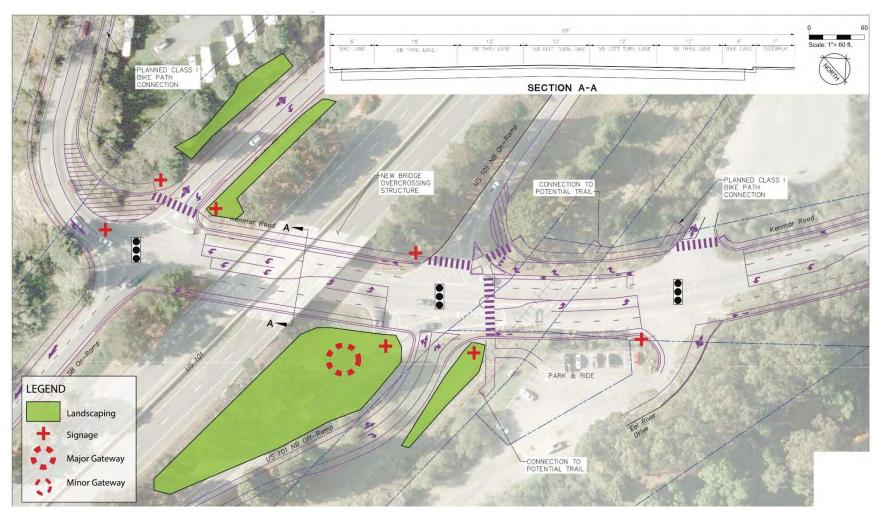
Based on the conditions at the site and the interchange geometrics, the new undercrossing will be a singlespan, approximately 114 feet in length. The most economical structure type will likely be a precast, prestressed, concrete girder structure with a 6-foot structure depth. Supports would be high-cantilever wall type abutments founded on concrete piling. An increase in elevation of U.S. 101 on the order of 2 feet will be necessary to allow for a minimum 15 feet vertical clear distance from the bottom of soffit to Kenmar Road. The undercrossing will be designed to accommodate a Type 742 concrete left barrier, a minimum 10-foot left shoulder, two 12-foot lanes of southbound traffic, 5-foot southbound median shoulder, a Type 60 median barrier, a 5-foot northbound median shoulder, two 12-foot lanes northbound traffic, a 10-foot right shoulder, and a Type 742 concrete right barrier. Falsework is not necessary to erect this type of girder structure.

The new undercrossing can be constructed in two phases. The initial phase would likely be to remove and construct approximately the west half of the new bridge, while U.S. 101 traffic utilizes the east half of the existing bridge. The final phase would be to reroute U.S. 101 traffic to the new west half and remove and construct the east half of the new structure and a 3-foot wide deck closure pour. The anticipated structure cost is \$4,700,000 not including costs for mobilization or contingencies. Bridge removal costs represent \$180,000 of this figure.

### Alternative 2 – Kenmar Road Interchange Roundabout Concepts Option 2 (Add Retaining Wall at US 101/Kenmar Road Interchange for new Multi-use Path)

The proposed Alternative 2 intends to construct a permanent retaining wall parallel to and in front of the north abutment of the existing Kenmar Road Undercrossing (Abutment 4) and to add traffic roundabouts each side of the interchange on Kenmar Road. The retaining wall in front of the abutment is to accommodate a 10-foot-wide pedestrian/bicycle facility under the structure. The total length of proposed wall will be approximately 180 feet.

The proposed wall layout line is 15 feet from the face of the existing columns; however, the layout line could be located as close as 10 feet from the face of existing columns. We considered using a Caltrans Type 7 retaining wall for the proposed structure for the layout line 10 feet from the existing columns and the excavation for a Type 7 wall would likely be outside the influence zone of the Abutment 1 diaphragm. If the wall layout line is located more than 10 feet from the existing column face, then the new wall will need to be a permanent tie-back (ground anchor) diaphragm wall constructed from top down in a minimum of three lifts. The maximum wall height above the pedestrian surface will be approximately 12 feet depending on layout. The wall foundations will extend 2 to 3 feet below finish grade. Cable railing will be mounted on top of the wall. Permanent tie-backs will require a permanent construction easement. The anticipated structure cost is \$635,000 not including costs for mobilization or contingencies. The estimate does not include cost for traffic control or temporary K-railing that will be needed during the work.


| MORRISON STRUCTURES, INC.                                          |          |                                 |          |                    |          |                         |  |  |  |
|--------------------------------------------------------------------|----------|---------------------------------|----------|--------------------|----------|-------------------------|--|--|--|
|                                                                    | Marina   | Dr., Ste 104                    |          |                    |          |                         |  |  |  |
| Redding, CA 96001                                                  |          |                                 |          |                    |          |                         |  |  |  |
| BRIDGE GENERAL PLAN ESTIMATE                                       | 0.       |                                 | NNING F  | STIMATE            |          |                         |  |  |  |
| STRUCTURE Kenmar Rd Ret Wall RW@US101                              | •        | COUNTY HUM                      |          | RCVD. BY           |          |                         |  |  |  |
| TYPE TYPE 1 & GRND ANCHOR DIST.                                    | 1        | ROUTE US101                     |          | P.M.               |          |                         |  |  |  |
| LENGTH 180 X WIDTH 14.5                                            | =        | 2610 SF                         |          | EST. NO.           |          | 1                       |  |  |  |
| PROJECT INCLUDES 1 ret wall STRUCTURES                             |          | QUANTITIES BY                   | RLM      | DATE               |          | 9/2/2016                |  |  |  |
| AND \$ ROADWORK                                                    |          | CHECKED BY                      |          | DATE               |          |                         |  |  |  |
|                                                                    |          |                                 |          |                    |          |                         |  |  |  |
| CONTRACT ITEMS                                                     | UNIT     | QUANTITY                        |          | RICE               |          | AMOUNT                  |  |  |  |
| 1 STRUCTURE EXCAVATION (RETAINING WALL)                            | CY       | 260                             |          | 125.00             | \$       | 32,500.00               |  |  |  |
| 2 STRUCTURE EXCAVATION (GROUND ANCHOR WALL)                        | CY       | 106                             |          | 125.00             | \$       | 13,250.00               |  |  |  |
| 3 STRUCTURE BACKFILL (RETAINING WALL)                              | CY       | 200                             |          | 125.00             | \$       | 25,000.00               |  |  |  |
| 4 STRUCTURE BACKFILL (GROUND ANCHOR WALL)                          | CY       | 10                              | \$       | 275.00             | \$       | 2,750.00                |  |  |  |
| 5 PERVIOUS BACKFILL MATERIAL (RETAINING WALL)                      | CY       | 14                              | \$       | 205.00             | \$       | 2,870.00                |  |  |  |
| 6 GROUND ANCHOR<br>7 STRUCTURAL CONCRETE, RETAINING WALL           | EA<br>CY | 60<br>125                       | \$<br>\$ | 5,450.00<br>825.00 | \$<br>\$ | 327,000.00              |  |  |  |
|                                                                    | LB       | 27150                           |          | 825.00<br>1.35     | ֆ<br>\$  | 103,125.00<br>36,652.50 |  |  |  |
| 8 BAR REINFORCING STEEL (RETAINING WALL)<br>9 STRUCTURAL SHOTCRETE | CY       | 27150                           | э<br>\$  | 1,125.00           | ֆ<br>\$  | 36,652.50<br>63,000.00  |  |  |  |
| 10 3" PLASTIC PIPE (RETAINING WALL)                                | LF       | 96                              |          | 32.00              | э<br>\$  | 3,072.00                |  |  |  |
| 11 GEOCOMPOSITE DRAIN                                              | LS       | 1                               | \$       | 6,000.00           | \$       | 6,000.00                |  |  |  |
| 12 MINOR CONCRETE (GUTTER)                                         | CY       | 6                               | \$       | 1,350.00           | \$       | 8,100.00                |  |  |  |
| 13 CABLE RAILING                                                   | LF       | 180                             | \$       | 63.00              | \$       | 11,340.00               |  |  |  |
| 14                                                                 |          |                                 | \$       | -                  | \$       | -                       |  |  |  |
| 15                                                                 |          |                                 | \$       | -                  | \$       | -                       |  |  |  |
| 16                                                                 |          |                                 | \$       | -                  | \$       | -                       |  |  |  |
| 17                                                                 |          |                                 | \$       | -                  | \$       | -                       |  |  |  |
| 18                                                                 |          |                                 | \$       | -                  | \$       | -                       |  |  |  |
| 19                                                                 |          |                                 | \$       | -                  | \$       | -                       |  |  |  |
| 20                                                                 |          |                                 | \$       | -                  | \$       | -                       |  |  |  |
| 21                                                                 |          |                                 | \$       | -                  | \$       | -                       |  |  |  |
| 22                                                                 |          |                                 | \$       | -                  | \$       | -                       |  |  |  |
| 23                                                                 |          |                                 | \$       | -                  | \$       | -                       |  |  |  |
| 26                                                                 |          |                                 | \$       | -                  | \$       | -                       |  |  |  |
| 27                                                                 |          |                                 | \$       | -                  | \$       | -                       |  |  |  |
| 28                                                                 |          |                                 | \$       | -                  | \$       | -                       |  |  |  |
| 29                                                                 |          |                                 | \$       | -                  | \$       | -                       |  |  |  |
| 30                                                                 |          |                                 | \$       | -                  | \$       | -                       |  |  |  |
| 31                                                                 |          |                                 | \$       | -                  | \$       | -                       |  |  |  |
| COMMENTS                                                           | SUBTO    |                                 | 40       | 0/)                | \$<br>¢  | 634,659.50              |  |  |  |
| COMMENTS:                                                          | MOBILIZ  | ,                               | 10       | %)                 | \$<br>\$ | 70,517.72 705,177.22    |  |  |  |
|                                                                    |          | AL STRUCTURE ITEMS<br>GENCIES ( | 25       | %)                 | ֆ<br>\$  | 176,294.31              |  |  |  |
| COST ESTIM FOR 2016 CONSTRUCTION                                   | TOTAL    |                                 |          | %)<br>/ SF         | ֆ<br>\$  | 881,471.53              |  |  |  |
|                                                                    |          | REMOVAL (CONTINGE               | · ·      |                    | Ψ<br>\$  | -                       |  |  |  |
|                                                                    |          | Y RAILROAD OR UTILI             |          | ,                  | \$       | _                       |  |  |  |
|                                                                    | GRAND    |                                 |          |                    | \$       | 881,471.53              |  |  |  |
|                                                                    |          | DGET PURPOSES -                 | USE      |                    | \$       | 881,000.00              |  |  |  |
|                                                                    | CON      | MMENTS:                         |          |                    |          |                         |  |  |  |
|                                                                    |          |                                 |          |                    |          |                         |  |  |  |
|                                                                    |          |                                 |          |                    |          |                         |  |  |  |

### **MORRISON STRUCTURES, INC.**

L

|                   | M                                            |             |                                       |            |           | C.        |                |          |                      |
|-------------------|----------------------------------------------|-------------|---------------------------------------|------------|-----------|-----------|----------------|----------|----------------------|
|                   |                                              | 1890 Park M |                                       | ,          | 104       |           |                |          |                      |
| В                 | RIDGE GENERAL PL                             |             | ling, CA                              | 96001      |           |           | ESTIMATE       |          |                      |
|                   | KENMAR RD UC/HWY                             |             |                                       | COUNTY     |           |           | RCVD. BY       |          |                      |
| TYPE              |                                              | DIST.       | 1                                     | ROUTE      |           |           | P.M.           |          |                      |
| LENGTH            | 114 X WIDTH                                  | 86.33       | =                                     | 9842       | SF        |           | EST. NO.       |          | 1                    |
| PROJECT           | INCLUDES 1                                   | STRUCTURES  | 1                                     | QUAN       | TITIES BY | RLM       | DATE           |          | 9/2/2016             |
|                   | AND \$                                       | ROADWORK    |                                       | CHE        | CKED BY   |           | DATE           |          |                      |
|                   |                                              |             | · · · · · · · · · · · · · · · · · · · |            |           |           |                | 1        |                      |
|                   | CONTRACT ITEMS                               |             | UNIT                                  | QUAN       |           |           | RICE           |          | AMOUNT               |
|                   | ' RAILING (TYPE K)                           |             | LF                                    |            | 80        | \$        | 45.00          | \$       | 66,600.0             |
|                   | EXCAVATION (BRIDGE)                          |             | CY                                    |            | 35        | \$        | 80.00          | \$       | 258,800.0            |
|                   | EXCAVATION (RET WALL)                        |             | CY<br>CY                              |            | 20<br>23  | \$<br>\$  | 80.00<br>80.00 | \$<br>\$ | 105,600.0            |
|                   | BACKFILL (BRIDGE)<br>BACKFILL (RET WALL)     |             | CY                                    | 70         |           | э<br>\$   | 70.00          | э<br>\$  | 49,000.0             |
|                   | ING(CLASS 90)(ALT "V")                       |             | LF                                    | 123        |           | э<br>\$   | 40.00          | φ<br>\$  | 493,680.0            |
|                   | G (CLASS 90)(ALT "V")                        |             | EA                                    | 30         |           | φ<br>\$   | 1,275.00       | φ<br>\$  | 392,700.0            |
|                   | L CONCRETE APPROACH                          | SLAR        | CY                                    | 2          |           | φ<br>\$   | 1,150.00       | \$       | 242,650.0            |
|                   | L CONCRETE, BRIDGE FO                        |             | CY                                    | 36         |           | \$        | 450.00         | \$       | 163,350.0            |
|                   | L CONCRETE, BRIDGE                           |             | CY                                    | 87         |           | \$        | 1,200.00       | \$       | 1,050,000.00         |
|                   | L CONCRETE, RETAINING                        | WALI        | CY                                    | 60         |           | \$        | 1,000.00       | \$       | 600,000.0            |
|                   | PS CONC GIRDER (110'-12                      |             | EA                                    |            | 3         |           | 30.420.00      | φ<br>\$  | 395,460.0            |
|                   |                                              | 20)         | EA                                    |            | 3<br>3    | э<br>\$   | ,              | ֆ<br>\$  |                      |
|                   | S CONC GIRDER                                |             |                                       |            |           | •         | 6,425.00       | <u> </u> | 83,525.0             |
| 14 JOINT SEAL     |                                              |             | LF                                    |            | 30        | \$        | 75.00          | \$       | 13,500.0             |
|                   | RCING STEEL (BRIDGE)                         |             | LB                                    |            | 000       | \$        | 1.35           | \$       | 278,100.0            |
|                   | RCING STEEL (RETAINING<br>BARRIER (TYPE 742) | WALL)       | LB<br>LF                              | 710<br>34  |           | \$<br>\$  | 1.35<br>230.00 | \$<br>\$ | 95,850.0<br>80,040.0 |
| TT CONCRETE       | BARRIER (11PE 742)                           |             | LF                                    | 34         | +0        | э<br>\$   | 230.00         | ф<br>\$  | 80,040.0             |
|                   |                                              |             |                                       |            |           | ф<br>\$   |                | \$       |                      |
|                   |                                              |             |                                       |            |           | \$        | -              | \$       | -                    |
|                   |                                              |             |                                       |            |           | \$        | _              | \$       | -                    |
|                   |                                              |             |                                       |            |           | \$        | -              | \$       | -                    |
|                   |                                              |             |                                       |            |           | \$        | -              | \$       | -                    |
|                   |                                              |             |                                       |            |           | \$        | -              | \$       | -                    |
|                   |                                              |             |                                       |            |           | \$        | -              | \$       | -                    |
|                   |                                              |             |                                       |            |           | \$        | -              | \$       | -                    |
|                   |                                              |             |                                       |            |           | \$        | -              | \$       | -                    |
|                   |                                              |             |                                       |            |           | \$        | -              | \$       | -                    |
|                   |                                              |             |                                       |            |           | \$        | -              | \$       | -                    |
|                   |                                              |             |                                       |            |           | \$        | -              | \$       | -                    |
|                   |                                              |             |                                       |            |           | \$        | -              | \$       | -                    |
|                   |                                              |             |                                       |            |           | \$        | -              | \$       | -                    |
|                   |                                              |             |                                       |            |           | \$        | -              | \$       | -                    |
|                   |                                              |             |                                       |            |           | \$<br>¢   |                | \$       | -                    |
|                   |                                              |             | <u> </u>                              |            |           | \$<br>\$  | -              | \$<br>\$ | -                    |
|                   |                                              |             |                                       |            |           | э<br>\$   | -              | э<br>\$  | -                    |
|                   |                                              |             | <u> </u>                              |            |           | ф<br>\$   | -              | φ<br>\$  |                      |
|                   |                                              |             | ł                                     | 1          |           | \$<br>\$  | -              | \$       |                      |
|                   |                                              |             |                                       |            |           | \$        | -              | \$       | -                    |
| 1                 |                                              |             | SUBTO                                 | TAL        |           | . ·       |                | ÷        | 4,498,695.0          |
| COMMENTS:         | 2-STAGE REMOVE                               | _           | MOBILIZA                              | ATION      | (         | 10        | %)             | \$       | 499,855.0            |
| ND REPLACE        |                                              | _           | SUBTOTA                               | AL STRUCTU | IRE ITEMS |           |                | \$       | 4,998,550.0          |
| et Wall type Wing | Walls on Piles                               | _           | CONTING                               | SENCIES    | (         | 25        | %)             | \$       | 1,249,637.5          |
| DSTS ESTIM FOR    | R 2016 CONSTRUCTION                          | _           | BRIDGE                                |            | ,         | \$ 635    |                | \$       | 6,248,187.5          |
|                   |                                              | _           | BRIDGE                                | REMOVAL (0 | CONTINGEN | ICIES INC | L)             | \$       | 180,000.0            |
|                   |                                              | _           |                                       |            | OR UTILIT | Y FORCE   | S              | \$       | -                    |
|                   |                                              | -           | GRAND                                 |            |           |           |                |          | 6,428,187.5          |
|                   |                                              | -           | FOR BU                                | DGET PUF   | POSES -   | USE       |                | \$       | 6,429,000.0          |
|                   |                                              | -           | CON                                   | MMENTS:    |           |           |                |          |                      |
|                   |                                              | _           |                                       |            |           |           |                |          |                      |
|                   |                                              | -           |                                       |            |           |           |                |          |                      |
|                   |                                              | -           |                                       |            |           |           |                |          |                      |

Attachment H - Landscaping/Gateway Concepts



Kenmare Road Interchange Traffic Signal Concept - Landscaping Options



Kenmare Road Interchange Roundabout Concept - Landscaping Options

Attachment I - Cost Estimates

### Preliminary Opinion of Costs (Capital & Support) Kenmar Road Interchange Signal Concept

City of Fortuna

12/8/2017 25-3247-03/2132

| Con  | struction Costs                                                            |         |               |                |    | 25-3247-03/2132 |
|------|----------------------------------------------------------------------------|---------|---------------|----------------|----|-----------------|
| No.  | Item Description                                                           | Units   | Quantity      | Unit Cost      |    | Total           |
| 1    | Traffic Control                                                            | LS      | 1             | \$497,000.00   |    | \$497,000.00    |
| 2    | Remove Metal Beam Guard Railing                                            | LF      | 600           | \$16.00        |    | \$9,600.00      |
| 3    | Remove Roadside Sign                                                       | EA      | 29            | \$102.00       |    | \$2,958.00      |
| 4    | Remove Asphalt Concrete Dike                                               | LF      | 4140          | \$4.00         |    | \$16,560.00     |
| 5    | Remove Concrete (Curb & Gutter)                                            | LF      | 2400          | \$10.00        |    | \$24,000.00     |
| 6    | Remove Tree                                                                | EA      | 7             | \$1,400.00     |    | \$9,800.00      |
| 7    | Roadway Excavation                                                         | CY      | 7370          | \$67.00        |    | \$493,790.00    |
| 8    | Class 2 Aggregate Base                                                     | CY      | 11350         | \$70.00        |    | \$794,500.00    |
|      | Hot Mix Asphalt (Type A)                                                   | TON     | 6790          | \$140.00       |    | \$950,600.00    |
|      | Bridge (US 101 Over Kenmar Road)                                           | LS      | 1             | \$4,700,000.00 |    | \$4,700,000.00  |
| 11   | Detectable Warning Surface                                                 | SQFT    | 300           | \$35.00        |    | \$10,500.00     |
| 12   | Minor Concrete (Curb)                                                      | CY      | 4             | \$1,320.00     |    | \$5,280.00      |
|      | Minor Concrete (Curb and Gutter)                                           | CY      | 149           | \$806.00       |    | \$120,427.99    |
|      | Minor Concrete (Sidewalk)                                                  | CY      | 130           | \$680.00       |    | \$88,400.00     |
|      | Storm Drain System                                                         | LS      | 1             | \$100,000.00   |    | \$100,000.00    |
|      | Midwest Guard Rail System (Wood Post)                                      | LF      | 440           | \$80.00        |    | \$35,200.00     |
| 17   | Thermoplastic Traffic Stripe                                               | LF      | 10520         | \$1.25         |    | \$13,150.00     |
| 18   | Thermoplastic Pavement Marking                                             | SQFT    | 1684          | \$6.00         |    | \$10,101.00     |
|      | Signs                                                                      | EA      | 45            | \$350.00       |    | \$15,750.00     |
| 20   | Signal and Lighting                                                        | LS      | 3             | \$225,000.00   |    | \$675,000.00    |
| 21   | Lighting & Electrical                                                      | LS      | 1             | \$100,000.00   |    | \$100,000.00    |
|      | Planting and Irrigation                                                    | SQFT    | 39500         | \$5.00         |    | \$197,500.00    |
|      | Mobilization                                                               | LS      | 1             | \$837,400.00   |    | \$837,400.00    |
| 24   | Minor/ Supplemental Items                                                  | %       | 25%           | \$8,373,116.99 |    | \$2,093,279.25  |
|      | Subtotal (Construction Costs)                                              |         |               |                | \$ | 11,800,796.23   |
|      | Construction Contingency                                                   |         |               | 25%            | \$ | 2,950,199.06    |
|      | Total Construction Costs                                                   |         |               |                | \$ | 14,750,995.29   |
|      | Total Construction Budget (Rounded)                                        |         |               |                | \$ | 14,751,000.00   |
| Diah | t of Way (Capital) and Utility Relocation Costs:                           |         |               |                |    |                 |
| 1    | Right Of Way                                                               | SQFT    | 0             | \$20.00        |    | \$0.00          |
| 2    | Utility Relocation (TBD)                                                   | LS      | 1             | \$200,000.00   |    | \$200,000.00    |
| 2    |                                                                            |         | -             | \$200,000.00   | *  |                 |
|      | Total Right of Way (Capital) and Utility Relocation                        | on Cost | s<br>         |                | \$ | 200,000.00      |
|      | Total Project Capital Cost                                                 |         |               |                | \$ | 14,951,000.00   |
| Drei | ect Support Costs                                                          |         |               |                |    |                 |
|      |                                                                            |         | Canital Cast  | 400/           | ¢  | 4 405 400 00    |
| 1    | Environmental Clearance (CEQA/NEPA)                                        |         | Capital Costs | 10%            | \$ | 1,495,100.00    |
| 2    | PS&E                                                                       |         | Con. Costs    | 20%            | \$ | 2,950,200.00    |
| 3    | Right of Way Engineering & Acquisition Construction Support and Management |         | 0-Parcels     | \$25k/EA       | \$ | -               |
| 4    |                                                                            |         | Con. Costs    | 15%            | \$ | 2,212,700.00    |
|      | Total Project Support Costs                                                |         |               |                | \$ | 6,658,000.00    |
|      | Total Estimated Project Costs                                              |         |               |                | \$ | 21,609,000.00   |
|      | Rounded                                                                    |         |               |                |    | 21,610,000.00   |
|      | Noullaeu                                                                   |         |               |                | φ  | ∠1,010,000.00   |

Assuptions

1. All new paving.

2. Only R/W costs are for private properties (not County, City, or State).

3. Bridge removal included in the cost for each bridge.

### Preliminary Opinion of Costs (Capital & Support)

Kenmar Road Interchange Roundabout Concept - Option 1a

12/8/2017 25-3247-03/2132

|               | struction Costs                                         | 11       | 0                           |                       | 1       | <b>T</b> = (=1             |
|---------------|---------------------------------------------------------|----------|-----------------------------|-----------------------|---------|----------------------------|
| No.           | Item Description                                        | Units    | Quantity                    | Unit Cost             |         | Total                      |
|               | Traffic Control                                         | LS<br>LF | 1<br>850                    | \$140,000.00          |         | \$140,000.00               |
| 2             | Remove Metal Beam Guard Railing<br>Remove Roadside Sign | EA       | 29                          | \$16.00               |         | \$13,600.00                |
| <u>3</u><br>4 | Remove Asphalt Concrete Dike                            | LF       | 29<br>2460                  | \$102.00              |         | \$2,958.00                 |
| 4             | Remove Concrete (Curb & Gutter)                         |          | 1210                        | \$4.00<br>\$10.00     |         | \$9,840.00<br>\$12,100.00  |
| 6             | · · · · · · · · · · · · · · · · · · ·                   |          | 7                           |                       |         |                            |
|               | Remove Tree<br>Roadway Excavation                       | EA<br>CY | 5060                        | \$1,400.00<br>\$67.00 |         | \$9,800.00<br>\$339,020.00 |
| 8             | Class 2 Aggregate Base                                  | CY       | 5510                        | \$70.00               |         | \$385,700.00               |
|               | Hot Mix Asphalt (Type A)                                | TON      | 3060                        | \$140.00              |         | \$428,400.00               |
|               | Detectable Warning Surface                              | SQFT     | 300                         | \$35.00               |         | \$10,500.00                |
| 11            | Minor Concrete (Curb)                                   | CY       | 36                          | \$1,320.00            |         | \$47,520.00                |
| 12            | Minor Concrete (Curb - Truck Apron)                     | CY       | 47                          | \$1,160.00            |         | \$54,520.00                |
|               | Minor Concrete (Curb and Gutter)                        | CY       | 187                         | \$806.00              |         | \$150,722.00               |
|               | Minor Concrete (Stamped Concrete - Truck Apron)         | CY       | 230                         | \$615.00              |         | \$141,450.00               |
|               | Minor Concrete (Sidewalk)                               | CY       | 125                         | \$680.00              |         | \$85,000.00                |
|               | Storm Drain System                                      | LS       | 125                         | \$180,000.00          |         | \$180,000.00               |
| 17            | Midwest Guard Rail System (Wood Post)                   | LS       | 820                         | \$180,000.00          |         | \$65,600.00                |
|               | Thermoplastic Traffic Stripe                            |          | 4650                        | \$1.25                |         | \$5,812.50                 |
|               | Thermoplastic Pavement Marking                          | SQFT     | 1276                        | \$6.00                |         | \$7,656.00                 |
|               | Signs                                                   | EA       | 55                          | \$350.00              |         | \$19,250.00                |
| 20            | Lighting & Electrical                                   | LA       | 1                           | \$260,000.00          |         | \$260,000.00               |
|               | Planting and Irrigation                                 | SQFT     | 13900                       | \$200,000.00          |         | \$69,500.00                |
|               | Mobilization                                            | LS       | 13300                       | \$229,900.00          |         | \$229,900.00               |
|               | Minor/ Supplemental Items                               | %        | 25%                         | \$2,298,948.50        |         | \$574,737.13               |
| 27            |                                                         | 70       | 2070                        | ψ2,200,040.00         | *       |                            |
|               | Subtotal (Construction Costs)                           |          |                             | 050/                  | \$      | 3,243,585.63               |
|               | Construction Contingency                                |          |                             | 25%                   | \$      | 810,896.41                 |
|               | Total Construction Costs                                |          |                             |                       | \$      | 4,054,482.03               |
|               | Total Construction Budget (Rounded)                     |          |                             |                       | \$      | 4,054,500.00               |
| Righ          | l                                                       |          |                             |                       |         |                            |
| 1             | Right Of Way                                            | SQFT     | 3800                        | \$20.00               |         | \$76,000.00                |
| 2             | Utility Relocation                                      | ALLOW    | 1                           | \$200,000.00          |         | \$200,000.00               |
|               | Total Right of Way (Capital) and Utility Relocati       | on Costs | 5                           |                       | \$      | 276,000.00                 |
|               | Total Project Capital Cost                              |          |                             |                       | \$      | 4,330,500.00               |
| Proi          | ect Support Costs                                       |          |                             |                       |         |                            |
|               | PA&ED                                                   |          | Capital Costa               |                       | \$      | 550,000.00                 |
| 2             | PS&E                                                    |          | Capital Costs<br>Con. Costs | 20%                   | Դ<br>\$ | 810,900.00                 |
| 2             | Right of Way Engineering & Acquisition                  |          | 1-Parcels                   | \$25k/EA              | Դ<br>\$ | 25,000.00                  |
| 4             | Construction Support and Management                     |          | Con. Costs                  | 15%                   | ֆ<br>\$ | 608,200.00                 |
| +             |                                                         |          | 001. 00313                  | 1J70                  |         |                            |
|               | Total Project Support Costs                             |          |                             |                       | \$      | 1,994,100.00               |
|               | Total Estimated Project Costs                           |          |                             |                       | \$      | 6,324,600.00               |
|               |                                                         |          |                             |                       |         | 6,330,000.00               |

### Assuptions

1. All new paving.

2. Only R/W costs are for private properties (not County, City, or State).

3. Removing railroad tracks and equipment not included.

### Preliminary Opinion of Costs (Capital & Support)

Kenmar Road Interchange Roundabout Concept - Option 1b

12/8/2017 25-3247-03/2132

| No.    | struction Costs Item Description                    | Units    | Quantity                    | Unit Cost      |          | Total           |
|--------|-----------------------------------------------------|----------|-----------------------------|----------------|----------|-----------------|
| -      | Traffic Control                                     | LS       | <u>quantity</u><br>1        | \$140,000.00   |          | \$140,000.00    |
|        | Remove Metal Beam Guard Railing                     | LF       | 850                         | \$16.00        |          | \$13,600.00     |
| 3      | Remove Roadside Sign                                | EA       | 29                          | \$102.00       |          | \$2,958.00      |
| 4      | Remove Asphalt Concrete Dike                        | LF       | 2460                        | \$4.00         |          | \$9,840.00      |
| 5      | Remove Concrete (Curb & Gutter)                     | LF       | 1210                        | \$10.00        |          | \$12,100.00     |
| 6      | Remove Tree                                         | EA       | 6                           | \$1,400.00     |          | \$8,400.00      |
|        | Roadway Excavation                                  | CY       | 5160                        | \$67.00        |          | \$345,720.00    |
| 8      | Class 2 Aggregate Base                              | CY       | 5860                        | \$70.00        |          | \$410,200.00    |
| 9      | Hot Mix Asphalt (Type A)                            | TON      | 3270                        | \$140.00       |          | \$457,800.00    |
|        | Detectable Warning Surface                          | SQFT     | 360                         | \$35.00        |          | \$12,600.00     |
| 11     | Minor Concrete (Curb)                               | CY       | 26                          | \$1,320.00     |          | \$34,320.00     |
| 12     | Minor Concrete (Curb - Truck Apron)                 | CY       | 32                          | \$1,160.00     |          | \$37,120.00     |
|        |                                                     | CY       | 192                         | \$806.00       |          | \$154,752.00    |
|        | Minor Concrete (Stamped Concrete - Truck Apron)     | CY       | 170                         | \$615.00       |          | \$104,550.00    |
|        | Minor Concrete (Sidewalk)                           | CY       | 153                         | \$680.00       |          | \$104,040.00    |
|        | Storm Drain System                                  | LS       | 1                           | \$180,000.00   |          | \$180,000.00    |
| 17     | Midwest Guard Rail System (Wood Post)               | LF       | 820                         | \$80.00        |          | \$65,600.00     |
|        | Thermoplastic Traffic Stripe                        | LF       | 5000                        | \$1.25         |          | \$6,250.00      |
|        | Thermoplastic Pavement Marking                      | SQFT     | 1578                        | \$6.00         |          | \$9,468.00      |
| 20     | Signs                                               | EA       | 40                          | \$350.00       |          | \$14,000.00     |
| 21     | Lighting & Electrical                               | LS       | 1                           | \$220,000.00   |          | \$220,000.00    |
| 22     | Planting and Irrigation                             | SQFT     | 10300                       | \$5.00         |          | \$51,500.00     |
|        | Mobilization                                        | LS       | 1                           | \$225,500.00   |          | \$225,500.00    |
| 24     | Minor/ Supplemental Items                           | %        | 25%                         | \$2,254,818.00 |          | \$563,704.50    |
|        | Subtotal (Construction Costs)                       |          |                             |                | \$       | 3,184,022.50    |
|        | Construction Contingency                            |          |                             | 25%            | \$       | 796,005.63      |
|        |                                                     |          |                             | 2070           |          |                 |
|        | Total Construction Costs                            |          |                             |                | \$       | 3,980,028.13    |
|        | Total Construction Budget (Rounded)                 |          |                             |                | \$       | 3,980,100.00    |
|        | Int of Way (Capital) and Utility Relocation Costs:  |          |                             |                |          |                 |
| 1      | Right Of Way                                        | SQFT     | 0                           | \$20.00        |          | \$0.00          |
| 2      | Utility Relocation                                  | ALLOW    | 1                           | \$200,000.00   |          | \$200,000.00    |
|        | Total Right of Way (Capital) and Utility Relocation | on Costs | 5                           |                | \$       | 200,000.00      |
|        | Total Project Capital Cost                          |          |                             |                | \$       | 4,180,100.00    |
| Droi   | ect Support Costs                                   |          |                             |                |          |                 |
|        | PA&ED                                               |          | Canital Casta               |                | ¢        | FF0 000 00      |
| 1<br>2 | PA&ED<br>PS&E                                       |          | Capital Costs<br>Con. Costs | 200/           | \$       | 550,000.00      |
|        |                                                     |          |                             | 20%            | \$6      | 796,100.00      |
| 3      | Right of Way Engineering & Acquisition              |          | 0-Parcels<br>Con. Costs     | \$25k/EA       | \$<br>\$ | -<br>507 400 00 |
| 4      | Construction Support and Management                 |          | CON. COSIS                  | 15%            |          | 597,100.00      |
|        | Total Project Support Costs                         |          |                             |                | \$       | 1,943,200.00    |
|        | Total Estimated Project Costs                       |          |                             |                | \$       | 6,123,300.00    |
|        | Total Estimated Project Costs                       |          |                             |                | ¥        | •,•=•,••••••    |

### Assuptions

1. All new paving.

2. Only R/W costs are for private properties (not County, City, or State).

3. Removing railroad tracks and equipment not included.

### Preliminary Opinion of Costs (Capital & Support) Kenmar Road Interchange Roundabout Concept - Option 2

City of Fortuna

12/8/2017 25-3247-03/2132

|      | struction Costs                                     |       |               |                |          |              |
|------|-----------------------------------------------------|-------|---------------|----------------|----------|--------------|
| No.  | Item Description                                    | Units | Quantity      | Unit Cost      |          | Total        |
| 1    | Traffic Control                                     | LS    | 1             | \$182,000.00   |          | \$182,000.00 |
| 2    | Remove Metal Beam Guard Railing                     | LF    | 850           | \$16.00        |          | \$13,600.00  |
| 3    | Remove Roadside Sign                                | EA    | 29            | \$102.00       |          | \$2,958.00   |
| 4    | Remove Asphalt Concrete Dike                        | LF    | 2450          | \$4.00         |          | \$9,800.00   |
| 5    | Remove Concrete (Curb & Gutter)                     | LF    | 1200          | \$10.00        |          | \$12,000.00  |
| 6    | Remove Tree                                         | EA    | 7             | \$1,400.00     |          | \$9,800.00   |
| 7    | Roadway Excavation                                  | CY    | 5510          | \$67.00        |          | \$369,170.00 |
| 8    | Class 2 Aggregate Base                              | CY    | 6590          | \$70.00        |          | \$461,300.00 |
| 9    | Hot Mix Asphalt (Type A)                            | TON   | 3770          | \$140.00       |          | \$527,800.00 |
| 10   | Retaining Wall                                      | LS    | 1             | \$635,000.00   |          | \$635,000.00 |
| 11   | Detectable Warning Surface                          | SQFT  | 420           | \$35.00        |          | \$14,700.00  |
|      | Minor Concrete (Curb)                               | CY    | 16            | \$1,320.00     |          | \$21,120.00  |
|      | Minor Concrete (Curb - Truck Apron)                 | CY    | 32            | \$1,160.00     |          | \$37,120.00  |
| 14   | Minor Concrete (Curb and Gutter)                    | CY    | 133           | \$806.00       |          | \$107,198.00 |
| 15   | Minor Concrete (Stamped Concrete - Truck Apron)     | CY    | 170           | \$615.00       |          | \$104,550.00 |
|      | Minor Concrete (Sidewalk)                           | CY    | 139           | \$680.00       |          | \$94,520.00  |
| 17   | Storm Drain System                                  | LS    | 1             | \$180,000.00   |          | \$180,000.00 |
| 18   | Midwest Guard Rail System (Wood Post)               | LF    | 990           | \$80.00        |          | \$79,200.00  |
| 19   | Thermoplastic Traffic Stripe                        | LF    | 6180          | \$1.25         |          | \$7,725.00   |
| 20   | Thermoplastic Pavement Marking                      | SQFT  | 1151          | \$6.00         |          | \$6,906.24   |
| 21   | Signs                                               | EA    | 50            | \$350.00       |          | \$17,500.00  |
| 22   | Lighting & Electrical                               | LS    | 1             | \$260,000.00   |          | \$260,000.00 |
| 23   | Planting and Irrigation                             | SQFT  | 14100         | \$5.00         |          | \$70,500.00  |
| 24   | Mobilization                                        | LS    | 1             | \$304,300.00   |          | \$304,300.00 |
| 25   | Minor/ Supplemental Items                           | %     | 25%           | \$3,042,467.24 |          | \$760,616.81 |
|      | Subtotal (Construction Costs)                       |       |               |                | \$       | 4,289,384.05 |
|      | Construction Contingency                            |       |               | 25%            | \$       | 1,072,346.01 |
|      | Total Construction Costs                            |       |               |                | \$       | 5,361,730.06 |
|      | Total Construction Budget (Rounded)                 |       |               |                | \$       | 5,361,800.00 |
| Riał | nt of Way (Capital) and Utility Relocation Costs:   |       |               |                |          |              |
| 1    | Right Of Way                                        | SQFT  | 0             | \$20.00        |          | \$0.00       |
| 2    | Utility Relocation                                  | ALLOW | 1             | \$200,000.00   |          | \$200,000.00 |
|      | Total Right of Way (Capital) and Utility Relocation | -     |               | φ200,000.00    | \$       | 200,000.00   |
|      |                                                     |       |               |                |          |              |
|      | Total Project Capital Cost                          |       |               |                | \$       | 5,561,800.00 |
| Proj | ect Support Costs                                   |       |               |                |          |              |
| 1    | PA&ED                                               |       | Capital Costs |                | \$       | 550,000.00   |
| 2    | PS&E                                                |       | Con. Costs    | 20%            | \$       | 1,072,400.00 |
| 3    | Right of Way Engineering & Acquisition              |       | 0-Parcels     | \$25k/EA       | \$       | -            |
| 4    | Construction Support and Management                 |       | Con. Costs    | 15%            | \$       | 804,300.00   |
|      | Total Project Support Costs                         |       |               |                | \$       | 2,426,700.00 |
|      |                                                     |       |               |                | <b>^</b> | 7 000 500 50 |
|      | Total Estimated Project Costs                       |       |               |                | \$       | 7,988,500.00 |
|      | Rounded                                             |       |               |                | \$       | 7,990,000.00 |

Assuptions

1. All new paving.

Only R/W costs are for private properties (not County, City, or State).
 Removing railroad tracks and equipment not included.

Attachment J - Right-of-Way and Property Ownership



### **RIGHT OF WAY MEMORANDUM**

May 25, 2016

### **Base Mapping**

The base map consists of the Caltrans highway map 1 HUM-1-F coordinated on the California Coordinate System, Zone 1. This developed the centerline of Hwy 101 and the right of way lines through the project area. Parcels relinquished by Caltrans as part of the Hwy 101 Project are also shown on this map. The eastern Caltrans right of way line is the western line of the railroad right of way through most of this area.

### 12<sup>th</sup> Street Interchange

**Newburg Road** Book P of Deeds, Page 428 HCR describes the width of Newburg as 50 feet wide. Multiple tract maps were prepared on the North side of Newburg, however, no map references Book P of deeds or any other documentation for Newburg Road is listed on the maps. The Beacom subdivision map, recorded in Book 12 of Maps, page 138, lists the width for Newburg as 40 feet. The south side of Newburg in this area is all under one ownership by the Town of Scotia. Ground shots of existing improvements (back of walk to fence) indicate a width of 50 feet.

**12th Street south of railroad crossing and north of the overpass** the area south of the railroad right of way is owned by Caltrans, and has a width of 75 feet based on the Caltrans mapping. The Caltrans map shows the railroad crossing being relinquished to the County of Humboldt in 1978 per 1487 OR 184. The Caltrans map 1 HUM 1 F does not clearly delineate the transition from Caltrans to City of Fortuna ownership immediately south of the rail road crossing. This was at one time Sandy Prairie Road so the right of way was already existing before the Hwy 101 project. The County of Humboldt has a pavement maintenance agreement with Caltrans for the County roads carried over, under, or to the connecting freeway dated April 15<sup>th</sup> 1963. The exhibit attached to this agreement shows the County area of responsibility to be from a line approximately 50 feet south of the rail road tracks across the overpass to Dinsmore Drive on the south side of the overpass. Clendenen is the owner of the parcel to the west of 12<sup>th</sup> St., and Sequia Gas/ McWhorter owns the multiple parcels to the east of 12<sup>th</sup> St., including the abandoned Pond street.

**12th Street north** of the railroad right of way, Parcel Map 1828 Book 16, page 28 shows a half width of 12th street as 30 feet, and Parcel Map 2817 Book 25, page 103 shows a full width of 12th street as 60 feet.

**Dinsmore Drive/North end Riverwalk Drive** Caltrans relinquished this road to Humboldt County in 1963 per Book 760 Deeds, Page 517. The configuration shown is based on the Caltrans right of way map 1 HUM 1 F. In a letter dated January 10, 2005 between the City of Fortuna and the County of Humboldt, discusses the annexation & maintenance of Strongs Creek Road (Dinsmore Drive) by the City of Fortuna. The letter does not specifically describe the limits of maintenance. The bridge located on the north end of Riverwalk drive (over Strong's Creek) is shown to be in this Caltrans relinquishment area, however, the bridge itself does not appear to be listed in the County bridge maintenance logs. The specific location of the City/County change of ownership will need to be determined.

## Kenmar Road Interchange

**Kenmar Road east of the Freeway** - No documentation could be found for this portion of Kenmar Road. The south right of way line shown is based upon the survey for the park and ride (see key note 6), and the County's Eel River Drive overlay project #213500. The north line is based upon field ties to features and said County overlay project. The State Park and Ride location is based on a survey for Caltrans. However, the survey has no recorder stamp, and the book and page referenced do not refer to this survey at the recorder's office. This map was provided by Caltrans.

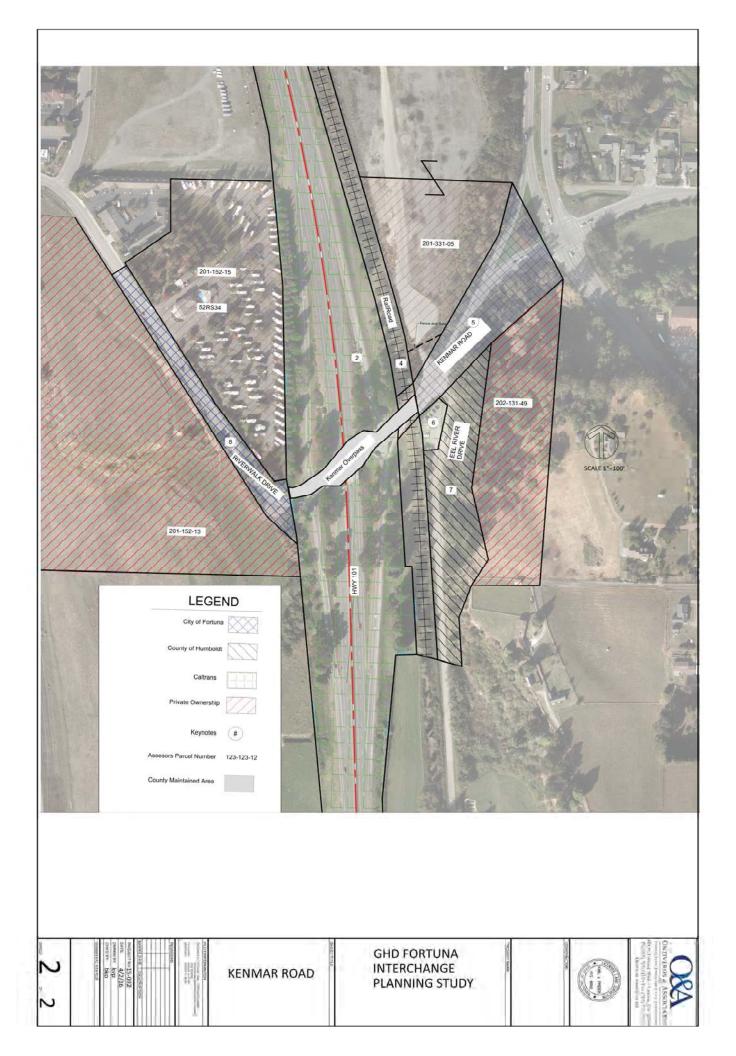
In general this area has a complex right of way situation due to the multiple highways and roads that were here at one time. Additional research and surveying will be needed to determine the right of way location. The County of Humboldt has a pavement maintenance agreement with Caltrans for the County roads carried over, under, or to the connecting freeway dated April 15<sup>th</sup> 1963. The exhibit attached to this agreement shows the County area of responsibility to be from the west line of the railroad tracks to west line of Hwy 101 at the intersection with Riverwalk Drive.

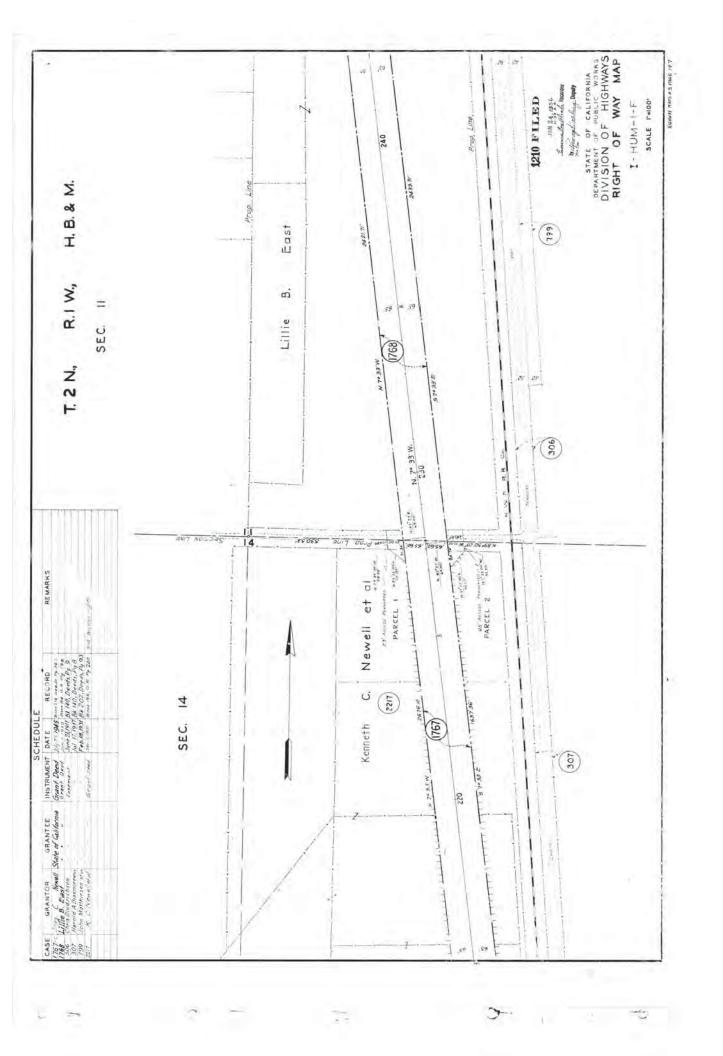
**Eel River Drive** - The east line of Eel River Drive was mapped to some extent by the County during the overlay survey, however, the County surveyor's office also discusses the complexity of the right of way in the area, and the need for more surveying to determine the true location.

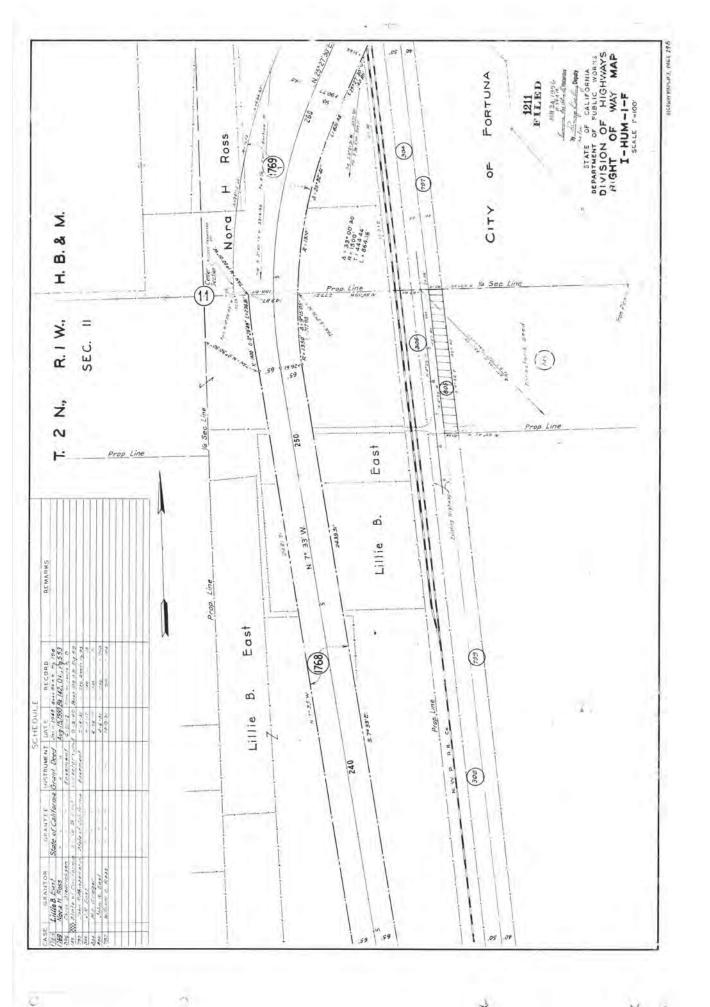
**Riverwalk Drive** – Riverwalk Drive west of Hwy 101 was relinquished to the County in 1963 per 760 OR 517. The east side of the right of way has been delineated in a survey from 1992 recorded in Book 53 surveys, page 34. There have not been any surveys filed on the west side of Riverwalk drive at this location. Ground shots indicate a distance of 50' between back of walk on the east side and top of slope on the west side.



Attachments used per Area:


## 12<sup>th</sup> Street Interchange:

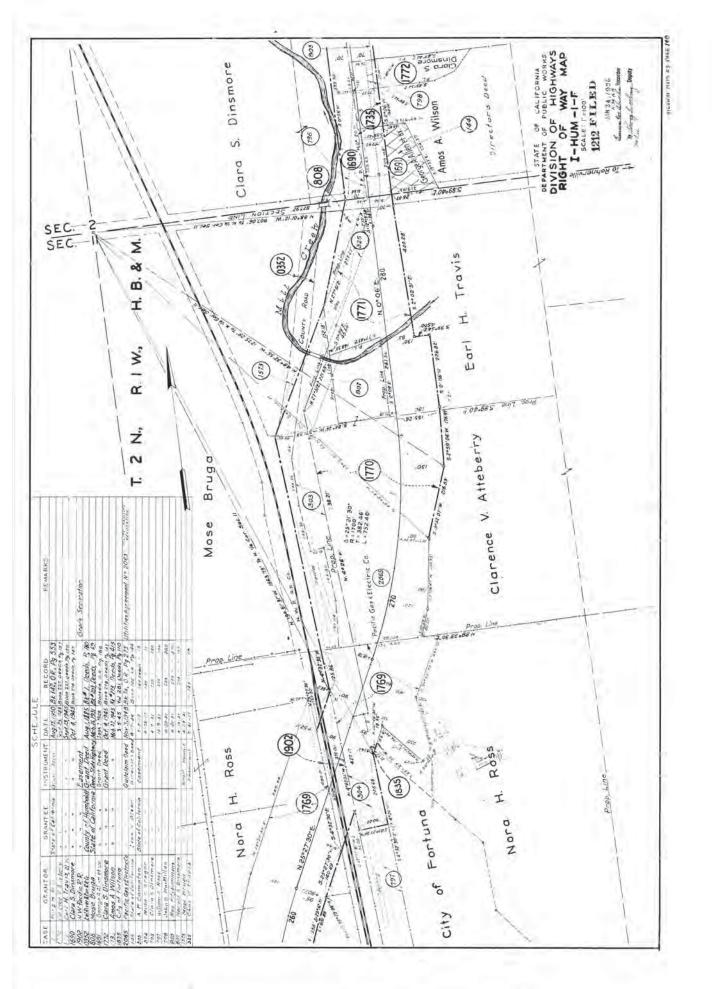

Book P of Deeds, Page 428 1 HUM 1 F Cal Trans Mapping 1705 Official Records 484 Parcel Map 2817 Book 25, page 103 Parcel Map 1828 Book 16, page 28 Book 12 of Maps, page 138 Book 29 Parcel Maps, Page 32 Book 13 Maps, Page 15 North Pacific Railroad Maps Book 13 Maps, Page 16 County Letter dated January 10, 2005 Book 13 Maps, page 35 Deed 1999-8138-4


## Kenmar Road Interchange:

1 HUM-1-F Cal Trans Mapping North Pacific Railroad Maps Book 53 surveys, Page 34 Book 29 Surveys, Page 104 Book 38 Surveys, Page 59 Book 68 Surveys, Page 28 Book 67 Surveys, Page 56 County Letter dated January 10, 2005 County Project files Eel River Drive Overlay Old Rohnerville Map

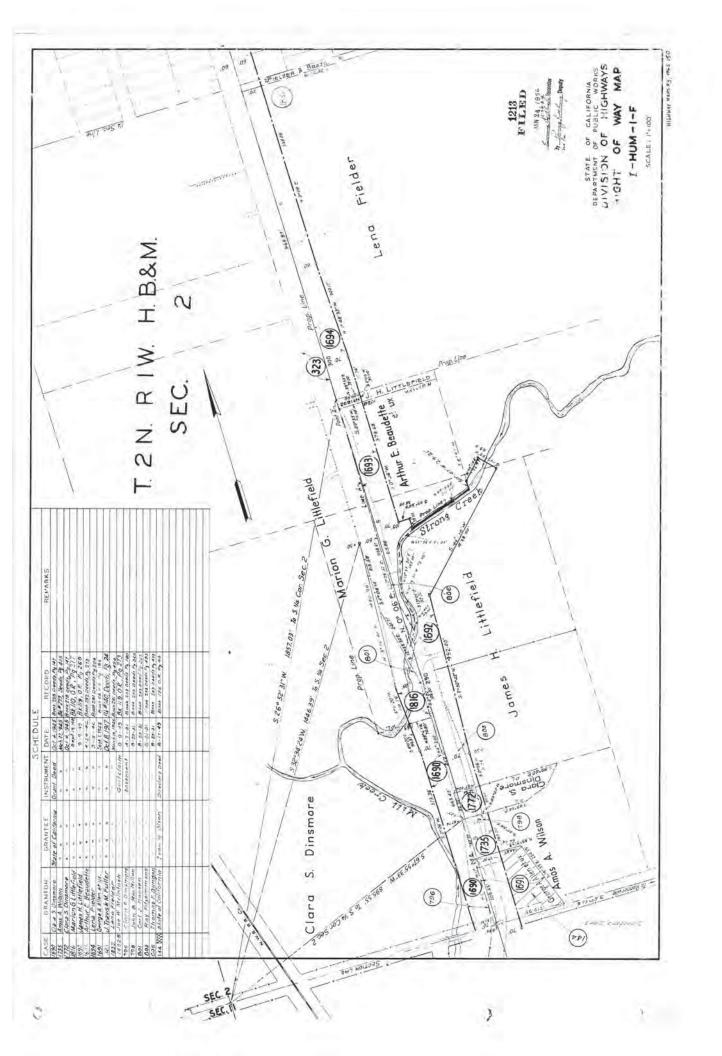


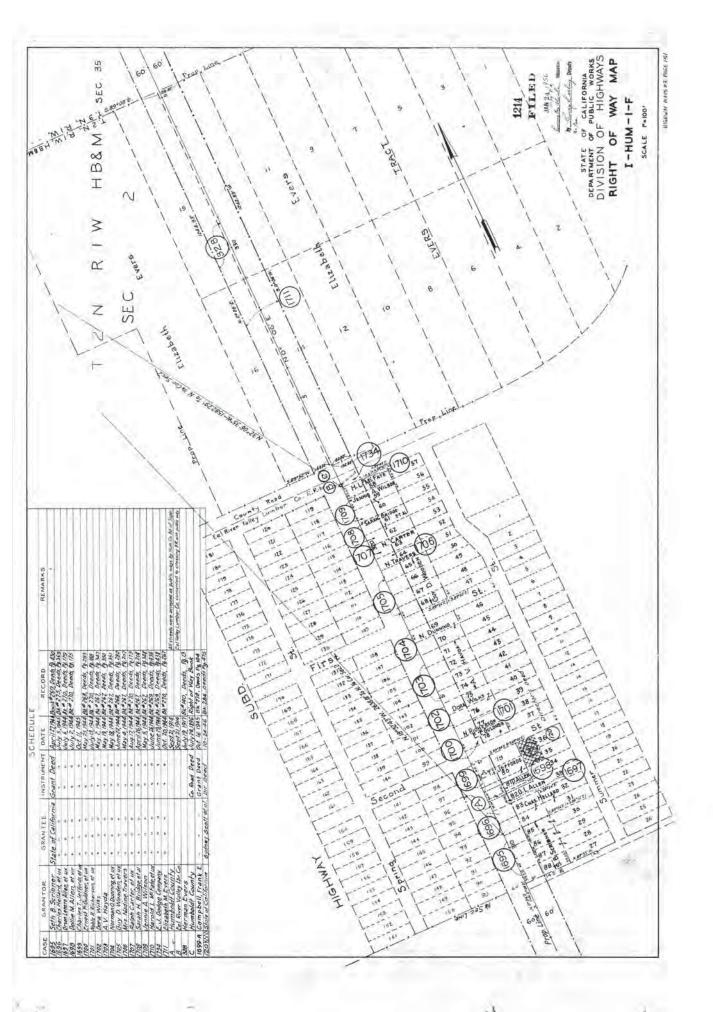






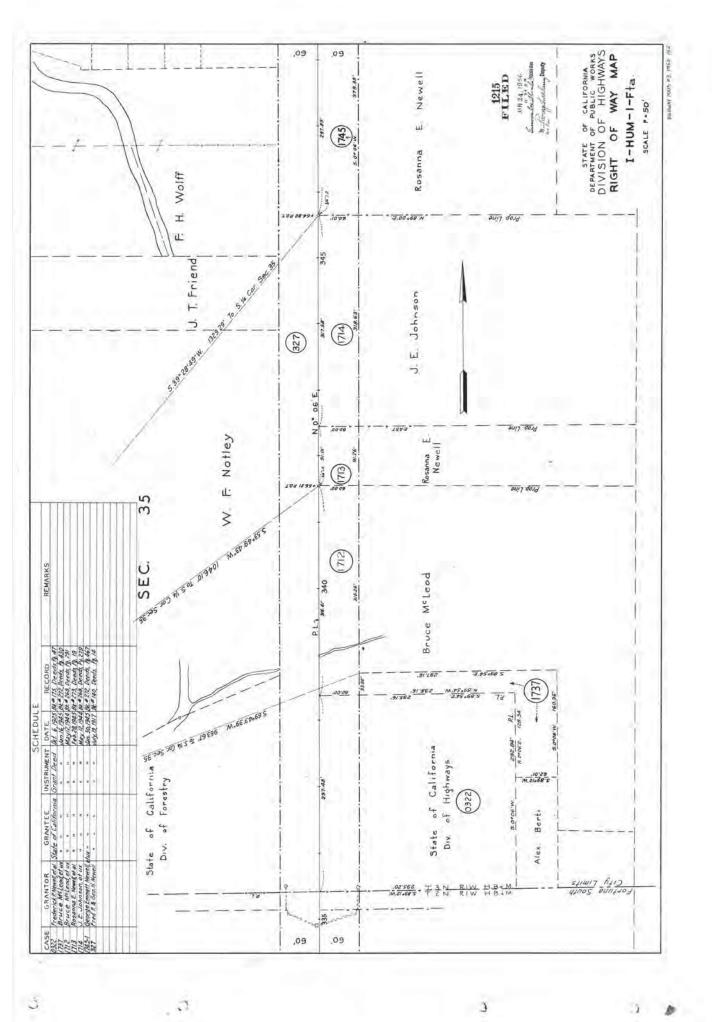

-


3


y .



Э

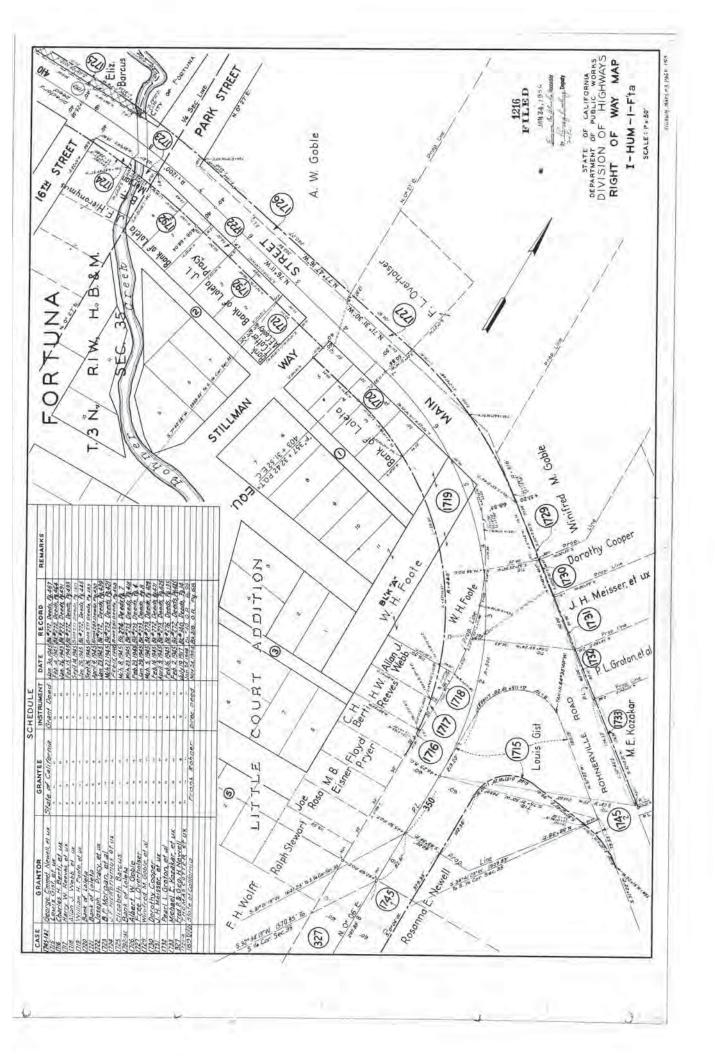

1. 16

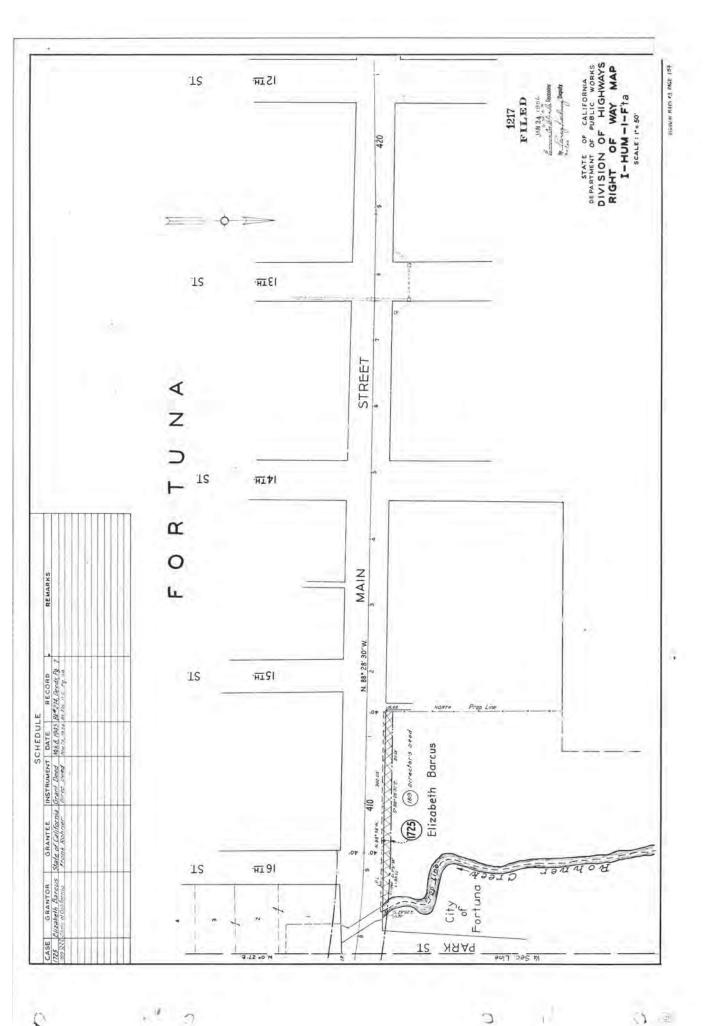




5

~



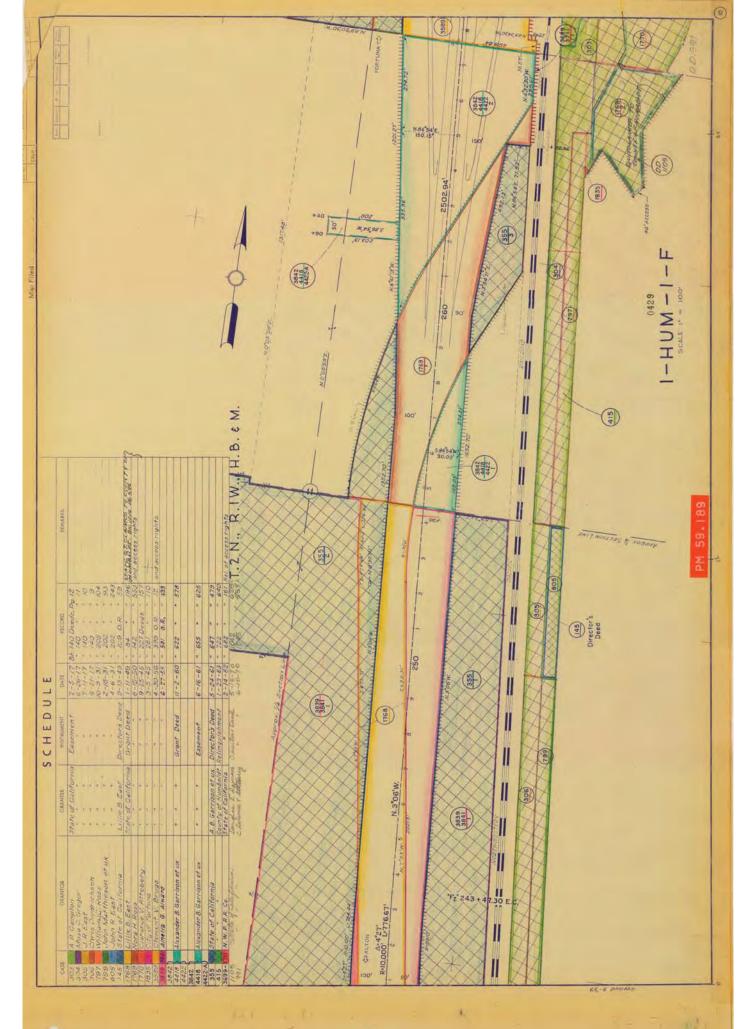


. 0

3

.2

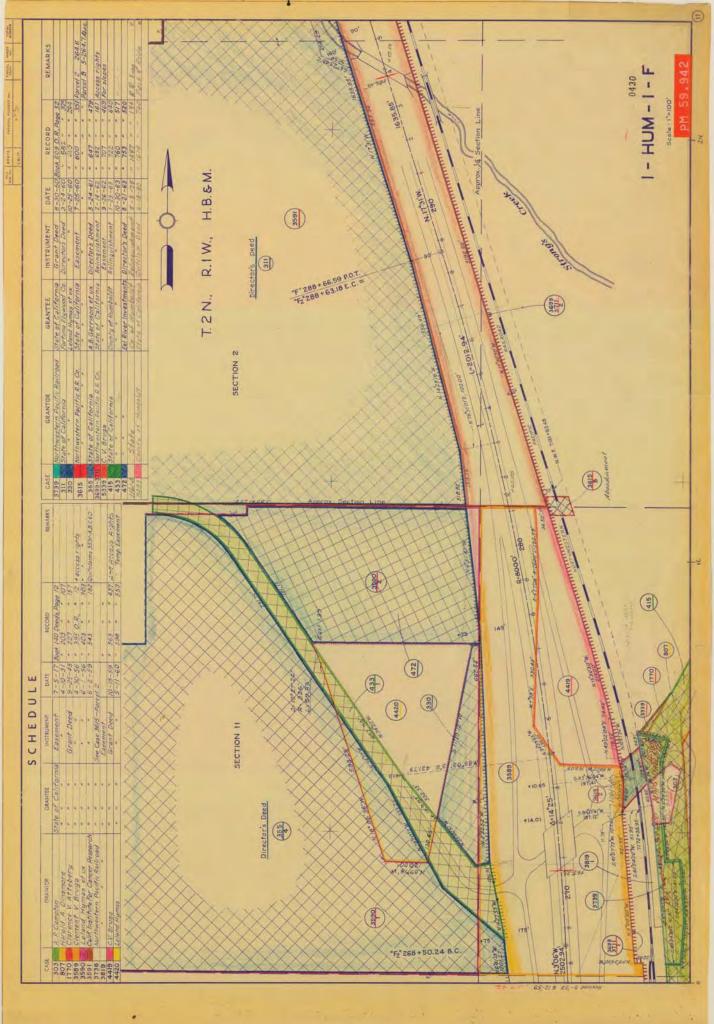
.





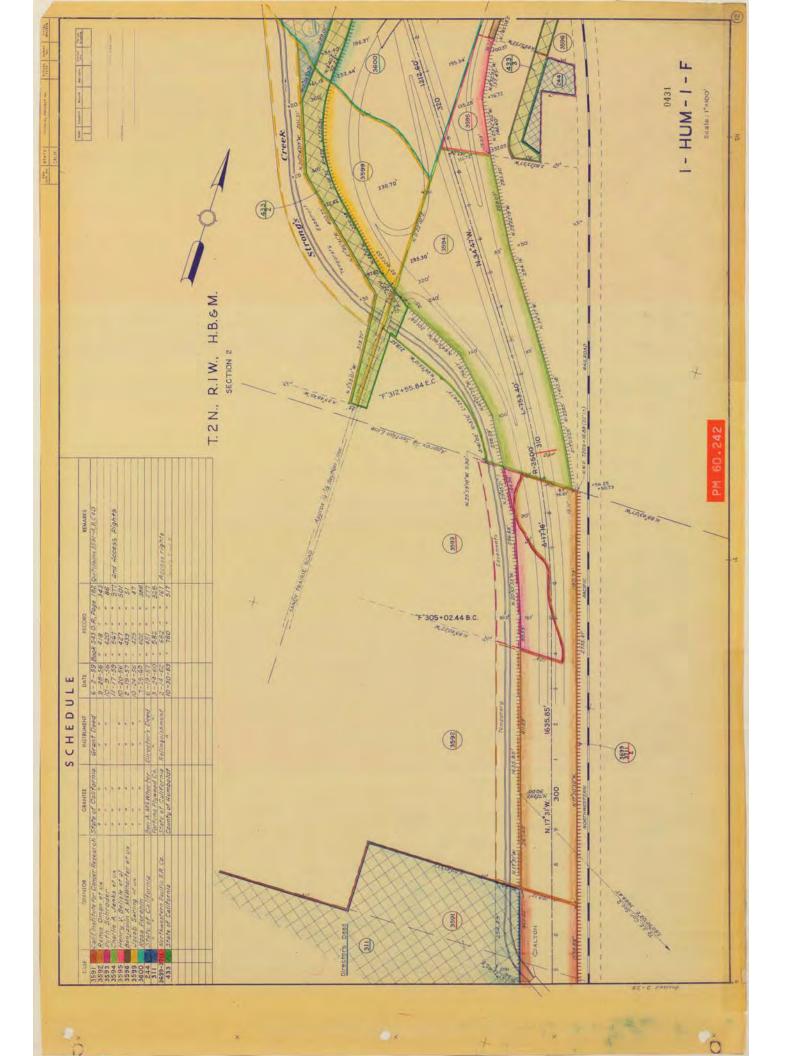

. 1 2

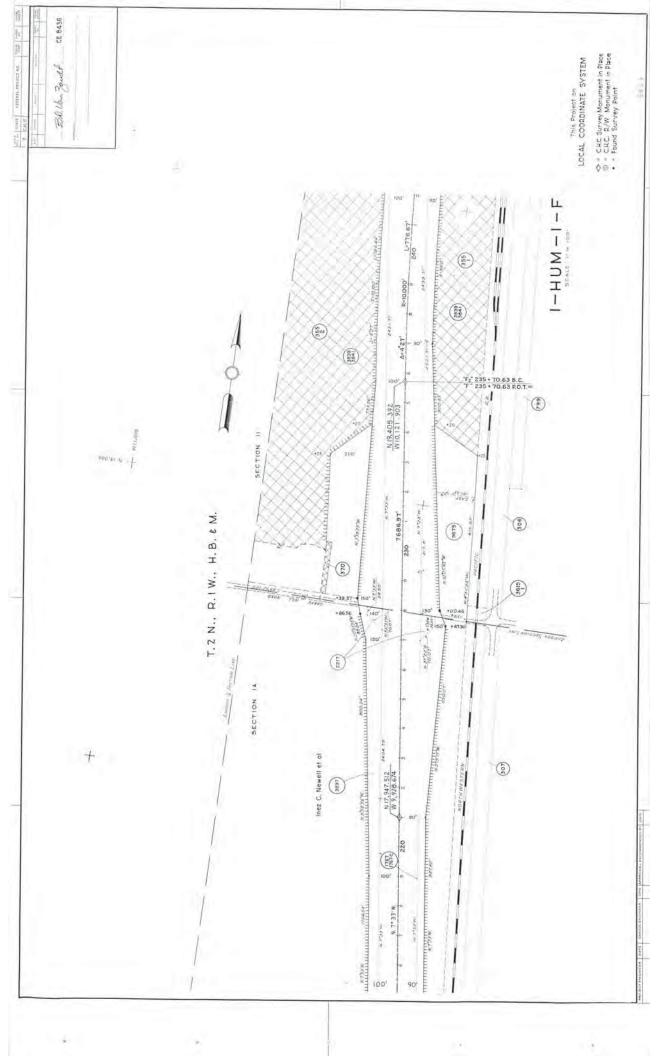
0

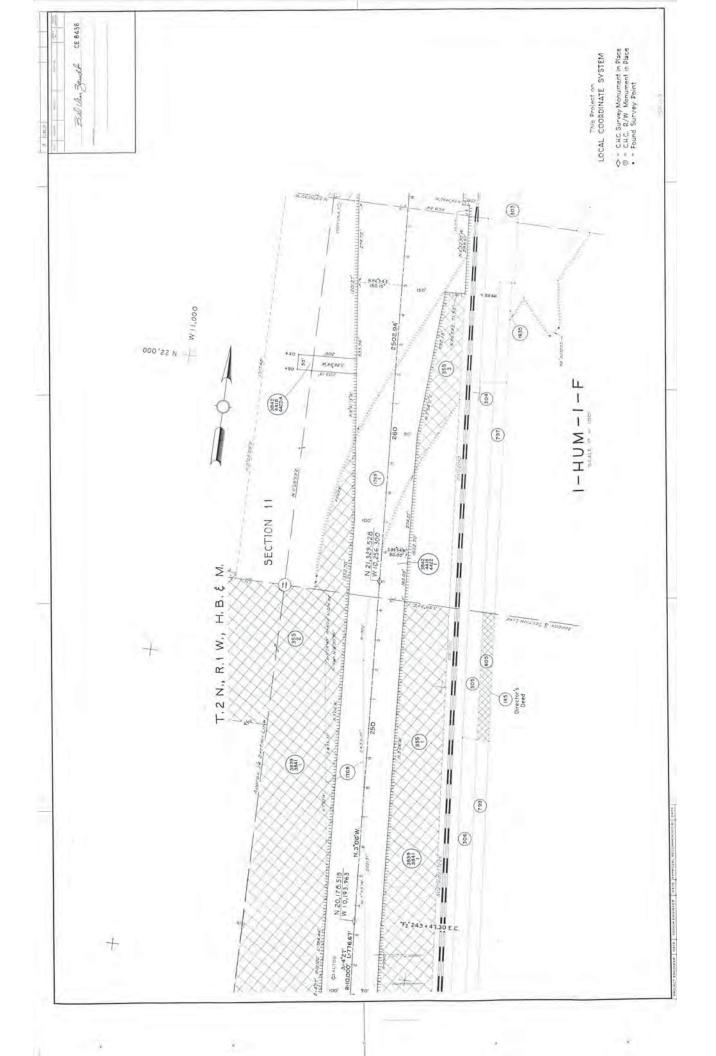

C

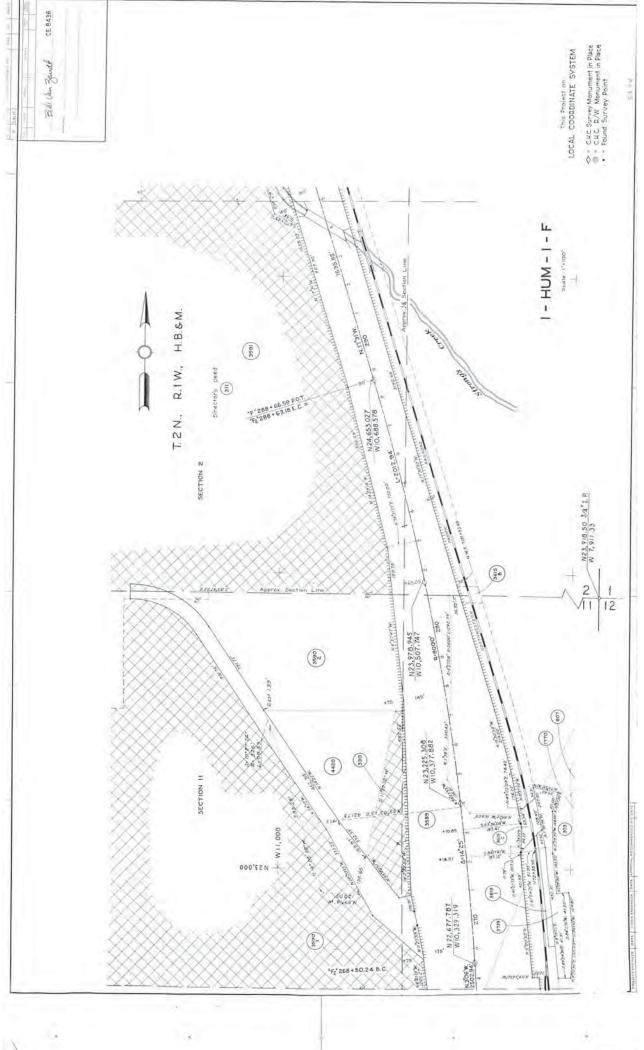
5 6

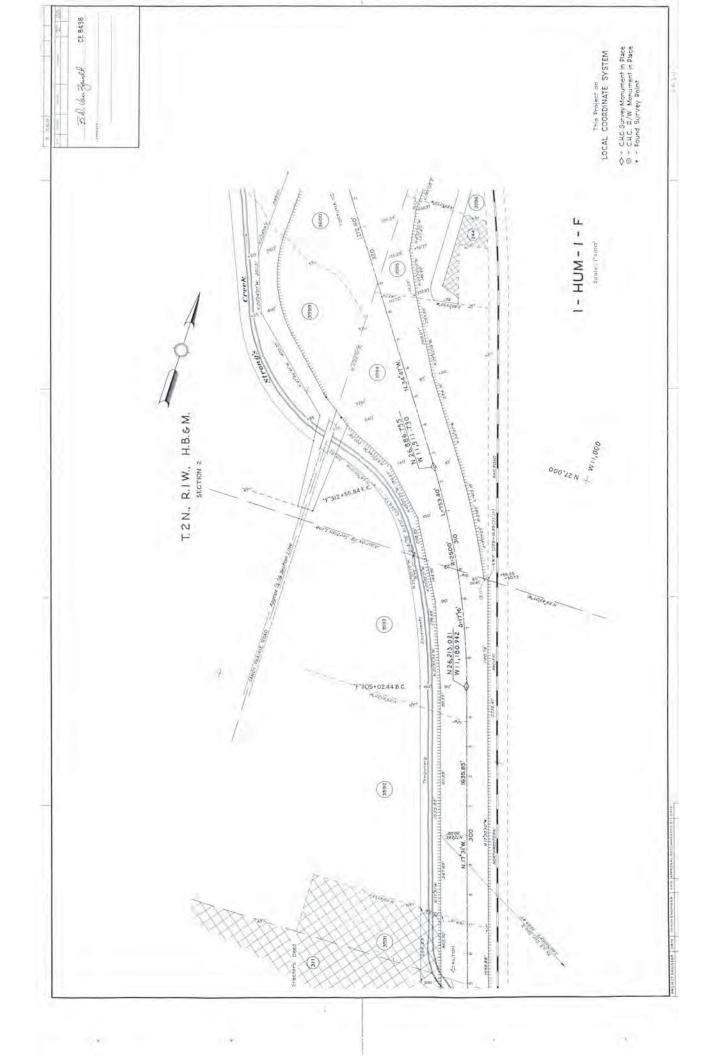


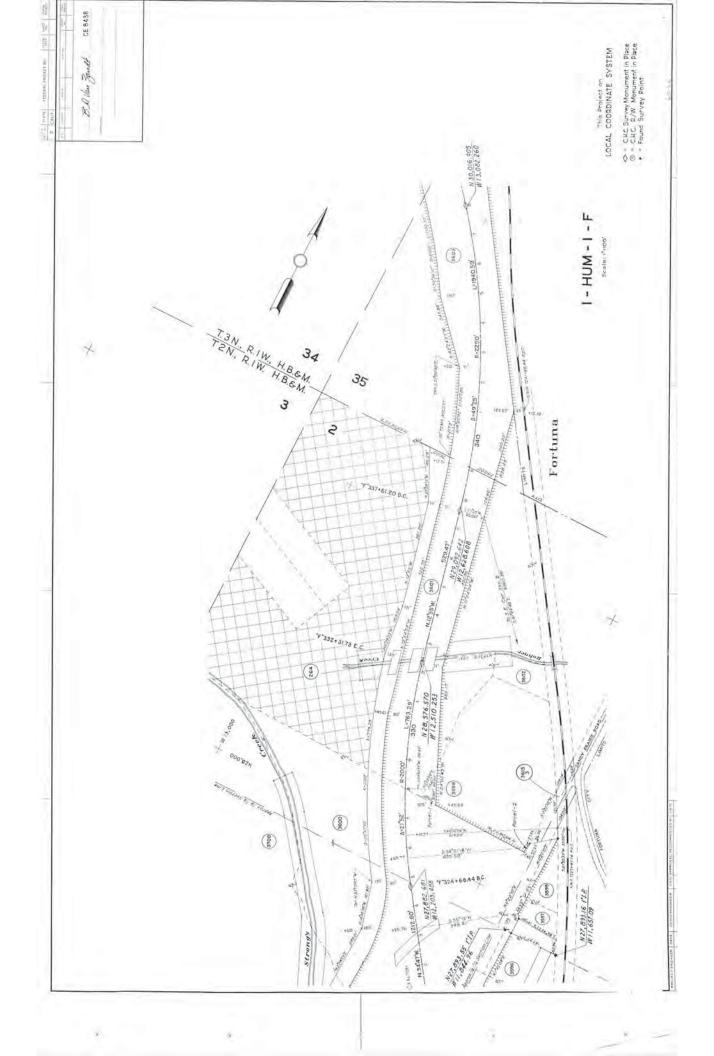

D

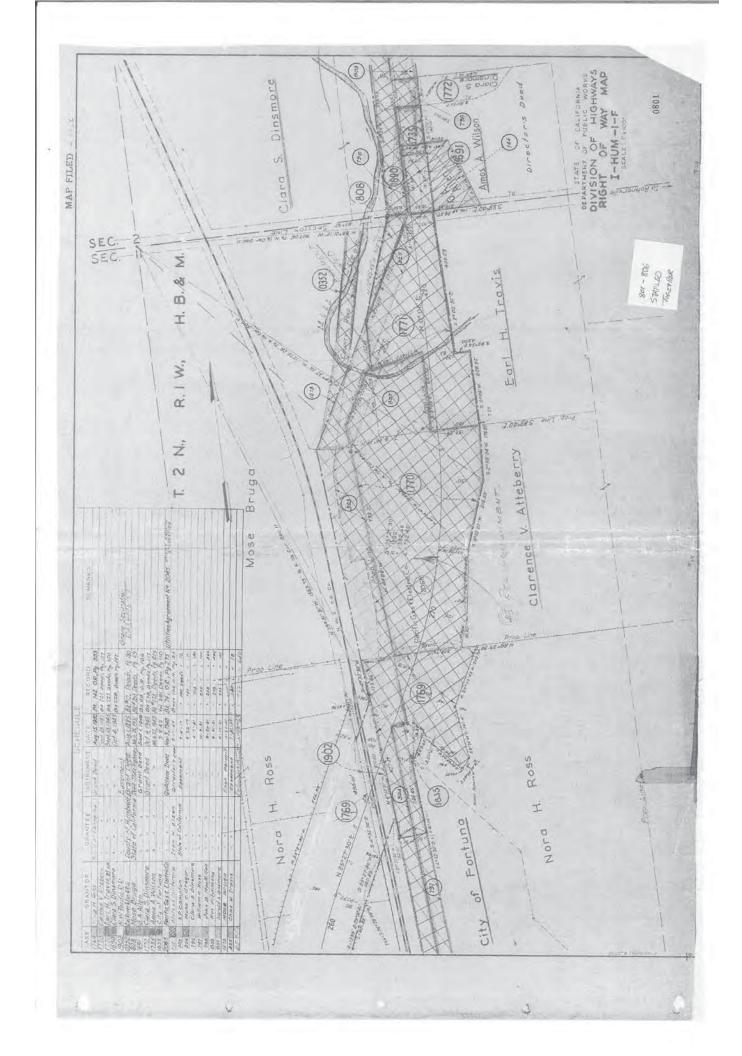

5-1

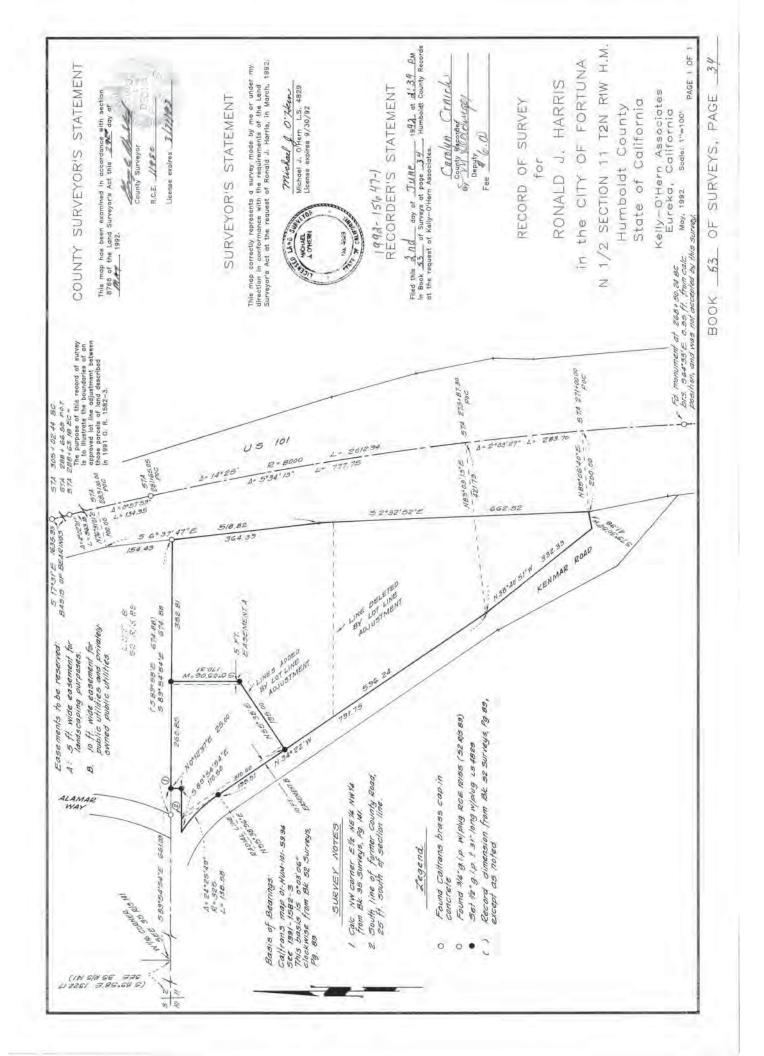




.


ć














SCANNED

111

BOARD OF SUPERVISONS, COUNTY OF HUMBOLDT, S. ATE OF CALIFORNIA Certified copy of portion of proceedings, Meetings of \_\_\_\_\_\_

#### IN THE MATTER OF FRECUTING INDERTURE WITH MORTHWRETERS PACIFIC BAILROAD COMPANY CONCERNING NEWBURG DRAINAGE STRUCTURE.

Upon the mution of Supervisor Barelikes, seconded by Supervisor Soberlaon, Sam B. Marryman, Jr., Chairman of this Board of Supervisors, is hereby authorized to exercise on bobalf of the County of Eucobold's an Indoneuro, dated this date, by and between the County of Rembeld's and the Herthwestern Pacific Malleond Company. Sold indonture grants to the County the right to construct, reconstruct, maintain and operate a drainage structure beneath that cortain property of sold Satiroad as referred to therein and related to the Herthwestern The Auditor is hereby authorized and directed to draw a warranti payable to the Herthwestern Pacific Satiroad Company in the amount of fifty delivers (650, 66) as consideration in full for the sized of containing to the second of fifty delivers (650, 66) as consideration in full for the sized of cald indentore.

AYES: Supervisors- Lindley, Bereilics, Robertonn, Fellerson, Merryman NOES: Supervisors- None ABSENT: Supervisors- None

# STATE OF CALIFORNIA,

County of Humboldt

I, FRED J. MOORE, JR., County Clerk of the County of Humboldt, State of California, and exofficio Clerk of the Board of Supervisors of the County of Humboldt, do hereby certify the foregoing to be full, true and correct copies of the original orders made in the above entitled matters by said Board of Supervisors, at a meeting held in Eureka, California, on **June 1. 1960** and as the same now appears of record in my office.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed the Seal of said Board of Supervisors this

day of 1000, 1000 FRED J. MOUGHE, JR. County Clerk and ex-officio Clerk of the Board of Supervisors of the County of Humboldt, State of California Bv Deputy Clerk.

LAN

THIS INDENTURE, made this \_\_\_\_\_ day of \_\_\_\_\_, 1959, by and between NORTHWESTERN PACIFIC RAILROAD COMPANY, a corporation of the State of California, herein termed "Railroad", and COUNTY OF HUMBOLDT, a political subdivision of the State of California, herein termed "Grantee".

WITNESSETH:

1. Railroad, for and in consideration of the faithful performance by Grantee of all the terms, covenants and conditions herein contained, hereby grants to Grantee the right to construct, reconstruct, maintain and operate a 42-inch reinforced concrete drainage pipe, hereinafter termed "structure" beneath the property of Kailroad, at or near Fortuna, in the County of Humboldt, State of California, in the location shown enclosed within red lines upon the print of Kailroad's San Rafael Drawing X-6778, revised October 23, 1959, hereto attached and made a part hereof.

This indenture will be supplemented to include a legal description of the property if requested by either party in writing.

use all the property describe herein in the performance of its duty as a common carrier, and, for that purpose, there is reserved unto Railroad, its successors and assigns, the right (consistent with the rights herein granted) to construct, reconstruct, maintain and use existing and future railroad tracks, facilities and appurtenances and existing and future transportation, communication and pipe line facilities and appurtenances in, upon, over, under. across and along said property.

3. This grant is made subject to all licenses, leases, easements, restrictions, conditions, covenants, encumbrances, liens and claims of title which may affect said property and the word GRANT as used herein shall not be construed as a covenant against the existence of any thereof.

4. The rights merein granted to brantse shall lapse and become void if the construction of said structure upon said property is not commenced within one (1) year from the date first herein written.

5. Grantee shall bear the entire cost and expense of constructing, reconstructing and maintaining said structure upon said property. Grantee agrees that all work upon or in connection with said structure shall be done at such times and in such manner as not to interfere in any way what-soever with the operations of Railroad. The plans for and the construction of said structure shall be subject to the approval of Railroad.

Grantee agrees to reimburse Railroad for the cost and expense to Railroad of furnishing any materials or performing any labor in connection with the construction, reconstruction, maintenance and removal of said structure, including, but not limited to, the installation and removal of such falsework and other protection beneath or along Railroad's tracks, and the furnishing of such watchmen, flagmen and inspectors as Railroad deems necessary.

Ten sinten zur den den seinen und der het mit sieht in den sieht der beiten von Seinen der einzen seinen der einzelten seinen der seinen der

6. Generations consignation as a structure material with a set of the interaction of the standard of the structure of the set of the structure of the set of the structure of the set of th

7. Grantee, its agents and employees, shall have the privilege of entry on said property for the purpose of constructing, reconstructing, maintaining and making necessary repairs to said structure. Grantee agrees to keep said property in a good and safe condition free from waste, so far as affected by Grantee's operations, to the satisfaction of Railroad. If irantee fails to keep said property in a good and safe condition free from waste, then Railroad may perform the necessary work at the expense of irantee, which expense Grantee agrees to pay to Railroad upon demand.

8. In the event any work upon or in connection with said structure or its appurtenances, to be done upon or adjacent to the tracks and property of Railroad, should be let to a contractor by Grantee, such work shal not be begun until such contractor the track and end of a agreement with the railroad company works and the track and against all laims, liability, cost and experimented on a contractor of the perk to be done by such contractor.

Such contractor shall lurni , as one option of and without exmonse to Railroad, a reliable surery lond, in a constant and in a form satisfactory to said company. guarantees of thill performance of all the terms, covenants and conditions contained in said agreement, and a certified copy of a policy of Public Liability and Property Damage Insurance, within limits specified by, and in a form satisfactory to, said company, covering the contractual liability assumed by contractor in said agreement to be entered into with said company by such contractor.

9. Should Grantee, its successors or assigns, at any time abandon the use of said property or any part thereof, or fail at any time to use the same for the purpose contemplated herein for a continuous period of one (1) year, the right hereby given shall cease to the extent of the use so abandoned or discontinued, and Railroad shall at once have the right, in addition to but not in qualification of the rights hereinabove reserved, to resume exclusive possession of said property or the part thereof the use of which is so discontinued or abandoned.

Upon termination of the rights and privileges hereby granted, Grantee, at its own cost and expense, agrees to remove said structure from said property and restore said property as nearly as practicable to the same state and condition in which it existed prior to the construction of said structure. Should Grantee in such event fail, neglect or refuse to remove said structure and restore said property, such removal and restoration may be performed by Railroad at the expense of Grantee, which expense Grantee agrees to pay to Railroad upon demand

10. This indenture shall inure to the benefit of and be binding upon the successors and assigns of the parties hereto.

11. For the rights herein given, Grantee shall pay to Railroad the sum of Fifty (50) Dollars.

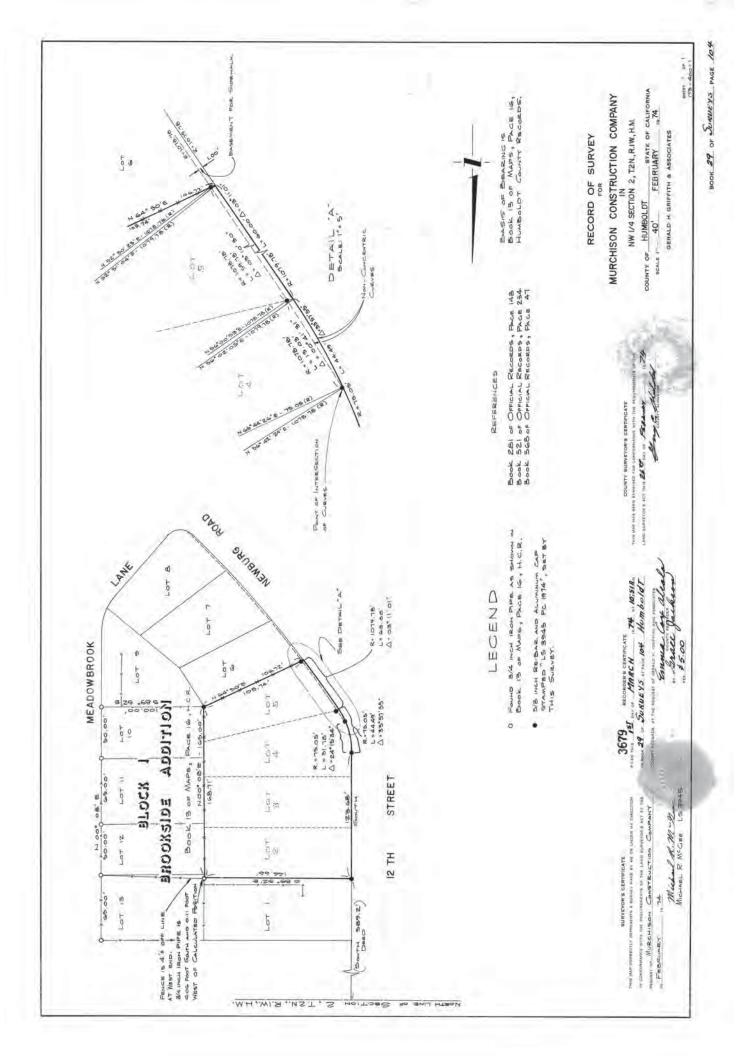
IN WITNESS WHEREOF, the parties hereto have caused these presents to be executed as of the day and year first herein written. (In duplicate)

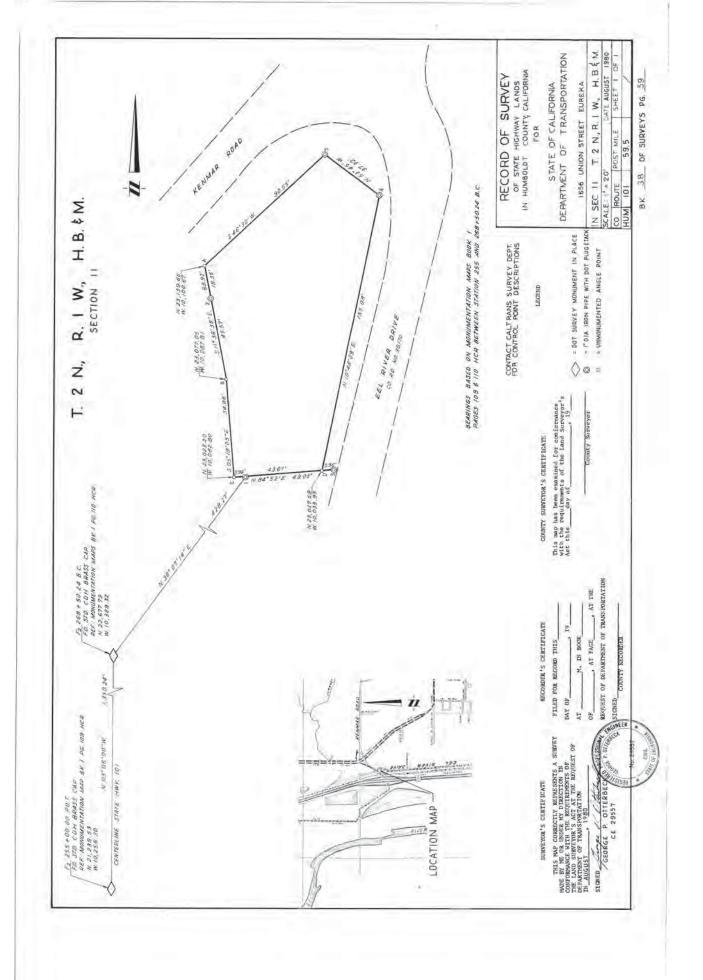
NORTHWESTERN PACIFIC RAILROAD COMPANY

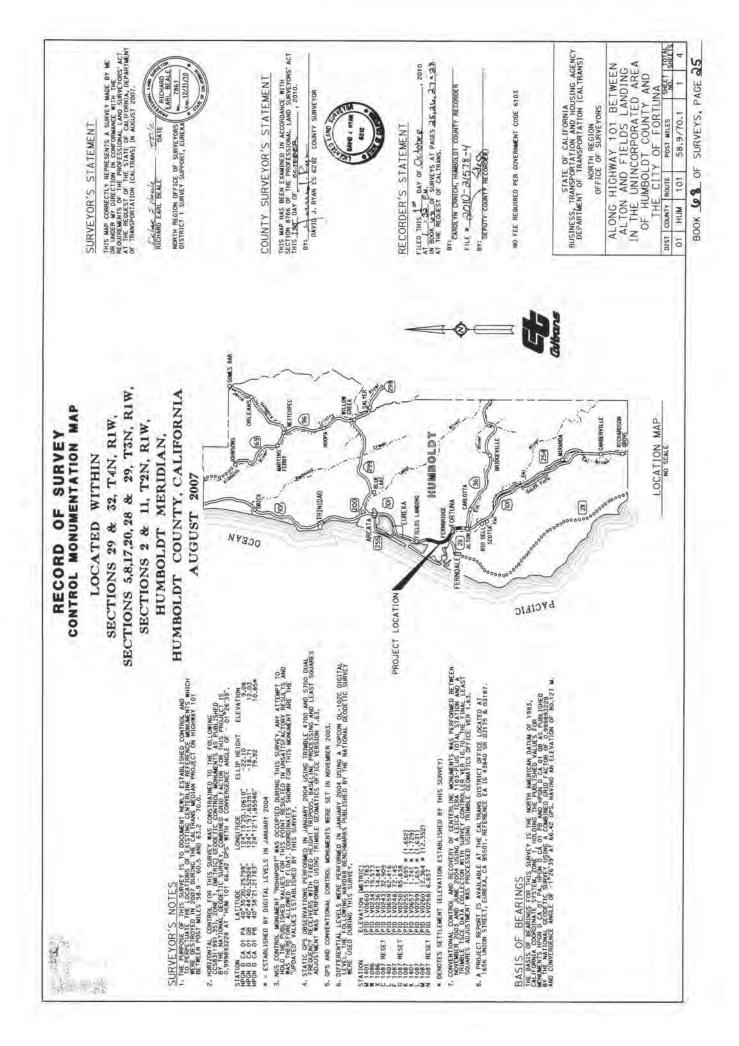
By\_\_\_\_\_("itle)

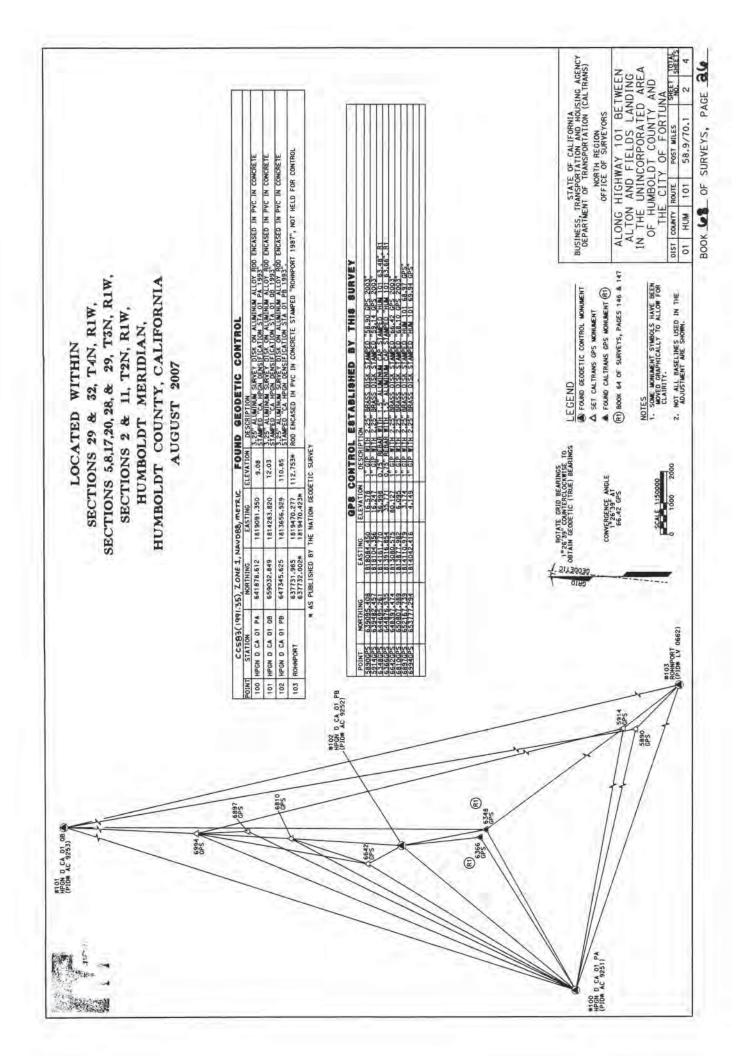
3.3 million 7 ---

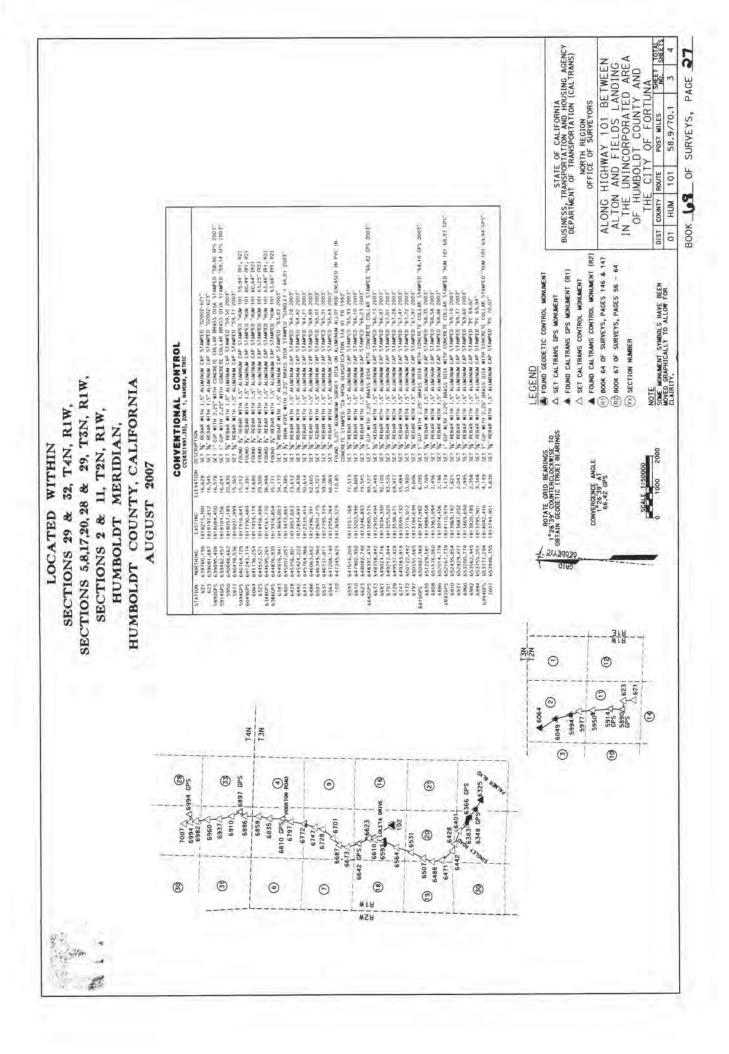
(Assistant Secretary)

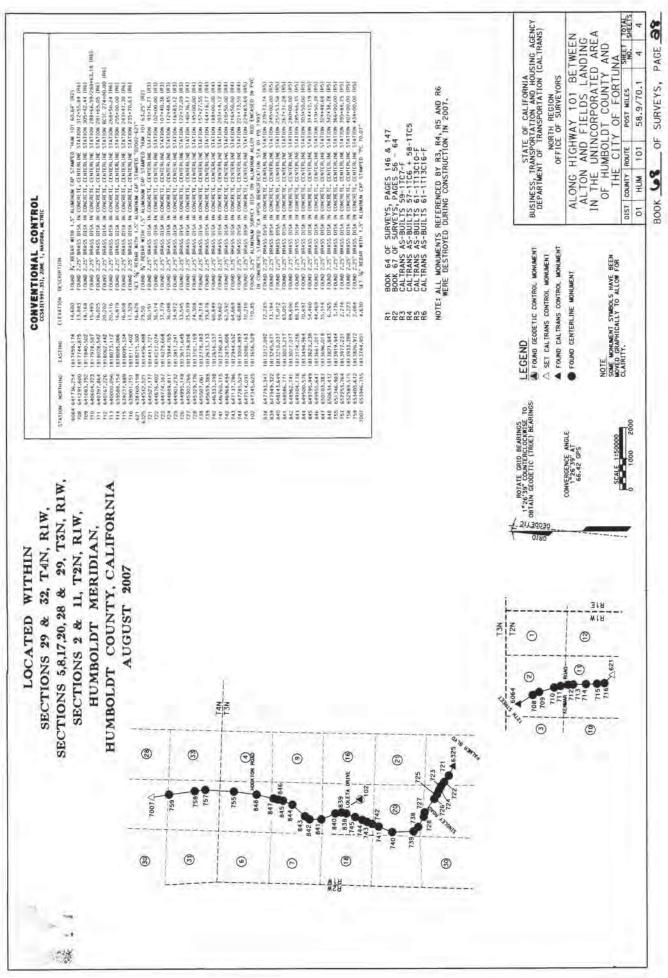

COUNTY OF HUMBOLDT

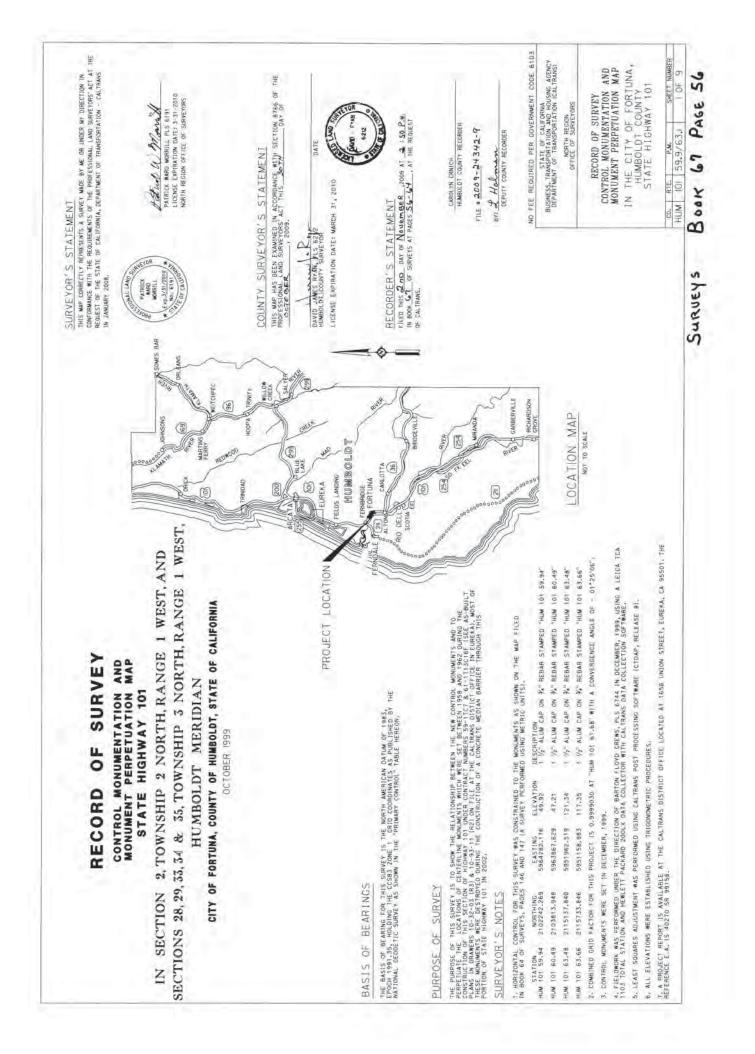

- 2 -

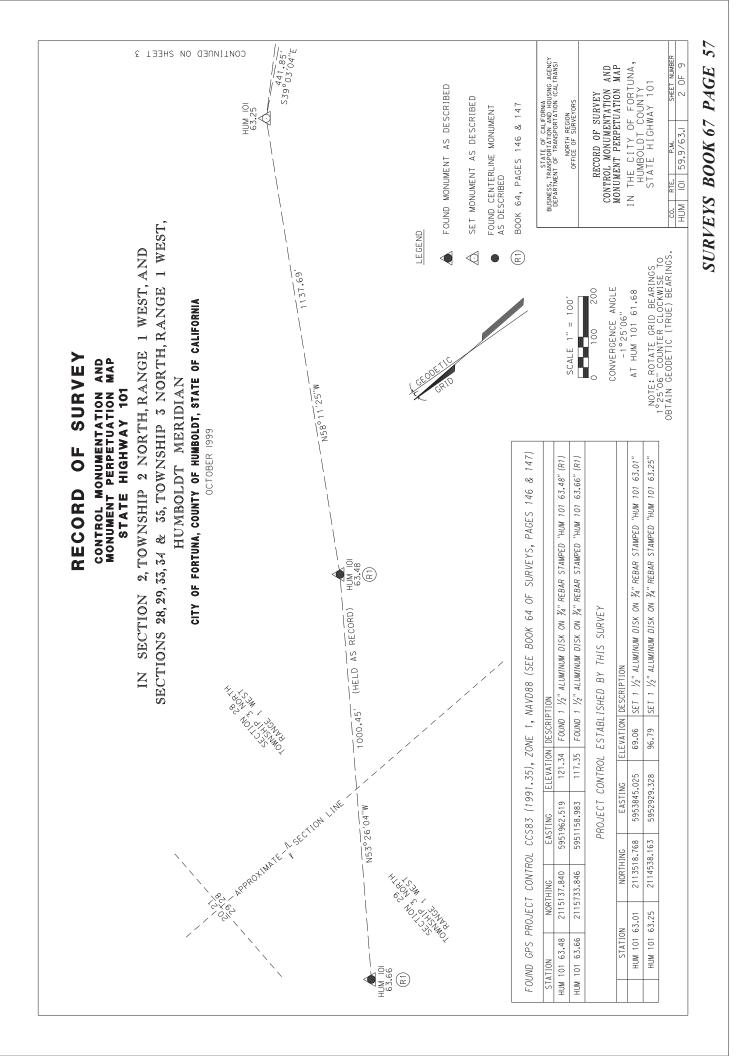

By Chairman, Board of Supervisors

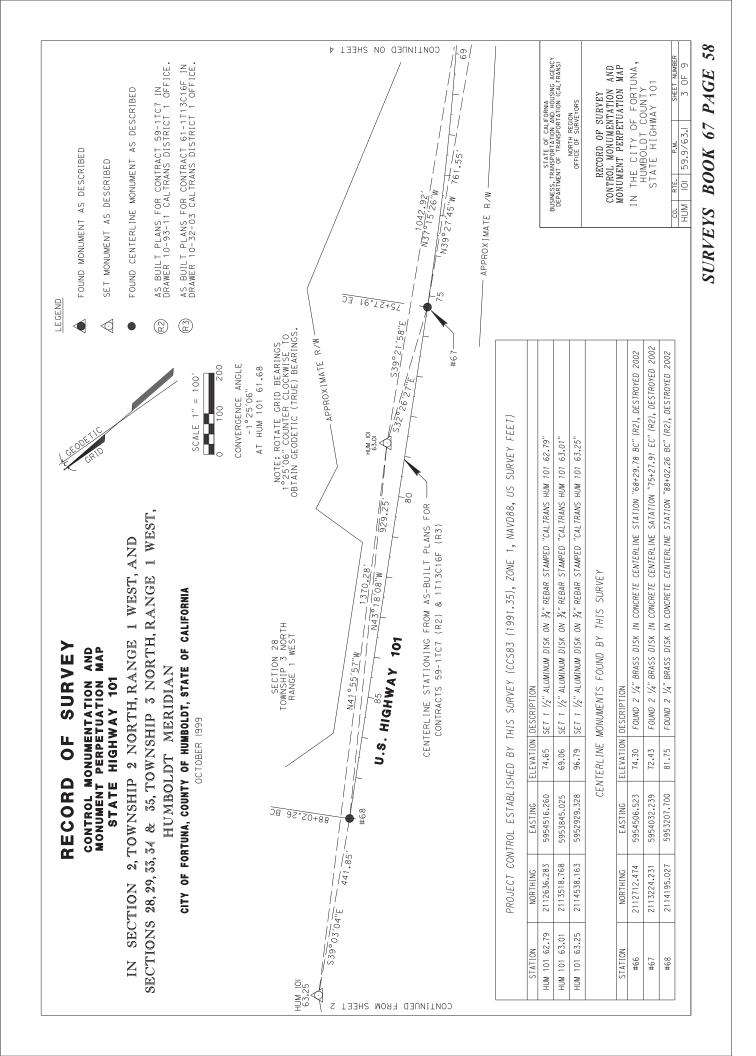

Clerk, Board of Supervisors

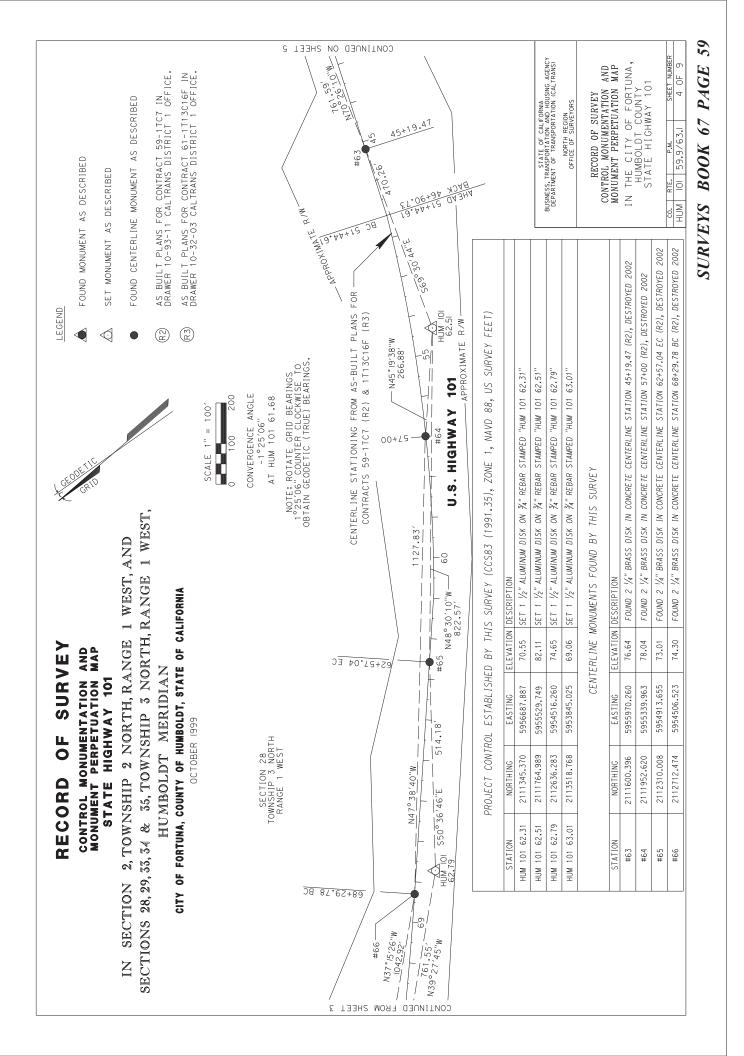

TC: A POS.F inage Facility Red - Pipe Line to be cover ad by Agmit. LIW.P. Property Lines Aldivad LEGEND 10 Labor 4 S. 42' RCP Drain Pipe Line 19 V 「日川川 AGREEMENT WITH DIWTY 7230 Scale 1 102 DIEL LINE TO CONSTRUCT FURNITAIL NORTHWESTERN PACIFIC RAILROAD COMPANY £ Drainage Cipe it. X 1.2 M.O.266.1 FR. KIA 1 .... 300 12 Trestis 42 INC. 1 RC.0 K-. act 23 1959 OF 1:01:801.0. Sept 1. 1953 SAN RAFAEL X. 67.7 DRAWER · ... 1.1

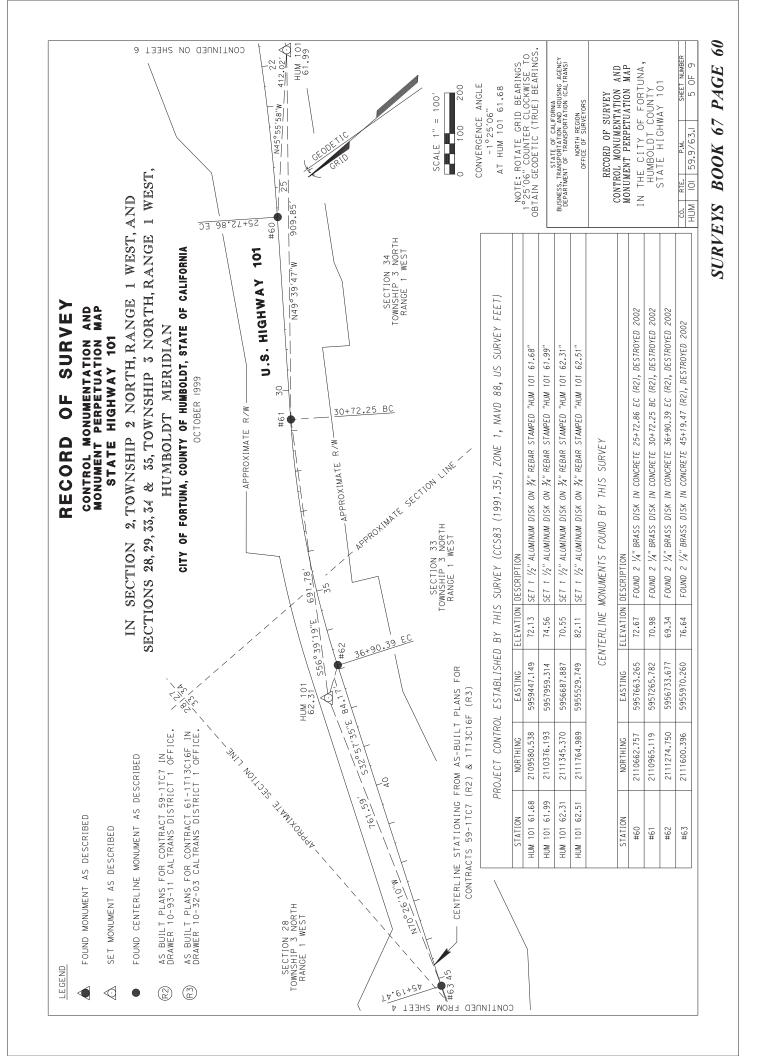


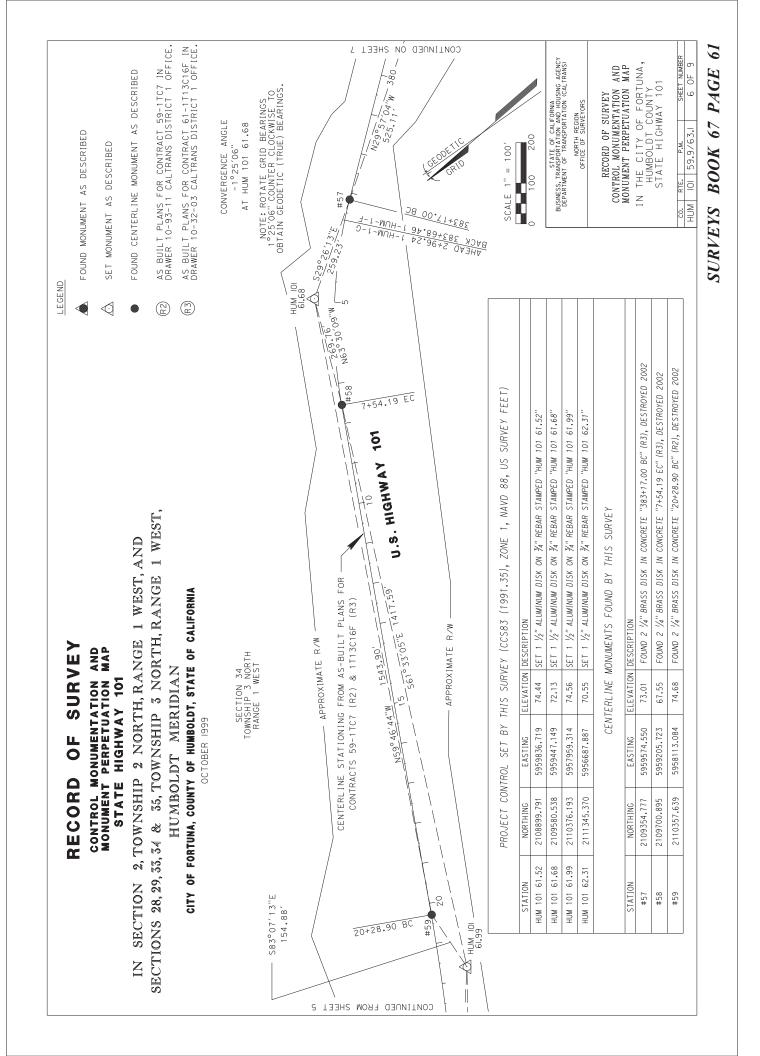



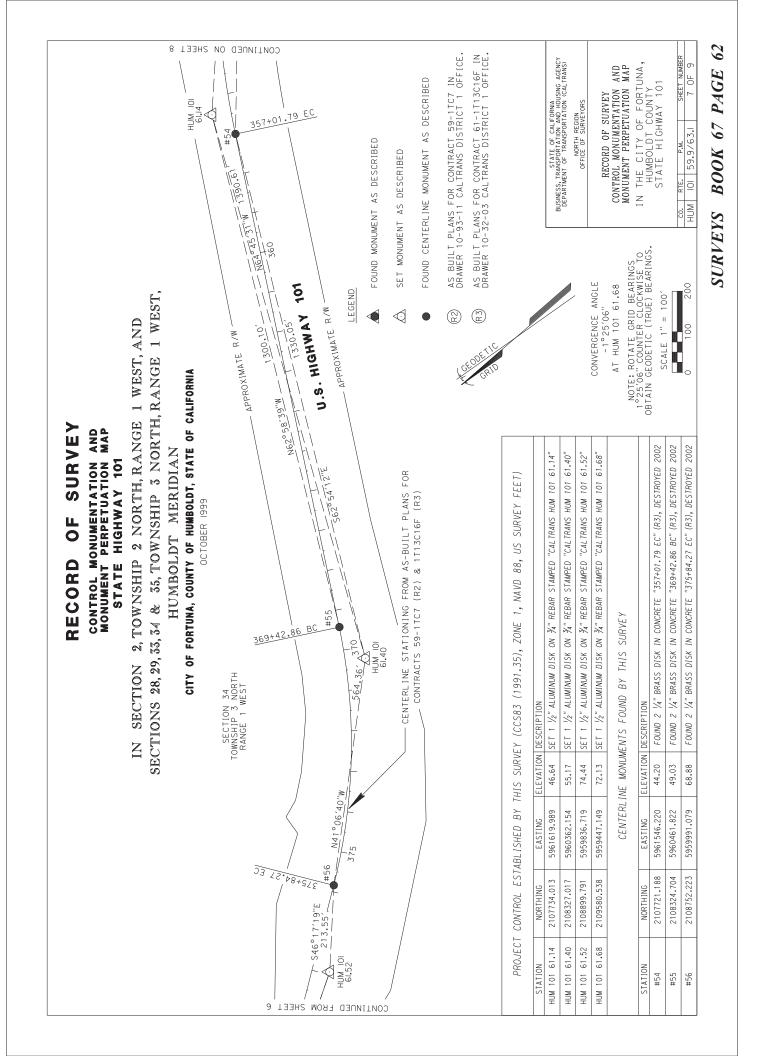



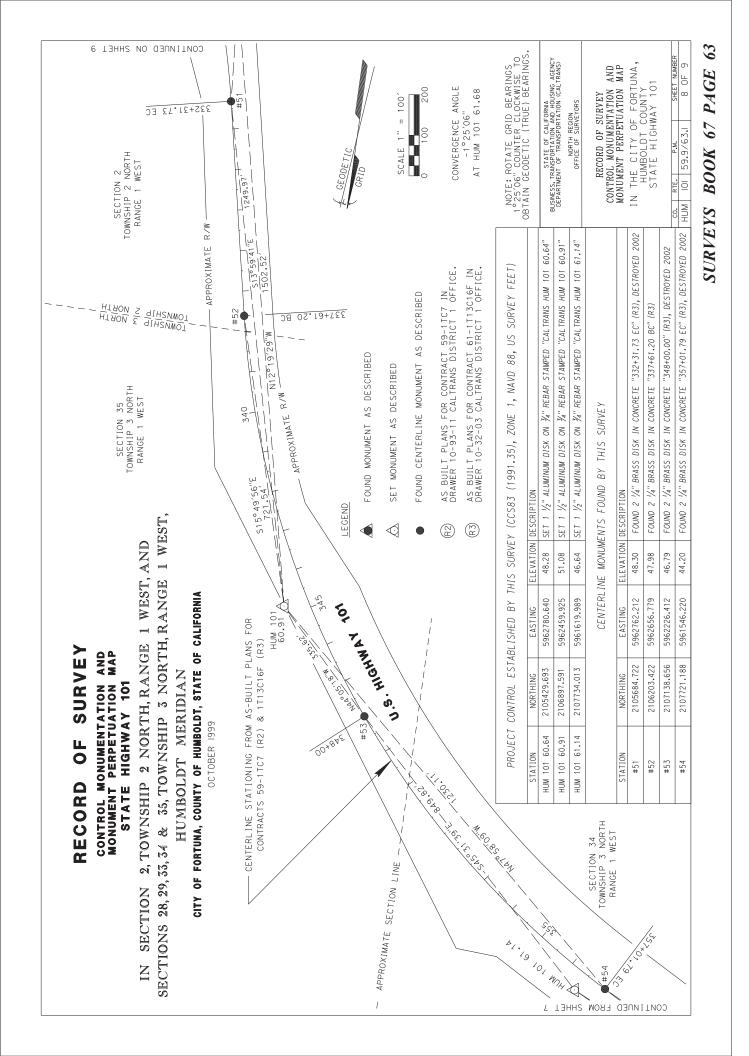



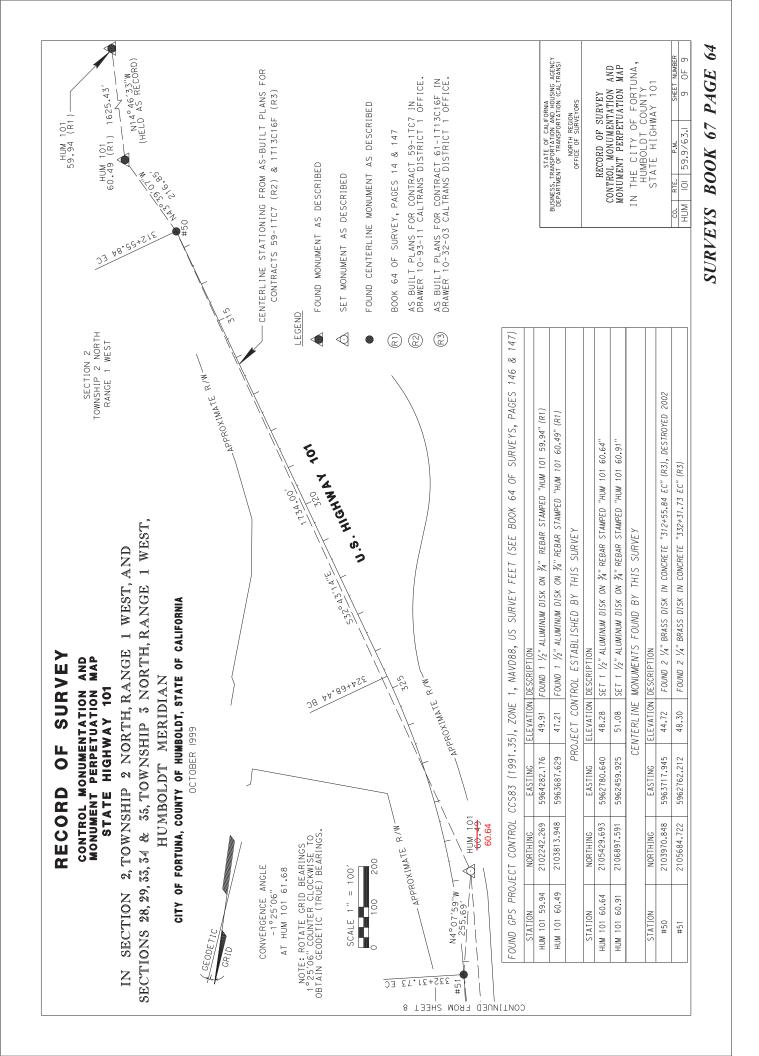














200-353.021



DEPARTMENT OF PUBLIC WORKS COUNTY OF HUMBOLDT

MAILING ADDRESS: 1106 SECOND STREET, EUREKA, CA 95501-0579 AREA CODE 707/FAX 445-7409

839-5401 AVIATION

| PUBLIC WORKS BUILDING<br>SECOND & L'ST., EUREKA |                                              |                                                                    |                                  |  |  |  |
|-------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|----------------------------------|--|--|--|
| ADMINISTRATION<br>BUSINESS<br>ENGINEERING       | 445-7491<br>445-7652<br>445-7377<br>ARCHITEC | NATURAL RESOURCES<br>PARKS<br>ROADS & EQUIPMENT MAINT.<br>445-7493 | 445-7741<br>445-7651<br>445-7421 |  |  |  |

| CLARK COMPLEX<br>HARRIS & H ST., EUREKA |          |  |  |  |
|-----------------------------------------|----------|--|--|--|
| LAND USE                                | 445-7205 |  |  |  |

January 10, 2005

Duane Rigge, City Manager City of Fortuna POB 545 Fortuna CA 95540

#### ANNEXATION BY THE CITY OF FORTUNA OF COUNTY ROADS ADJACENT RE: TO THE CITY OF FORTUNA

Allen Campbell, Director, Humboldt County Department of Public Works, has requested that I provide you some information. It is in response to a request by you associated with roads proposed for annexation that were discussed in our previous letters. The previous letters discussed the annexation of Strongs Creek Road (known by the City as Dinsmore Drive), Twelfth Street, a portion of Rohnerville Road, a portion of Eel River Drive, and Drake Hill Road.

The information requested was regarding the County's cost of maintenance of the roads over the last five years and what it would cost if the County was to perform the desired future maintenance of the surface of the roads. The following is a description of the road, the County's past cost of the maintenance of the road, and an estimate of the cost to maintain the roads to the desired standard. The desired standard of maintenance consists of sealing the roads at a 12 to 14 year period and resurfacing the roads every 25 years. The County cost for sealing a road is estimated to be \$0.12 per square foot and a \$1.30 per square foot for resurfacing a road. These are the prices used currently by the County in the estimation of costs for maintenance of new subdivision roads.

## STRONGS CREEK ROAD

This portion of road lies south of the city limits of Fortuna to the intersection of Riverwalk Drive. The County has not spent any funds on this road for the last 5 years or longer. When the City annexed the portion of land at the end of the road, the then city manager of Fortuna provided a letter to LAFCO and the County indicating that they would maintain this portion of Strongs Creek Road for the County as consideration of approval of the annexation.

The portion of Strongs Creek Road in the County is approximately 640 feet in length and has an average width of 26 feet. The cost of sealing the road would be estimated at \$2,000 and \$21,632 for resurfacing the road at today's cost.

#### TWELFTH STREET

This portion of road lies within the limits of the CalTrans right of way for State Highway 101. It lies between the railroad tracks, over the overpass, to the intersection of Strongs Creek Road and Riverwalk Drive. The County entered into an agreement with CalTrans to be responsible for the surface of the road. CalTrans is responsible for the overpass structure.

The County has spent \$37 over the last five years on this portion of road. The length of road is approximately 1,530 feet and has an average width of 30 feet. The cost of resealing the road is estimated at \$5,500 and \$69,670 for resurfacing the road.

#### ROHNERVILLE ROAD

This portion of road lies north of Loop Road to the south line of the park. The road has been presumed by the City to be located in the City. The Campton Heights and Fortuna High School annexations by the City appear to have not included this portion of road. The County has not been providing maintenance of the road. The road was presumed by the City to be within the city limits of Fortuna and has been maintained by the City for a number of years.

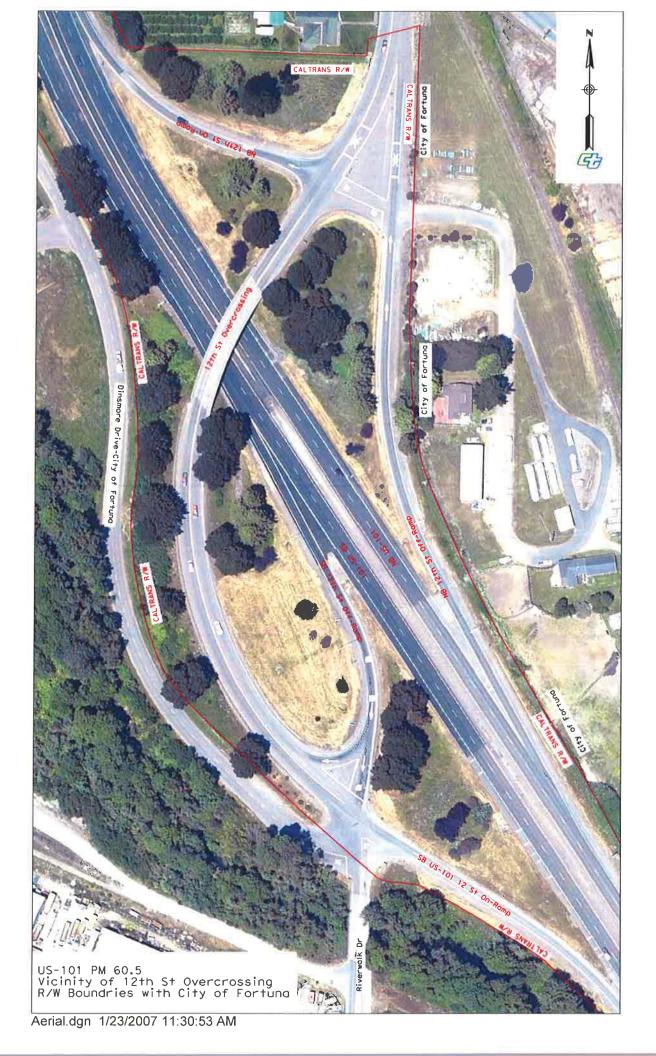
#### EEL RIVER DRIVE

This portion of road lies between Drake Hill Road and Kenmar Road. It does not front any developable property located in the County. CalTrans and NWP Railroad front the west side of the road. The entire east side of the road serves lands located in the City. It is approximately 0.93 mile in length and has an average width of 24 feet. The County has spent approximately \$26,000 on this road in the last 5 years. The majority of the cost was associated with clean up of the movement of earth off of property owned by the City. The slide occurred in 2002.

The cost of resealing the road is estimated to be approximately \$14,142 and \$153,205 for resurfacing the road.

#### DRAKE HILL ROAD

This portion of road is located between Rohnerville Road and Eel River Drive. The City is located along the entire north side of the road. The north side of the road is zoned and planned for residential development. The south side of the road located in the County is mainly zoned and planned for agricultural use. The road is 1.25 miles in length and is approximately 22 feet in width. The County has spent approximately \$79,000 in maintenance of this road in the last 5 years. Approximately \$67,000 of the maintenance cost was associated with resurfacing Drake Hill Road between Thelma Drive and Rohnerville Road in 2002. This stretch of road is where the heaviest density of residential property is located within the City.


The cost of resealing the road is estimated to be approximately \$17,424 and \$188,760 is estimated for resurfacing the road.

If you have any additional questions regarding the roads or this letter, please don't hesitate to contact this office.

Sincerely,

Jan

Harless McKinley Land Use Division 445-7205



I-Hum-l-F,G

#### FREEWAY MAINTENANCE AGREEMENT

THIS AGREEMENT, made and entered into, in duplicate, this <u>15th</u> day of <u>April</u>, 1963, by and between the State of California, acting by and through the Department of Public Works, Division of Highways, hereinafter for convenience referred to as "the State", and the County of Humboldt, hereinafter for convenience referred to as "the County", witnesseth:

WHEREAS, on November 6, 1958, a Freeway Agreement was executed between the County and the State relating to the development of that portion of State Highway Route 1 in the County of Humboldt between 0.6 mile north of Route 35 and 0.3 mile north of Fortuna as a freeway, and

WHEREAS, under the provisions of said Freeway Agreement, the County agreed to certain adjustments in the County road system, and for the carrying of certain County roads over or under or to a connection with the freeway, and

WHEREAS, said freeway has now been completed or is nearing completion, and the parties mutually desire to clarify the division of maintenance responsibility as to separation structures, and County roads or portions thereof, within the freeway limits.

NOW, THEREFORE, IT IS AGREED:

1. ROADWAY SECTIONS

The County will maintain, at County expense, all portions of County roads and appurtenant structures and bordering areas, colored in yellow on the attached map marked Exhibit "A" and made a part hereof by this reference.

#### 2. VEHICULAR OVERCROSSINGS

The State will maintain, at State expense, the entire structure below the top of the concrete deck surface, exclusive of any bituminous surface treatment thereof. The County will maintain, at County expense, the top of the concrete deck surface, together with any bituminous surface treatment thereon, and all portions of the structure above the concrete deck surface, and shall perform such other work as may be necessary to insure an impervious and otherwise suitable surface. The County will also maintain all traffic service facilities provided for the benefit or control of County road traffic.

#### 3. VEHICULAR UNDERCROSSINGS

The State will maintain the structure proper. The roadway section, including the traveled way, shoulders, curbs, sidewalks, walls, drainage installations and traffic service facilities, will be maintained by the County.

#### 4. EFFECTIVE DATE

This agreement shall be effective upon the date of its execution by the State; it being understood and agreed, however, that the execution of this agreement shall not affect any pre-existing obligations of the County to maintain designated areas pursuant to prior written notice from the State that work in such areas, which the County has agreed to maintain pursuant to the terms of the Freeway Agreement, has been completed.

> STATE OF CALIFORNIA DEPARTMENT OF PUBLIC WORKS DIVISION OF HIGHWAYS

J. C. WOMACK STATE HIGHWAY ENGINEER

Approval Recommended

SAM HELWER District Engineer

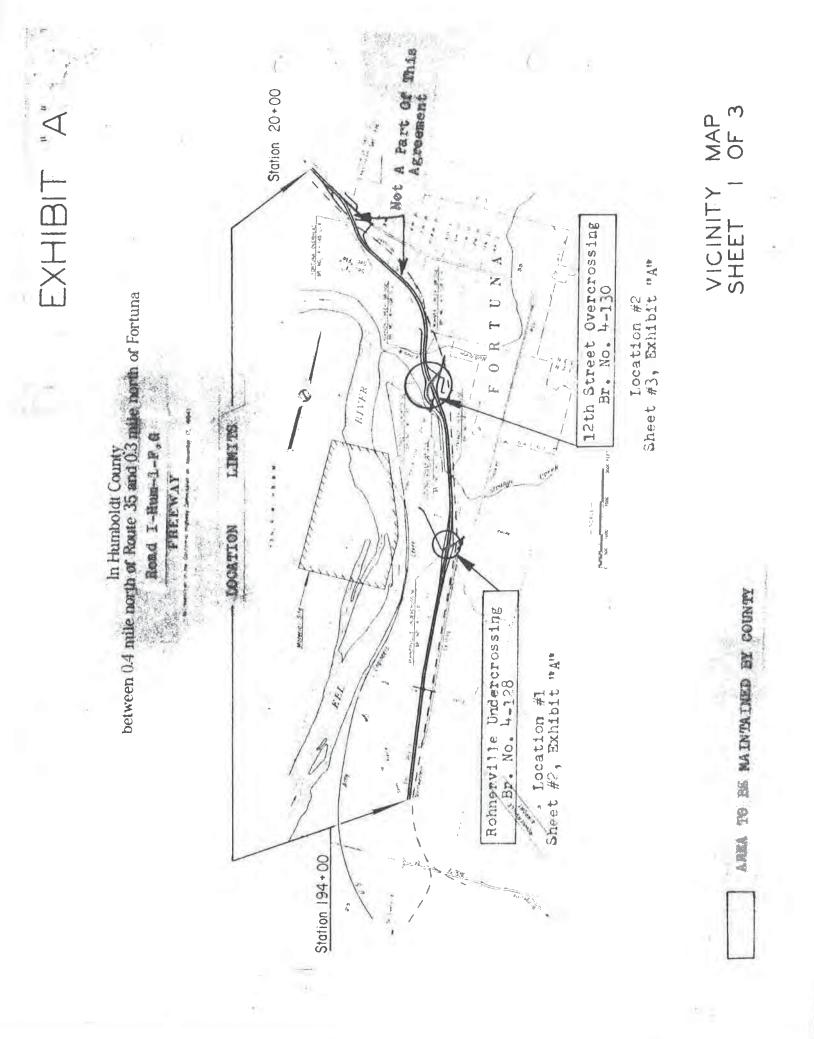
EDWARD L. TINNEY Maintenance Engineer

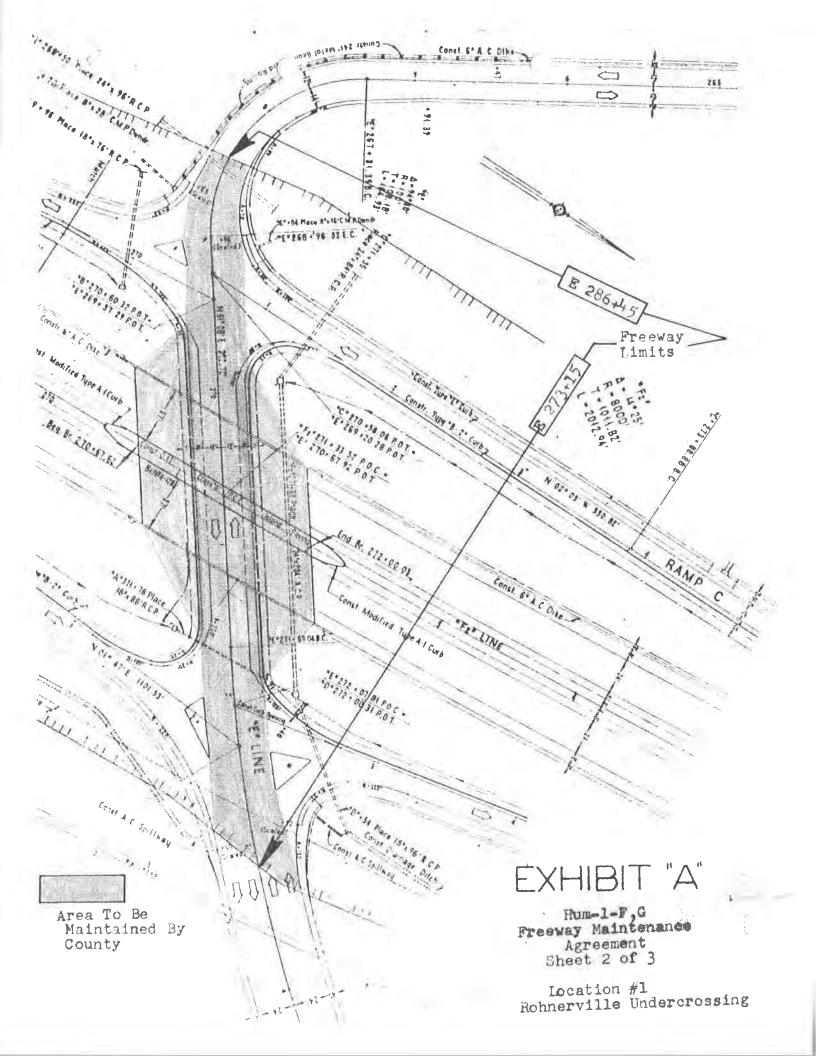
Approved as to form:

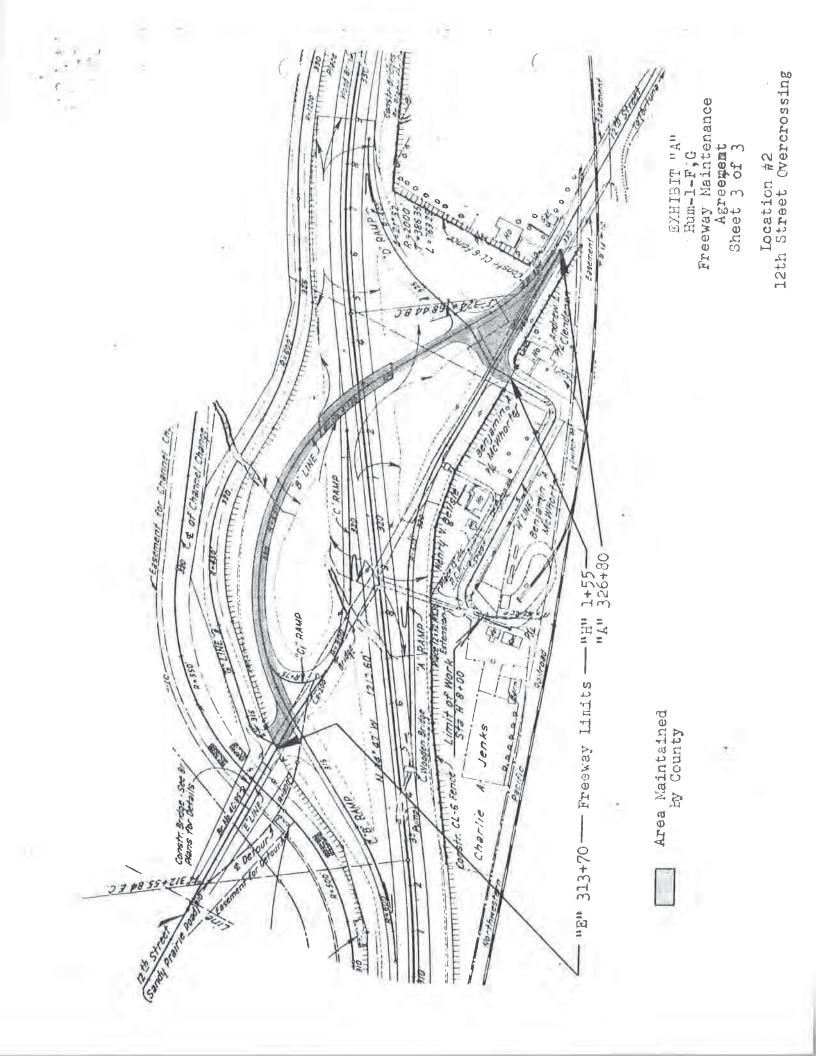
RICHARD C. EAST Attorney for Department

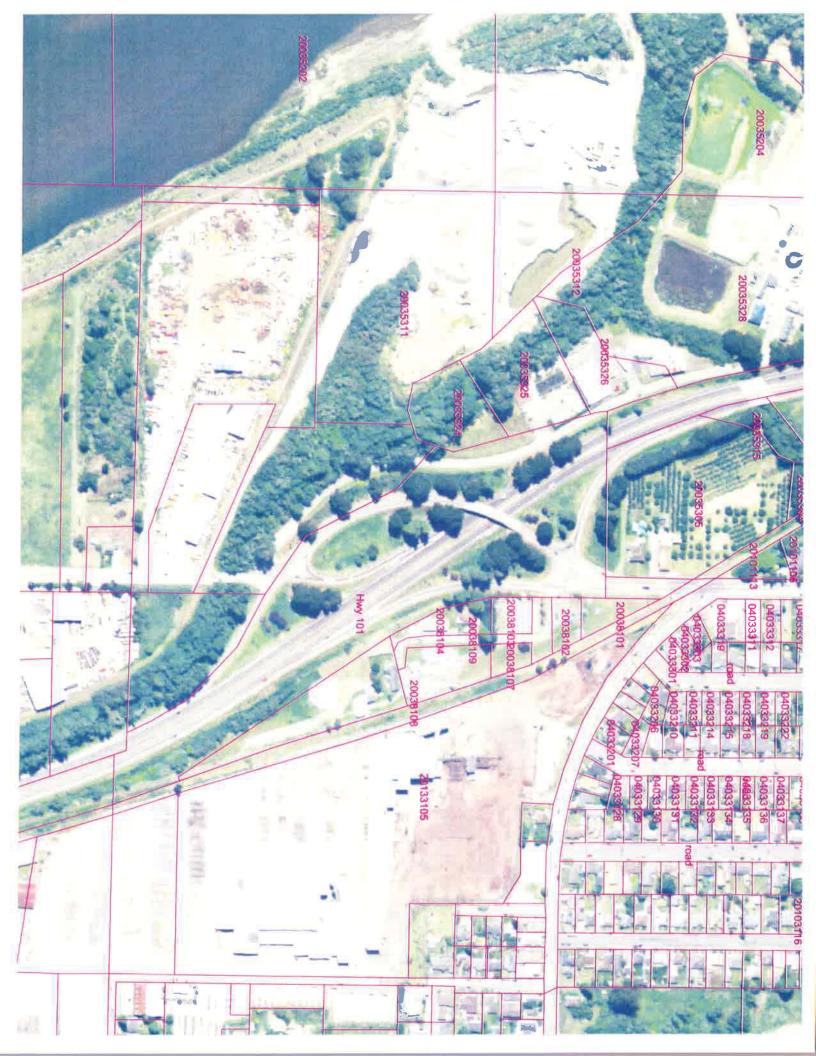
Attorney

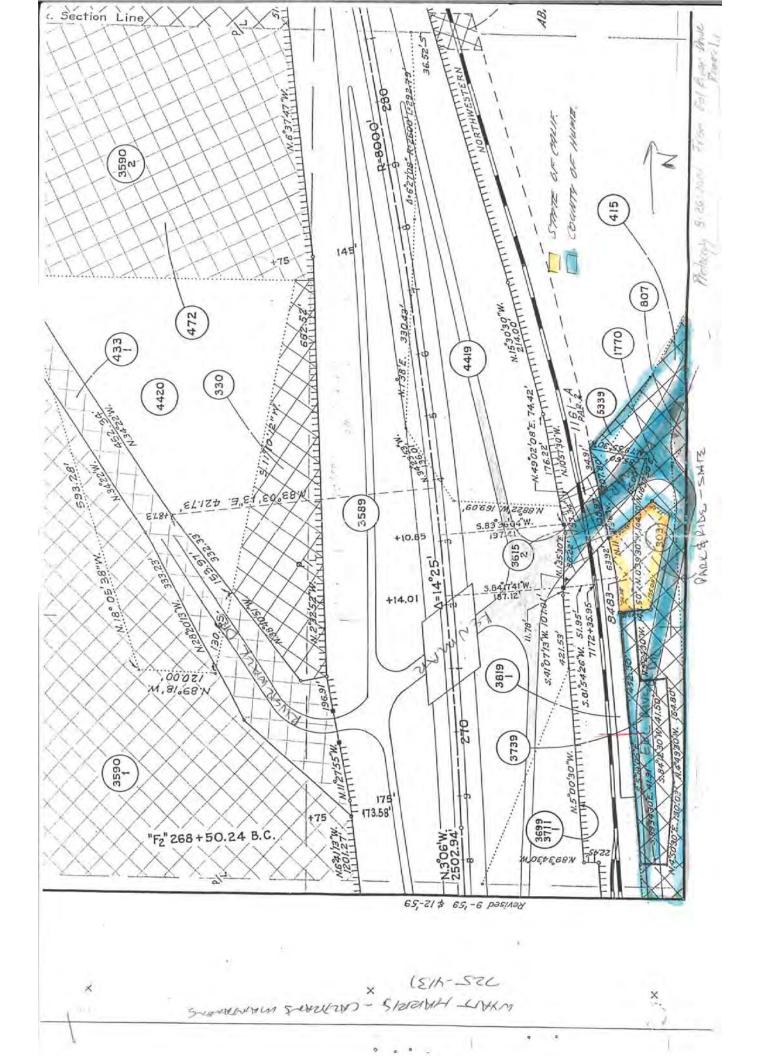
By <u>CHAS. E. WAITE</u> Deputy State Highway Engineer


APR 15 1963


COUNTY OF HUMBOLDT


By <u>NORMAN R. ROBERTSON</u> Chairman, Board of Supervisors


By FRED J. MOORE, Jr. (SEAL) County Clerk


By W. E. SCHUSSMAN











#### Bisiar, Jim

From: Sent: To: Subject: Ryan, Dave Friday, December 05, 2014 4:27 PM Bisiar, Jim Eel River Drive R/W

#### Jim,

I couldn't find any more ways to check or calc the north ¼ corner and I didn't find any references in deeds to the NE corner of Sec. 2, so I gave up on that.

For what you send to Jill, I say skip the PC-Survey plot and tape together the highway maps that you put pt. nos. on, scan it and send that. I drew our R/W with a blueish/green marker. A plot may not even be necessary-pt. nos. just get jumbled. Craig could scan it-or if he's not around, Jason or I could help you do that. I want to see it anyways before we scan it.

As we talked about, recalc the south end of 202 Deeds 93 to be at sta. 279<sup>2</sup> rather than using the acreage calc. Calc the west side of this R/W up to just south of where the RR starts to curve-to your box for pt. no. 359. Also calc the little strip that got left out near your pt. nos. 308 & 317. Calc area 145- that's the notch the State granted back to East along the easterly R/W, that is not now R/W.

I need to look at the road register for Drake Hill Rd, but haven't done that yet.

Add the following note:

R/W for Eel River Drive in the area of this project (Drake Hill Road to Kenmar) is per Relinquishment No.<sup>4</sup>15 to County of Humboldt from Caltrans per 722 OR 640\*, recorded 2/7/1963. The right-of-way was initially state highway (1917 alignment and 1931 widening). The southerly end of the project consists of uniform width strips, so both sides of the County R/W have been calculated for this area. The northerly end is variable and complex where it approaches Caltrans highway 101 R/W, so we therefor did not calculate the westerly limits of the R/W for this area. Further work would be required if this location is deemed necessary by Design engineers.

The R/W as shown is preliminary as more field ties to controlling monuments would be necessary to depict it with greater accuracy. If work is contemplated in close proximity to any existing R/W lines shown, Surveys should be notified in order to verify accuracy. Proposed acquisitions for any new easements will require additional survey work.

#### Additional information regarding R/W

Initial fieldwork did not entail making any ties for determining R/W. After the topographic survey was done, minimal additional fieldwork was done to attempt to locate R/W. In the course of R/W research and analysis, it was ultimately determined certain section and quarter corners, plus other monuments cited within R/W deeds needed to be located. Many of these are either destroyed or could not be found through quick searches. Positions have been calculated primarily through data contained in the 1917 and 1931 alignments noted in deeds and highway maps, originating near the Alton interchange using Caltrans control. R/W analysis required analyzing approximately 20 deeds and obtaining old maps and other data from Caltrans archives, most of which was not on file in County RW records.

Dave



Attachment K - Environmental Constraints Analysis



# **Environmental Constraints Analysis**

Fortuna Highway 101/Riverwalk Area Connectivity Project

May 2016

## **Table of Contents**

| 1. | Introd | uction                                                        | 1  |
|----|--------|---------------------------------------------------------------|----|
|    | 1.1    | Project Summary                                               | 1  |
|    | 1.2    | Purpose of the Report                                         | 1  |
|    | 1.3    | Location                                                      | 1  |
|    | 1.4    | Overview of Study Area                                        | 4  |
| 2. | Metho  | ods                                                           | 5  |
|    | 2.1    | Research Methods                                              | 5  |
|    | 2.2    | Environmental Reconnaissance Survey Methods                   | 5  |
| 3. | Resul  | ts                                                            | 6  |
|    | 3.1    | Special Status Plants, Animals, & Habitats Literature Results | 6  |
| 4. | Enviro | onmental Permits and Processes Discussion                     | 9  |
|    | 4.1    | California Environmental Quality Act                          | 9  |
|    | 4.2    | Other CEQA/NEPA Considerations:                               | 9  |
|    | 4.3    | Permits                                                       | 10 |
| 5. | Concl  | usions                                                        | 13 |
|    | 5.1    | Potential Permits and Environmental Constraints               | 13 |
| 6. | Refer  | ences                                                         | 14 |

## **Table Index**

Table 1 Listed/Proposed Rare, Threatened and Endangered Species

Table 2 Potential Rare Plants Occurance and Bloom Periods

## **Figure Index**

Figure 1 Vicinity Map Figure 2 Reconnaisssance Level Biological Investigation

## **Appendices**

Appendix A (USFWS Listed/Proposed Threatened and Endangered Species for the Fortuna Quad)

Appendix B (CNDDB Occurrence Report)

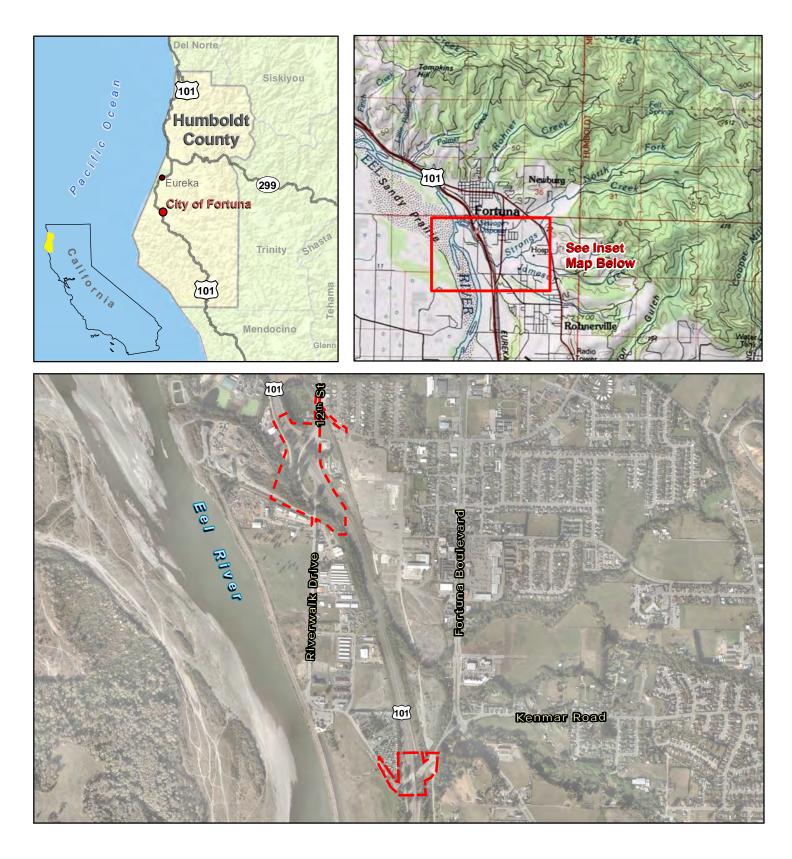
Appendix C (Site Photographs)

## 1. Introduction

## 1.1 **Project Summary**

The Fortuna Highway 101/Riverwalk Connectivity Planning Study focuses on the 12<sup>th</sup> Street and Kenmar Road crossings of Highway 101, and includes an evaluation of the existing conditions, identification of deficiencies from Caltrans standards, and the development of conceptual alternatives intended to provide multi-modal mobility and accessibility for all users through both interchanges, with the goal of improving safety and ensuring the continued commercial viability of the Riverwalk Area. The results of the study will provide the foundation for future project development phases with the goal of implementation of improvement projects at the 12<sup>th</sup> Street and Kenmar Interchanges.

The overall objectives of the project are to:


- Provide improved accessibility and connectivity between the Downtown and the Riverwalk Area for all users
- Support growth of business in the Riverwalk and Downtown areas by increasing the capacity of the 12<sup>th</sup> Street and Kenmar Interchanges while considering planned commercial growth
- Support economic growth by developing strategies to improve access to the Riverwalk and Downtown areas
- Improve the safety at the Kenmar and 12<sup>th</sup> Street Interchanges

### 1.2 Purpose of the Report

This Environmental Constraints Analysis is intended to document the biological conditions/constraints within the Study Area. A reconnaissance-level site investigation of existing conditions was conducted throughout the study area in February 2016, to identify the presence or potential presence of biological resources listed under the Federal Endangered Species Act (ESA), the presence of wetlands and Waters of the US as regulated by the US Army Corps of Engineers (USACE), the presence or potential presence of species listed as endangered or threatened under the California Endangered Species Act (CESA) or considered a species of special concern (SSC) by the California Department of Fish and Wildlife (CDFW), or the potential for special-status plant species having a rare plant ranking as determined by the California Native Plant Society (CNPS) rare plant inventory, and to present the potential of sensitive habitats as listed by the CDFW. This report also discusses the necessary steps required for the project to comply with federal, state, and local regulatory environmental compliance requirements and provides basic permit information. No permits or environmental compliance documents were collected, initiated, or completed for this effort, nor were regulatory agencies contacted for additional information.

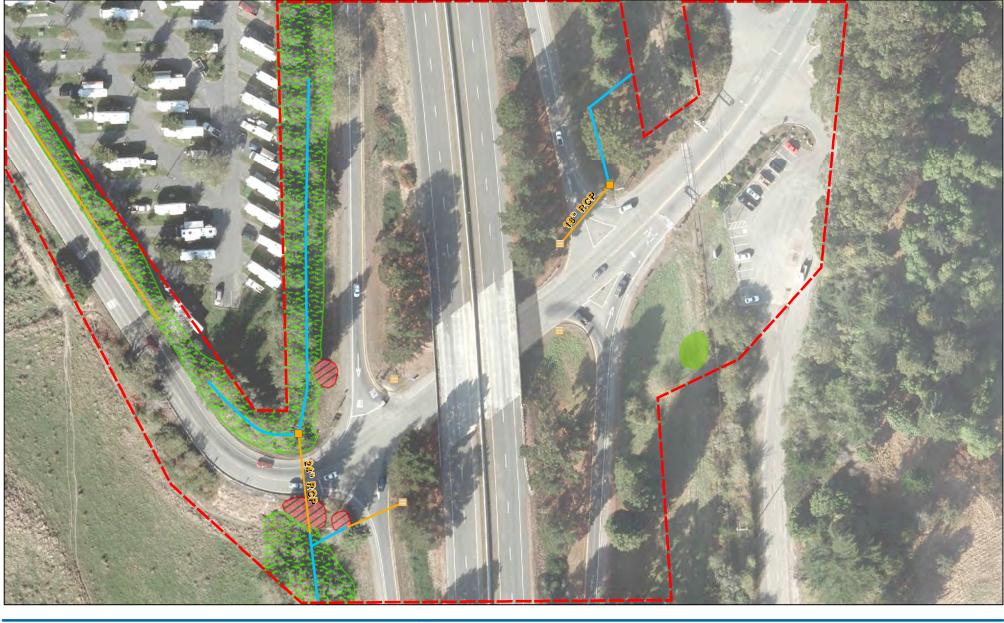
### 1.3 Location

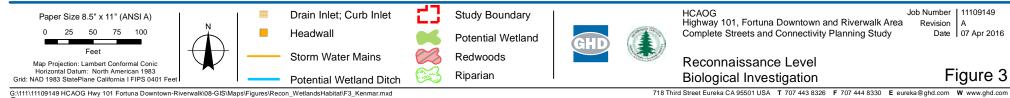
This Environmental Constraints Analysis is being undertaken in Fortuna, Humboldt County, California. Fortuna is approximately 14 miles south of Eureka and can be accessed from Highway 101. A vicinity map is included as Figure 1. The project study boundary (PSB) covers approximately 35 acres around the Kenmar Road and 12<sup>th</sup> Street interchanges for Highway 101. The PSB is depicted in Figures 2a and 2b and 3, and these areas were analyzed to evaluate the likeliness of environmental features and potential project constraints or likelihood of permitting requirements.





| Paper Size 8.5" x 11" (ANSI A)<br>0 200 400 600 8001,000                                                    | GHD | and County | HCAOG<br>Highway 101, Fortuna Downtown and Riverwalk Area<br>Complete Streets and Connectivity Planning Study |        |
|-------------------------------------------------------------------------------------------------------------|-----|------------|---------------------------------------------------------------------------------------------------------------|--------|
| Map Projection: Transverse Mercator<br>Horizontal Datum: North American 1983<br>Grid: NAD 1983 UTM Zone 10N |     |            |                                                                                                               | gure 1 |


C:\111\11109149 HCAOG Hwy 101 Fortuna Downtown-Riverwalk\08-GIS\Maps\Figures\Recon\_WetlandsHabitat\F1\_Vicinity.mxd © 2012. While every care has been taken to prepare this map, GHD (and DATA CUSTODIAN) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any wide (whether in contract, tor tor otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, back accuracy. City of Fortuna Aerial, 2010; GHD data, 2013; USA Topo Maps; Streetmap USA. Created by:gldavidson




718 Third Street Eureka CA 95501 USA T 707 443 8326 F 707 444 8330 E eureka@ghd.com W www.ghd.com G:\111\11109149 HCAOG Hwy 101 Fortuna Downtown-Riverwalk\08-GIS\Maps\Figures\Recon\_WetlandsHabitat\F2a\_12th\_Street\_South.mxd © 2016. While every care has been taken to prepare this map, GHD make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any way and for any repares. Losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: City of Fortuna GIS: utiliteis; GHD: wetland/habitat reconnaissance 2-29-2016 Created by:gldavidson



T18 Third Street Eureka CA 95501 USA T 707 443 8326 F 707 444 8330 E eureka@ghd.com W www.ghd.com G:\111\11109149 HCAOG Hwy 101 Fortuna Downtown-Riverwalk\08-GIS\Maps\Figures\Recon\_WetlandsHabitat\F2b\_12th\_Street\_North.mxd © 2016. While every care has been taken to prepare this map, GHD make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any way and for any reason. Data source: City of Fortuna GIS: utilities; GHD: wetland/habitat reconnaissance 2-29-2016 Created by:gldavidson





G:\111\11109149 HCAOG Hwy 101 Fortuna Downtown-Riverwalk\08-GIS\Maps\Figures\Recon\_WetlandsHabitat\F3\_Kenmar.mxd 718 Third Street Eureka CA 95501 USA **T** 707 443 8 © 2016. While every care has been taken to prepare this map, GHD make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: City of Fortuna GIS: Storm Drain, aerial imagery; GHD: wetland/habitat reconnaissance 2-29-2016 Created by:gldavidson

### 1.4 Overview of Study Area

The Study Areas are located in the western part of Fortuna, a city with a population of 11,926 as of the 2010 census. There are two distinct Study Areas located approximately one mile apart, and these are described in greater detail below.

The 12<sup>th</sup> Street PSB is an elongated irregularly shaped area oriented along the north-south centerline of 12<sup>th</sup> Street and Riverwalk Drive, and bisected by Highway 101 (Figure 2a and 2b). The area north of Highway 101 consists of paved roads and maintained grassy right of way with a few scattered ornamental trees, and is bordered by residential and commercial development. There are few natural feastures remaining in this section. South of Highway 101, Strong's Creek and associated riparian habitat makes up the southern end of the PSB, with a narrow area of shrubs and trees just to the north between Dinsmore Drive and 12<sup>th</sup> Street, and grassy swales with scattered Monterey cypress between the southern arc of 12<sup>th</sup> Street and Highway 101.

The Kenmar PSB is oriented generally northeast/southwest (Figure 3). The larger portion east of Highway 101 includes a steep slope with non-native eucalyptus at the extreme east end, with a parking lot immediately to the west. Continuing west, an inactive rail line runs through a series of mostly open areas of low herbaceous growth with scattered Monterey cypress. West of Highway 101 and associated ramps is an ephemeral ditch which has developed a riparian-like area dominated by dense shrub and sapling cover, and which includes a few redwoods of moderate size near the intersection of Riverwalk Drive and the Highway 101 ramps. The southwest limit of the PSB coincides with the top of a grade dropping down to the adjacent Eel River floodplain, which is not included in the PSB.

Wetland and riparian habitats are discussed in further detail below.

# 2. Methods

### 2.1 Research Methods

The initial analysis consisted of review of existing environmental literature and data results from database queries of potential on-site sensitive species which were evaluated using the Fortuna United States Geoligical Survey (USGS) 7.5 quadrangle. The database queries include the California Natural Diversity Database (CNDDB) [CDFW February 2016]; the California Native Plant Society's (CNPS) Inventory of Rare and Endangered Vascular Plants [CNPS February 2016]; and lists of special-status species and natural communities that may occur in the project area as provided by the U.S. Fish and Wildlife Service (USFWS) [USFWS, 2016].

Additional existing data was reviewed when available, such as soil and ecological maps and descriptions generated by the Natural Resources Conservation Service (NRCS) and wetlands mapping from USFWS National Wetlands Inventory (NWI) [USFWS 1987]. NWI maps are compiled using a variety of remote sensing data sources, including aerial photographs, infrared photography, and soils data. NWI maps do not necessarily represent an accurate extent of jurisdictional wetlands in the Study Area. Finally, the CalFlora database in conjunction with the Jepson Herbarium database was consulted for site specific species cross referencing for potential rare plants in the project vicinity. When available, Geographic Information System (GIS) data was overlaid with the PSB.

## 2.2 Environmental Reconnaissance Survey Methods

On February 20, 2016, GHD field staff performed a reconnaissance level investigation of environmental and biological resources within the two PSB's. The survey was meant to identify the potential for environmental impacts and to identify potential permits that would result from implementing the project. This field reconnaissance effort, focused on identifying the potential presence of wetland, riparian, and special-status plant species (listed as rare, threatened, endangered, or candidate for rare, threatened, or endangered species listing under the state or federal Endangered Species Acts, CNPS rare plant ranking, or of local importance) or habitats present within the proposed project trail segments. The project area topographic maps, aerial photography maps, the California Department of Fish and Wildlife CNDDB and CNPS Rare Plant Inventory were consulted using the Fortuna quadrangle prior to and during the survey to determine potential sensitive species or habitat occurrence.

Field work was conducted by walking each of the proposed PSB units and visually documenting findings through photographs and notes. Each location with a potential wetland or areas potentially containing special status species and/or habitats, was noted. These areas would then be recommended for further investigations or protocol level surveys in order to fulfill potential permit requirements as described in further detail in Section 3 of this report.

The likelihood of certain permits increases in locations in which the project intersects certain features. For instance, the likelihood of a USACE Clean Water Act 404 and CDFW 1600 permit increases in locations in which the project crosses a blue line stream. Section 4 considers each permit, discusses the nature of the permit, and identifies the threshold triggers for each permit.

## 3.1 Special Status Plants, Animals, & Habitats Literature Results

A compilation of flora and fauna obtained from the literature search can be found in Table 1 below. The combined list identifies six animal species and three plant species with a moderate or high potential to be present in the PSB. A list of federal endangered, threatened and candidate species for the Fortuna USGS quadrangle was downloaded from the web site of the USFWS Arcata Field Office on March 4, 2016 (Appendix A). The USFWS lists are often of a general nature and do not indicate presence, merely the need for further review. The CNDDB Occurrence Report Rare Find 4 lists species potentially present in the project vicinity, and includes the Fortuna quadrangle (Appendix B). Several of these were subsequently excluded because of an absence of suitable habitat.

| Scientific Name                    | Common Name             | Status | Habitat                                                         | Potential to<br>Occur                                                              |
|------------------------------------|-------------------------|--------|-----------------------------------------------------------------|------------------------------------------------------------------------------------|
| Antrozous pallidus                 | Pallid bat              | SSC    | Dry rocky woodlands                                             | Low, no suitable<br>habitat                                                        |
| Arborimus pomo                     | Sonoma tree<br>vole     | SSC    | Conifer forest                                                  | Low, no large<br>stands of suitable<br>habitat                                     |
| Pekania (Martes)<br>pennanti       | Fisher                  | FC     | Mature forest                                                   | None; no suitable<br>habitat present                                               |
| Ardea herodius                     | Great Blue<br>Heron     | None   | Colonial nester, tall trees, marshes                            | Low, several<br>miles to nearest<br>known rookeries                                |
| Charadrius<br>alexandrinus nivosus | Western Snowy<br>Plover | FT     | Beaches and dunes<br>above high tide line,<br>river gravel bars | None; no suitable<br>habitat present                                               |
| Coccyzus<br>americanus             | Yellow-billed<br>Cuckoo | FT     | Dense extensive<br>riparian forest                              | Low; nearest<br>documented<br>recent records<br>near Cock Robin<br>Island          |
| Brachyramphus<br>marmorata         | Marbled<br>Murrelet     | FT     | Old-growth redwood and Douglas fir forest                       | None; no suitable<br>habitat present                                               |
| Riparia riparia                    | Bank Swallow            | ST     | Nests in vertical<br>banks/cliffs along<br>rivers               | Low for nesting;<br>known from the<br>Eel near<br>Fernbridge so<br>nearby foraging |

#### Table 1. Listed/Proposed Rare, Threatened and Endangered Species

|                               |                                 |                             |                                                                                 | is possible                                                                                                         |
|-------------------------------|---------------------------------|-----------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Strix occidentalis<br>caurina | Northern<br>Spotted Owl         | FT                          | Mature forest                                                                   | None; no suitable<br>habitat present                                                                                |
| Emys (Actinymys)<br>marmorata | Western pond<br>turtle          | SSC                         | Ponds, rivers,<br>marshes                                                       | Moderate                                                                                                            |
| Rana aurora                   | Northern Red-<br>legged Frog    | SSC                         | Emergent wetlands<br>and stream margins,<br>and nearby wet<br>meadows and woods | High especially in riparian areas                                                                                   |
| Rana boylii                   | Foothill Yellow-<br>legged Frog | SSC,<br>federal<br>proposed | Margins of shallow<br>rocky streams and<br>riffles                              | High; known to<br>occur in the Eel<br>and tributaries                                                               |
| Oncorhynchus<br>kisutch       | S. OR/N. CA<br>Coho Salmon      | FT                          | Rivers and tributaries                                                          | Moderate;<br>historic records<br>from Strong's<br>Creek                                                             |
| Oncorhynchus<br>mykiss        | N. CA Steelhead                 | FT                          | Rivers and tributaries                                                          | High; recent<br>records from the<br>lower Strong's<br>Creek watershed                                               |
| Oncorhynchus<br>tshawytscha   | CA Coastal<br>Chinook           | FT                          | Rivers and larger<br>tributaries                                                | Moderate;<br>present in Eel<br>near Fortuna                                                                         |
| Spirinchus<br>thalyichthys    | Longfin Smelt                   | FC, ST                      | Estuaries, may enter<br>freshwater to spawn                                     | Low; present in<br>lower 4.5 miles of<br>Eel, historic<br>(1956) seasonal<br>occurrence up to<br>Van Duzen<br>mouth |

Important habitat features include Strong's Creek and an associated riparian corridor in the south and southwest portion of the 12<sup>th</sup> Street PSB, and several large individual redwoods in the western part of the Kenmar PSB. While these habitat features are not extensive, they could harbor sensitive animals or plants and have habitat and aesthetic value.

A number of plant species identified as rare by the CNPS occur in the Fortuna quadrangle; CEQA requires that these species be considered in the planning process, thus a protocol level study is recommended during the appropriate bloom period (Table 2). Appendix B contains the CNDDB occurance report. If rare species are located mitigation measures may be required. At least one of these species (Siskiyou checkerbloom) sometimes grows within maintained road right-of-way.

## Table 2. Potential Rare Plant Occurrence and Bloom Periods

| Scientific Name                               | Common<br>Name                      | Rare<br>Plant<br>Rank | Bloom<br>Time    | Habitat                                         | Liklihood to<br>Occur                                                |
|-----------------------------------------------|-------------------------------------|-----------------------|------------------|-------------------------------------------------|----------------------------------------------------------------------|
| Fissidens<br>pauperculus                      | Minute pocket<br>moss               | 1B.2                  | n/a              | Damp soil in dry<br>stream beds and<br>banks    | Moderate                                                             |
| Sidalcia<br>malviflora ssp.<br>patula         | Siskiyou<br>checkerbloom            | 1B.2                  | May-<br>August   | Coastal scrub,<br>coastal prairie, road<br>cuts | Moderate                                                             |
| Clarkia amoena<br>ssp. whitneyi               | Whitney's<br>farewell-to-<br>spring | 1B.1                  | June-<br>August  | Coastal bluff,<br>coastal scrub                 | Moderate,<br>based on a<br>1955 record<br>from "west of<br>Fortuna." |
| <i>Gilia capitata</i><br>ssp. <i>pacifica</i> | Pacific gilia                       | 1B.2                  | April-<br>August | Coastal scrub, coastal prairie                  | Low                                                                  |

# 4. Environmental Permits and Processes Discussion

### 4.1 California Environmental Quality Act

Review under the California Environmental Quality Act (CEQA) is required whenever a state or local government entity initiates a project, funds a project, or issues a permit decision. The CEQA document is prepared or overseen by a designated lead agency. An Initial Study determines the appropriate level of environmental review; for a project such as this one limited to relatively small portions of an urban fringe area but including a salmonid stream and associated riparian areas, there is a possibility that an Environmental Impact Report (EIR) would be required. However, if all identified impacts can be avoided or adequately mitigated, a Mitigated Negative Declaration (MND) may be adequate. The City of Fortuna would most likely be the CEQA lead agency for the project. Other likely agencies include the Humboldt County Association of Governments, Caltransor other non-federal agencies with permitting authority over the project.

Compliance with the National Environmental Policy Act (NEPA) is required whenever there is federal involvement in the project. If the ultimate project includes federal funding, it would trigger NEPA analysis; in addition, federal involvement may also include approval or issuance of permits. If the project does not qualify for a Categorical Exclusion (CE) or Programmatic Categorical Exclusion (PCE), additional environmental documentation under NEPA may be necessary prior to project approval of funding by a federal agency. Caltrans would most likely be the NEPA lead agency for the project.

### 4.2 Other CEQA/NEPA Considerations:

From a CEQA/NEPA perspective, project segmentation may occur when the project as described and analyzed in a single CEQA or NEPA process does not encompass the entire project. Segmentation can occur when portions of a project that are dependent on other portions of the project to make them functional are evaluated in separate documents. An example would be if each interchange were analyzed in separate CEQA documents but then constructed simultaneously. In this example, the "entire project" would consist of both interchanges, even though the project was analyzed in two separate documents and therefore "segmented." However, if the components could not function without the other, then these projects must be analyzed in the same document. Alternatively, if the projects are analyzed in separate documents, they must be analyzed in the cumulative impacts section of the document. Therefore, if the two interchanges are considered a single project, then the document should address all project components.

If a project has reasonably foreseeable additional components, they must be analyzed concurrently as part of a single project. The flaw of segmentation is that it can divide larger projects into smaller components, which, when viewed independently, may not lead to the identification of the full range and intensity of impacts resulting from the entire project when viewed as a whole. Linear infrastructure network projects (e.g. transmission lines, pipe networks, roads, trails) may present a special challenge when considering whether a project is in danger of being segmented, as there may be no clear cut method of determining where an individual project starts and ends - and

whether it should be analyzed as part of a larger project or as an individual action simply occurring on a larger network. Following court decisions, the standard for determining whether a road project is an individual action warranting individual CEQA/NEPA analysis is if it is: of substantial length; and is between logical termini, such as population centers or major crossroads, etc; and has independent utility.

#### 4.2.1 Cultural Resources

Preparation of CEQA/NEPA documents would trigger a need for cultural resources studies in at least some portions of the PSB. Reconnaissance level studies and inclusion of reasonable mitigation measures would likely be suitable for most areas, unless those studies identify concentrations of cultural resources.

#### 4.2.2 Other Special Studies for CEQA/NEPA

CEQA and NEPA require special studies for key resources that may be impacted by the project. For instance, the Protocol level surveys for special-status plants and animals would serve as special studies. Other special studies that could be required include aesthetic studies, air quality studies, geologic studies, hazardous materials studies, noise studies, and traffic studies. At this time, it is unknown if any of these studies would be required. However, it is possible that special studies could be required for parts of the project. For example, geotechnical surveys may be required in the creek crossing locations.

## 4.3 Permits

#### 4.3.1 U.S. Army Corps of Engineers (USACE) Section 404 Nationwide Permit

The USACE regulates discharges of dredged or fill material into Waters of the United States under Section 404 of the Clean Water Act (CWA). The project may result in unavoidable fill of some jurisdictional wetlands or Waters of the U.S. during project implementation. There are also potential stream crossings, although the project will likely be designed to avoid or minimize impacts to wetlands or waters of the U.S. However, if filling of wetlands or waters of the U.S. are unavoidable, the project will require a USACE Section 404 Permit. The project may qualify for a streamlined USACE Nationwide Permit. Prior to authorizing wetland fill under Section 404, a wetland delineation must be submitted and verified by the USACE. Impacts that cause a loss of jurisdictional wetland will require an approved wetland mitigation and monitoring plan (MMP), accompanied by an adaptive management plan and long term maintenance plan.

A formal wetland delineation is recommended during the planning phase of any segment which crosses a potential wetland identified in this report, and for those areas where ditches (potential Waters of the U.S.) occur adjacent to the roads, in order to verify potential wetlands or Waters of the U.S. and to request a jurisdictional determination. Wherever ground disturbing work would occur below the ordinary high water mark (OHWM) of a stream crossing, a delineation and 404 permit would also be required. Potential wetlands and waters of the U.S. are shown on Figures 2a and 2b and 3, and include Strong's Creek, several drainage ditches, and a few small degraded wet depressions and swales.

### 4.3.2 Regional Water Quality Control Board (RWQCB)

Section 401 Water Quality Certification and National Pollutant Discharge Elimination System (NPDES) Requirements: Pursuant to section 401 of the federal CWA, projects that require a

USACE permit for discharge of dredge or fill material must obtain water quality certification to confirm compliance with state water quality requirements. If the project results in unavoidable fill of wetlands or Waters of the U.S., Section 401 Certification from the RWQCB will be required. The RWQCB may encourage a CRAM evaluation of impacted habitats and mitigation for compensation of impacts.

The CWA requires that any discharge of pollutants to waters of the United States from any point source is unlawful unless the discharge complies with a NPDES permit. These regulations require that discharges of stormwater from construction projects that cause one or more acres of soil disturbance must be in compliance with an NPDES permit. If the project disturbs more than one acre of soil, it must comply with the construction general stormwater permit issued by the State Water Resource Control Board. The construction general permit requires the development and implementation of a Storm Water Pollution Prevention Plan (SWPPP).

Additionally, the RWQCB may take jurisdiction on a variety of drainage ditches and swales identified in the PSB and a formal delineation of the features will be required throughout the PSB.

#### 4.3.3 California Department of Fish & Wildlife Section 1602

Under Fish and Game Code Section 1602 (Streambed Alteration), the CDFW has jurisdiction over proposed activities that may substantially modify a river, stream, or lake. The PSB includes portions of Strong's Creek and several shallow ditches, and depending on final design direct or indirect impacts could occur in some of these locations. Additionally, CDFW jurisdiction extends at least to the top of bank and may sometimes include adjacent riparian zones. As a result, a 1600 Lake and Streambed Alteration Agreement including special conditions to avoid or minimize impacts is anticipated.

# 4.3.4 Federal Endangered Species Act Compliance (Protocol Level Surveys and Biological Assessments)

Based on available knowledge at this time, the project is not expected to result in any adverse impacts to federally threatened or endangered species or habitats, and GHD does not anticipate the need for formal Section 7 ESA consultation (this assumes no instream work). However, when a USACE permit is required for impacts to jurisdictional wetlands or other waters and the project has the potential to cause adverse impacts to federally-listed threatened or endangered species, the USACE must initiate consultation with the USFWS and/or the National Marine Fisheries Service (NMFS) pursuant to Section 7 of the ESA. Although unlikely for the proposed project, because no impacts to threatened, or endangered species are currently anticipated, if future studies determine that a listed species is present or if a species is added to the list and is present in the area, and if adverse effects are possible, then informal or formal consultation, including preparation of a Biological Assessment, may be required.

Potential issues include salmonids (steelhead, coho, chinook) which occur in the Eel River and tributaries including Strong's Creek. If project activities require dewatering of any portion of the creek, of if there is a possibility of sediment input to the stream or any other potential instream impact, then Section 7 consultation including preparation of a Biological Assessment may be necessary.

There is no documentation of terrestrial listed species in the project study boundary; however, if they are found to occur near the PSB, a variety of requirements ranging from pre-construction protocol surveys to seasonal noise and visual buffers during construction would be triggered, depending on distance to the nest.

# 4.3.5 California Endangered Species Act (Protocol Level Surveys and Biological Assessments):

The California Endangered Species Act (CESA) requires consultation with the CDFW when preparing CEQA documents to ensure that the lead agency actions do not jeopardize the existence of listed species.

A number of state listed or state sensitive species could potentially occur close to the PSB including bank swallow, northern red-legged frog, foothill yellow-legged frog, western pond turtle, and others. However no site-specific surveys are available at this time.

By incorporating the development of reasonable avoidance or mitigation measures in the CEQA document, such as seasonal work windows and buffer zones around bird and bat habitats and native migratory bird nests during the nesting season and pre-construction surveys for other species impacts can likely be reduced to less than significant. However, a thorough review is recommended, especially where wetland, stream, drainage ditches, or riparian impacts may occur.

### 4.3.6 Migratory Bird Treaty Act (Avian Surveys)

The Migratory Bird Treaty Act (MBTA) protects all native species of birds. USFWS has statutory authority to enforce the MBTA. To avoid impacts to nesting birds it is recommended that to the extent practical, construction activity occur outside the nesting season (approximately March 15 to August 15 in Humboldt County). This will be most crucial near riparian areas and large trees. If it is not possible to avoid the nesting season then avian surveys should occur within seven days prior to disturbance, and if active nests are identified then the biologist shall establish appropriate buffers. For common species typical of urban sites these are often very small, although buffers for raptors or special-status birds can be much larger (100 to 500 feet). Additonal protections for birds or requirements for avoidance are found in the Fish and Game Code and are often a part of CEQA compliance and mitigation measures.

### 4.3.7 California Department of Transportation (Caltrans)

Encroachment Permits (EP) and/or other agreements may be required for use of or alterations to any area within a Caltrans right-of-way.

A Humboldt County EP will be required if any work encroaches into County right-of-way. Additionally, a Humboldt County grading permit will need to be obtained for grading work in the County right-of-way which exceeds the thresholds identified in the County Grading Ordinance.

### 4.3.8 California State Lands Commission

The State Lands Commission (SLC) has jurisdiction over sovereign public lands, including the beds of California's naturally navigable rivers, lakes and streams, as well as the state's tide and submerged lands along the state's more than 1,100 miles of coastline, extending from the shoreline to three miles offshore. The location and extent of sovereign lands are generally defined by reference to the ordinary high and low water marks of tidal and navigable waterways. Because the boundaries of these lands are often legally based upon the last natural extent and location of the subject water body, they are not necessarily apparent from a present day site inspection, and substantial research is needed to define the extent of the state's ownership interests. Because the project crosses tributaries associated with the Eel River, further inquiry regarding the extent of SLC's jurisdiction should be conducted.

#### 4.3.9 Permit Summary

In summary, a variety of permits and related environmental review would be necessary for project planning and design. In general, agencies are more supportive of projects when they are a part of the early planning and collaboration process. Currently, the proposed project would occur mostly within already disturbed areas, and environmental impacts are most likely if design features cross wetland or riparian areas. Any work within the identified creek crossings or wetlands would also trigger various permit requirements. The present document is intended to identify potential permits and environmental planning considerations at a project-wide scale.

# 5. Conclusions

### 5.1 **Potential Permits and Environmental Constraints**

The project area is shown on Figures 1 through 3. Appendix C contains representative photographs of the different habitats or constraints observed during the field reconnaissance effort.

The project will require a formal wetland delineation following USACE protocol to identify impacts to wetland habitat or waters of the U.S.; particularly in the areas identified as potential wetland, ditch, and stream crossings. Parts of the PSB contains what appear to be drainage ditches that could fall under either the USACE and/or RWQCB jurisdiction. The types of ditches identified in Figures 2a and 2b and 3 and shown in photographs in Appendix C include drainage ditches with evident flow paths connected by culverts, drainages comprised of hydrophytic vegetation, and swales.

Potential biological surveys required for implementing this proposed project include, at a minimum, a protocol level intensive botanical site inventory of vascular plant species, with emphasis on species identified in the database queries. This survey will need to be conducted at the appropriate season(s) to locate flowering individuals of listed species.

A few state special concern wildlife species have been reported within the general project vicinity, and others could occur although no recent field data is available for the PSB. Federally listed salmonids have been reported in other parts of Strong's Creek in the past and are presumed to be present. The PSB also contains several large redwoods and other large trees and other viable habitat for migratory nesting birds as well as riparian habitat. Therefore, these areas may need to be further assessed with CEQA special studies in order to identify and offset adverse impacts to the potential fauna along these routes. Additional non-biological studies may be required by CEQA/NEPA.

# 6. References

Baldwin et al. The Jepson Manual Vascular Plants of California, Second Edition. 2012. University of California Press. Berkeley, CA.

California Department of Fish and Wildlife 2013. *California Natural Diversity Database (CNDDB)*. Fortuna USGS 7.5 Minute Quadrangle. California Department of Fish and Wildlife CDFW). Sacramento, California. Accessed March 4, 2016: https://nrmsecure.dfg.ca.gov/cnddb/view/query.aspx, February 22, 2013 (expires: August 5, 2013).

California Department of Fish and Game. May 2000. *Guidelines for Assessing the Effects of Proposed Development on Rare, Threatened, and Endangered Plants and Plant Communities.* Sacramento, CA.

California Native Plant Society (CNPS). 2016. Inventory of Rare and Endangered Plants (online edition, v8-01a). California Native Plant Society. Sacramento, CA. Accessed onMarch 4, 2016.

Holland, R. 1986. *Preliminary descriptions of the terrestrial natural communities of California*. Unpublished document, California Department of Fish and Game, Natural Heritage Division. Sacramento, CA.

USFWS, 2016. IPaC Trust resources Report for Fortuna Quad FWS Arcata Field Office, U. S. Fish and Wildlife Service (USFWS). Accessed: March 4, 2016: http://www.fws.gov/arcata/species/ist/search.asp

USFWS, 1987. *National Wetland Inventory (NWI)*. U.S. Fish and Wildlife Service (USFWS). Portland, OR. Accessed: <u>http://www.fws.gov/wetlands</u>.

#### Prepared By;

Ken Mierzwa, Senior Environmental Scientist, GHD, Eureka, CA

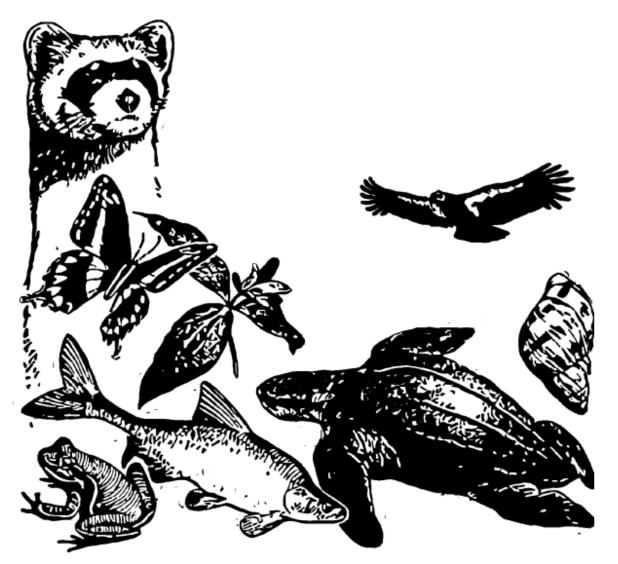
#### **Reviewed BY:**

Josh Wolf, Project Manager, GHD, Eureka, CA Misha Schwarz, Senior Environmental Scientist, GHD, Eureka, CA



# Appendix A (USFWS Listed/Proposed Threatened and Endangered Species for the Fortuna Quad)

Candidate species included


U.S. Fish & Wildlife Service

# **12th Street Interchange**

# IPaC Trust Resources Report

Generated March 04, 2016 03:19 PM MST, IPaC v3.0.0

This report is for informational purposes only and should not be used for planning or analyzing project level impacts. For project reviews that require U.S. Fish & Wildlife Service review or concurrence, please return to the IPaC website and request an official species list from the Regulatory Documents page.



IPaC - Information for Planning and Conservation (<u>http://ecos.fws.gov/ipac/</u>): A project planning tool to help streamline the U.S. Fish & Wildlife Service environmental review process.

# **Table of Contents**

| IPaC Trust Resources Report | <u>1</u> |
|-----------------------------|----------|
| Project Description         | <u>1</u> |
| Endangered Species          | <u>2</u> |
| Migratory Birds             | <u>4</u> |
| Refuges & Hatcheries        | <u>7</u> |
| Wetlands                    | <u>8</u> |

# U.S. Fish & Wildlife Service IPaC Trust Resources Report



NAME

12th Street Interchange

LOCATION

Humboldt County, California

IPAC LINK

http://ecos.fws.gov/ipac/project/ 3IDEK-YDXKJ-BBLBW-TO465-QKA2Y4



# U.S. Fish & Wildlife Service Contact Information

Trust resources in this location are managed by:

Arcata Fish And Wildlife Office

1655 Heindon Road Arcata, CA 95521-4573 (707) 822-7201

# **Endangered Species**

Proposed, candidate, threatened, and endangered species are managed by the <u>Endangered Species Program</u> of the U.S. Fish & Wildlife Service.

### This USFWS trust resource report is for informational purposes only and should not be used for planning or analyzing project level impacts.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list from the Regulatory Documents section.

<u>Section 7</u> of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency.

## A letter from the local office and a species list which fulfills this requirement can only be obtained by requesting an official species list either from the Regulatory Documents section in IPaC or from the local field office directly.

The list of species below are those that may occur or could potentially be affected by activities in this location:

## **Birds**

| Marbled Murrelet Brachyramphus marmoratus                                               | Threatened |
|-----------------------------------------------------------------------------------------|------------|
| CRITICAL HABITAT<br>There is <b>final</b> critical habitat designated for this species. |            |
| https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B08C              |            |
| Northern Spotted Owl Strix occidentalis caurina                                         | Threatened |
| CRITICAL HABITAT                                                                        |            |
| There is final critical habitat designated for this species.                            |            |
| https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B08B              |            |
| Western Snowy Plover Charadrius alexandrinus nivosus                                    | Threatened |
| CRITICAL HABITAT                                                                        |            |
| There is final critical habitat designated for this species.                            |            |
| https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B07C              |            |
| Yellow-billed Cuckoo Coccyzus americanus                                                | Threatened |
| CRITICAL HABITAT                                                                        |            |
| There is <b>proposed</b> critical habitat designated for this species.                  |            |
| https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B06R              |            |

# **Flowering Plants**

| Beach Layia Layia carnosa                                                  | Endangered          |
|----------------------------------------------------------------------------|---------------------|
| CRITICAL HABITAT                                                           |                     |
| No critical habitat has been designated for this species.                  |                     |
| https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=Q34T |                     |
| Menzies' Wallflower Erysimum menziesii                                     | Endangered          |
| CRITICAL HABITAT                                                           |                     |
| No critical habitat has been designated for this species.                  |                     |
| https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=Q29W |                     |
| Western Lily Lilium occidentale                                            | Endangered          |
| CRITICAL HABITAT                                                           |                     |
| No critical habitat has been designated for this species.                  |                     |
| https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=Q1Y0 |                     |
| Mammals                                                                    |                     |
| Fisher Martes pennanti                                                     | Proposed Threatened |

CRITICAL HABITAT **No critical habitat** has been designated for this species. https://ecos.fws.gov/tess\_public/profile/speciesProfile.action?spcode=A0HS

# **Critical Habitats**

This location overlaps all or part of the critical habitat for the following species:

### Steelhead Critical Habitat Final designated

https://ecos.fws.gov/tess\_public/profile/speciesProfile.action?spcode=E08D#crithab

# **Migratory Birds**

Birds are protected by the <u>Migratory Bird Treaty Act</u> and the <u>Bald and Golden Eagle</u> <u>Protection Act</u>.

Any activity that results in the take of migratory birds or eagles is prohibited unless authorized by the U.S. Fish & Wildlife Service.<sup>[1]</sup> There are no provisions for allowing the take of migratory birds that are unintentionally killed or injured.

Any person or organization who plans or conducts activities that may result in the take of migratory birds is responsible for complying with the appropriate regulations and implementing appropriate conservation measures.

1. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

Additional information can be found using the following links:

- Birds of Conservation Concern <u>http://www.fws.gov/birds/management/managed-species/</u> <u>birds-of-conservation-concern.php</u>
- Conservation measures for birds <u>http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/</u> <u>conservation-measures.php</u>
- Year-round bird occurrence data <u>http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/</u> <u>akn-histogram-tools.php</u>

The following species of migratory birds could potentially be affected by activities in this location:

| Allen's Hummingbird Selasphorus sasin                                      | Bird of conservation concern |
|----------------------------------------------------------------------------|------------------------------|
| Season: Breeding                                                           |                              |
| https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0LI |                              |
| Bald Eagle Haliaeetus leucocephalus                                        | Bird of conservation concern |
| Year-round                                                                 |                              |
| https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B008 |                              |
| Burrowing Owl Athene cunicularia                                           | Bird of conservation concern |
| Year-round                                                                 |                              |
| https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0NC |                              |
| Calliope Hummingbird Stellula calliope                                     | Bird of conservation concern |
| Season: Breeding                                                           |                              |
| https://ecos.fws.gov/tess.public/profile/speciesProfile.action?spcode=B0K3 |                              |

| Fox Sparrow Passerella iliaca<br>Season: Wintering                                                                                                 | Bird of conservation concern |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Lewis's Woodpecker Melanerpes lewis<br>Season: Wintering                                                                                           | Bird of conservation concern |
| https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HQ                                                                         |                              |
| Long-billed Curlew Numenius americanus<br>Season: Wintering                                                                                        | Bird of conservation concern |
| https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B06S                                                                         |                              |
| Marbled Godwit Limosa fedoa<br>Season: Wintering                                                                                                   | Bird of conservation concern |
| https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0JL                                                                         |                              |
| Olive-sided Flycatcher Contopus cooperi<br>Season: Breeding<br>https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0AN          | Bird of conservation concern |
| Peregrine Falcon Falco peregrinus<br>Year-round<br>https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0FU                      | Bird of conservation concern |
| Purple Finch Carpodacus purpureus<br>Year-round                                                                                                    | Bird of conservation concern |
| Short-billed Dowitcher Limnodromus griseus<br>Season: Wintering<br>https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0JK      | Bird of conservation concern |
| Short-eared Owl Asio flammeus<br>Season: Wintering<br>https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0HD                   | Bird of conservation concern |
| Snowy Plover Charadrius alexandrinus<br>Season: Breeding                                                                                           | Bird of conservation concern |
| Western Grebe aechmophorus occidentalis<br>Season: Wintering<br>https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0EA         | Bird of conservation concern |
| Whimbrel Numenius phaeopus<br>Season: Wintering<br>https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0JN                      | Bird of conservation concern |
| Willow Flycatcher Empidonax traillii<br>Season: Breeding<br>https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0F6             | Bird of conservation concern |
| Yellow Warbler dendroica petechia ssp. brewsteri<br>Season: Breeding<br>https://ecos.fws.gov/tess_public/profile/speciesProfile.action?spcode=B0EN | Bird of conservation concern |

Red Knot Calidris canutus ssp. roselaari

Season: Wintering https://ecos.fws.gov/tess\_public/profile/speciesProfile.action?spcode=B0G6 Bird of conservation concern

# Wildlife refuges and fish hatcheries

There are no refuges or fish hatcheries in this location

# Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

### For more information please contact the Regulatory Program of the local <u>U.S. Army</u> <u>Corps of Engineers District</u>.

#### DATA LIMITATIONS

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

#### DATA EXCLUSIONS

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

#### DATA PRECAUTIONS

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

### There are no wetlands in this location

Appendix B (CNDDB Occurrence Report)

Fortuna Quad





#### Query Criteria: Quad is (Fortuna (4012452))

| Species                                               | Element Code | Federal Status | State Status | Global Rank | State Rank | Rare Plant<br>Rank/CDFW<br>SSC or FP |
|-------------------------------------------------------|--------------|----------------|--------------|-------------|------------|--------------------------------------|
| Agelaius tricolor                                     | ABPBXB0020   | None           | None         | G2G3        | S1S2       | SSC                                  |
| tricolored blackbird                                  |              |                |              |             |            |                                      |
| Antrozous pallidus                                    | AMACC10010   | None           | None         | G5          | S3         | SSC                                  |
| pallid bat                                            |              |                |              |             |            |                                      |
| Arborimus pomo                                        | AMAFF23030   | None           | None         | G3          | S3         | SSC                                  |
| Sonoma tree vole                                      |              |                |              |             |            |                                      |
| Ardea herodias                                        | ABNGA04010   | None           | None         | G5          | S4         |                                      |
| great blue heron                                      |              |                |              |             |            |                                      |
| Bombus caliginosus                                    | IIHYM24380   | None           | None         | G4?         | S1S2       |                                      |
| obscure bumble bee                                    |              |                |              |             |            |                                      |
| Bombus occidentalis                                   | IIHYM24250   | None           | None         | G2G3        | S1         |                                      |
| western bumble bee                                    |              |                |              |             |            |                                      |
| Clarkia amoena ssp. whitneyi                          | PDONA05025   | None           | None         | G5T1        | S1         | 1B.1                                 |
| Whitney's farewell-to-spring                          |              |                |              |             |            |                                      |
| Emys marmorata                                        | ARAAD02030   | None           | None         | G3G4        | S3         | SSC                                  |
| western pond turtle                                   |              |                |              |             |            |                                      |
| Fissidens pauperculus                                 | NBMUS2W0U0   | None           | None         | G3?         | S2         | 1B.2                                 |
| minute pocket moss                                    |              |                |              |             |            |                                      |
| Gilia capitata ssp. pacifica                          | PDPLM040B6   | None           | None         | G5T3T4      | S2         | 1B.2                                 |
| Pacific gilia                                         |              |                |              |             |            |                                      |
| Lasiurus cinereus                                     | AMACC05030   | None           | None         | G5          | S4         |                                      |
| hoary bat                                             |              |                |              |             |            |                                      |
| Montia howellii                                       | PDPOR05070   | None           | None         | G3G4        | S3         | 2B.2                                 |
| Howell's montia                                       |              |                |              |             |            |                                      |
| Oncorhynchus clarkii clarkii<br>coast cutthroat trout | AFCHA0208A   | None           | None         | G4T4        | S3         | SSC                                  |
| Polemonium carneum                                    | PDPLM0E050   | None           | None         | G3G4        | S2         | 2B.2                                 |
| Oregon polemonium                                     |              |                |              |             |            |                                      |
| Rana aurora                                           | AAABH01021   | None           | None         | G4          | S3         | SSC                                  |
| northern red-legged frog                              |              |                |              |             |            |                                      |
| Rana boylii                                           | AAABH01050   | None           | None         | G3          | S3         | SSC                                  |
| foothill yellow-legged frog                           |              |                |              |             |            |                                      |
| Riparia riparia                                       | ABPAU08010   | None           | Threatened   | G5          | S2         |                                      |
| bank swallow                                          |              |                |              |             |            |                                      |
| Sidalcea malviflora ssp. patula                       | PDMAL110F9   | None           | None         | G5T2        | S2         | 1B.2                                 |
| Siskiyou checkerbloom                                 |              |                |              |             |            |                                      |
| Spirinchus thaleichthys                               | AFCHB03010   | Candidate      | Threatened   | G5          | S1         | SSC                                  |
| longfin smelt                                         |              |                |              |             |            |                                      |
|                                                       |              |                |              |             |            |                                      |

**Record Count: 19** 


Appendix C (Site Photographs)



Strong's Creek and associated riparian area



Riverwalk Drive bridge, looking east toward Hwy 101



Dinsmore Drive north of bridge, with riparian edge on left



Dinsmore Drive north of Riverwalk Drive, looking north. Riparian on left, willow and Monterey cypress on right



Southbound Hwy 101 exit ramp at 12<sup>th</sup> Street, looking NE



Potential wetland swale within area shown in photo above, looking NW with  $12^{\text{th}}$  Street in background



Eucalyptus on slope east of Kenmar Rd. interchange and parking lot



Parking lot, looking west toward Hwy 101 with inactive rail line in middle ground



Potential wetland south of Kenmar, between rail line and Hwy 101 ramp, looking south



Ditch/potential wetland north of Kenmar and east of Hwy 101, looking north



Ephemeral ditch north of Kenmar and west of Hwy 101, with adjacent riparian area



Degraded riparian habitat north of Kenmar/Riverwalk and west of Hwy 101



Redwood west of Hwy 101 and north of Kenmar/Riverwalk



Ephemeral ditch flowing toward Eel River floodplain, south of Kenmar/Riverwalk and west of Hwy 101. Note redwood in top right.

# www.ghd.com



#### PROJECT

#### PRELIMINARY COST ESTIMATE®

EA: 01-0K300 PID: 120000056

EA: 01-0K300

PID: 120000056

District-County-Route: 01-HUM-101 PM: 59.2/59.8

Type of Estimate : Project Report

Program Code : Local

Project Limits : Kenmar Road Undercrossing

Project Description: Improve traffic operations at the US101 Kenmar Road Interchange Scope : Construct two single-lane roundabouts and reconstruct ramps

Alternative : Alternative No. 1

#### SUMMARY OF PROJECT COST ESTIMATE

| Current Year Cost          |    | E          | scalated Cost |            |
|----------------------------|----|------------|---------------|------------|
| TOTAL ROADWAY COST         | \$ | 13,047,100 | \$            | 16,027,013 |
| TOTAL STRUCTURES COST      | \$ | 2,686,063  | \$            | 3,299,550  |
| SUBTOTAL CONSTRUCTION COST | \$ | 15,733,163 | \$            | 19,326,563 |
| TOTAL RIGHT OF WAY COST    | \$ | 450,000    | \$            | 500,000    |
| TOTAL CAPITAL OUTLAY COSTS | \$ | 16,184,000 | \$            | 19,827,000 |
| PA/ED SUPPORT              | \$ | 550,000    | \$            | 550,000    |
| PS&E SUPPORT               | \$ | 2,000,000  | \$            | 2,000,000  |
| RIGHT OF WAY SUPPORT       | \$ | 100,000    | \$            | 100,000    |
| CONSTRUCTION SUPPORT       | \$ | 2,500,000  | \$            | 2,500,000  |
| TOTAL SUPPORT COST         | \$ | 5,150,000  | \$            | 5,150,000  |
| TOTAL PROJECT COST         | \$ | 21,350,000 | \$            | 25,000,000 |

#### Programmed Amount

|                                                         | Date of Estimate (Month/Year)               | Month<br>12                 |   | <u>Year</u><br>22 |  |
|---------------------------------------------------------|---------------------------------------------|-----------------------------|---|-------------------|--|
|                                                         | Estimated Construction Start (Month/Year)   | 7                           | 1 | 25                |  |
|                                                         |                                             | Number of Working Days      | = | 180               |  |
| Estima                                                  | ated Mid-Point of Construction (Month/Year) | 1                           | 1 | 26                |  |
|                                                         | Estimated Construction End (Month/Year)     | 6                           | 1 | 26                |  |
|                                                         | Number                                      | of Plant Establishment Days |   | 260               |  |
|                                                         | Estimated Project Schedule                  |                             |   |                   |  |
|                                                         | PID Approval                                |                             |   | 2017 (Local PSR)  |  |
|                                                         | PA/ED Approval                              |                             |   | TBD               |  |
|                                                         | PS&E                                        |                             |   | 12/1/2025         |  |
|                                                         | RTL                                         |                             |   | 1/1/2025          |  |
|                                                         | Begin Construction                          |                             |   | 7/1/2025          |  |
| Reviewed by District O.E. or<br>Cost Estimate Certifier |                                             | xx/xx/xxxx                  |   | (xxx) xxx-xxxx    |  |
| _                                                       | Office Engineer / Cost Estimate Certifier   | Date                        |   | Phone             |  |
| Approved by Project Manager                             |                                             | xx/xx/xxxx                  |   | (xxx) xxx-xxxx    |  |
|                                                         | Project Manager                             | Date                        |   | Phone             |  |

EA: 01-0K300 PID: 120000056

## I. ROADWAY ITEMS SUMMARY

|                        | Section                                |      |      | Cost         |
|------------------------|----------------------------------------|------|------|--------------|
|                        |                                        |      |      |              |
| 1                      | Earthwork                              |      | \$   | 1,457,000    |
| 2                      | Pavement Structural Section            |      | \$   | 3,846,100    |
| 3                      | Drainage                               |      | \$   | 678,300      |
| 4                      | Specialty Items                        |      | \$   | 482,200      |
| 5                      | Environmental                          |      | \$   | 1,357,000    |
| 6                      | Traffic Items                          |      | \$   | 1,309,900    |
| 7                      | Detours                                |      | \$   | 100,000      |
| 8                      | Minor Items                            |      | \$   | 369,300      |
| 9                      | Roadway Mobilization                   |      | \$   | 960,000      |
| 10                     | Supplemental Work                      |      | \$   | 270,500      |
| 11                     | State Furnished                        |      | \$   | 152,200      |
| 12                     | Time-Related Overhead                  |      | \$   | 362,800      |
| 13                     | Roadway Contingency                    |      | \$   | 1,701,800    |
|                        | TOTAL ROADWAY IT                       | EMS  | \$   | 13,047,100   |
|                        |                                        |      |      |              |
| Estimate Prepared By : |                                        |      |      | 530-953-6486 |
|                        | Russ Wenham, Sr. Technical<br>GHD Inc. | Jir. | Date | Phone        |
| Estimate Reviewed By   | :                                      |      |      | 707-267-2264 |
|                        | Josh Wolf, Project Manager<br>GHD Inc. |      | Date | Phone        |

By signing this estimate you are attesting that you have discussed your project with all functional units and have incorporated all their comments or have discussed with them why they will not be incorporated.

#### PROJECT COST ESTIMATE

1,457,000

TOTAL EARTHWORK SECTION ITEMS \$

#### SECTION 1: EARTHWORK

| Item code |                      | Unit | Quantity |   | Unit Price (\$) |   | Cost          |
|-----------|----------------------|------|----------|---|-----------------|---|---------------|
| 190101    | Roadway Excavation   | CY   | 16,000   | х | 50.00           | = | \$<br>800,000 |
| 152320    | Lead Compliance Plan | LS   | 1        | х | 4,000.00        | = | \$<br>4,000   |
| 198010    | Imported Borrow      | CY   | 9,200    | х | 65.00           | = | \$<br>598,000 |
| 16010X    | Clearing & Grubbing  | LS   | 1        | х | 40,000.00       | = | \$<br>40,000  |
| 170101    | Develop Water Supply | LS   | 1        | х | 15,000.00       | = | \$<br>15,000  |
| 210130    | Duff                 | ACRE | 0        | х | 0.00            | = | \$<br>-       |

#### SECTION 2: PAVEMENT STRUCTURAL SECTION

| Item code |                                                       | Unit | Quantity |     | Unit Price (\$) |     |       | Cost           |    |
|-----------|-------------------------------------------------------|------|----------|-----|-----------------|-----|-------|----------------|----|
| 401050    | Jointed Plain Concrete Pavement                       | CY   | 500      | х   | 750.00          | =   | \$    | 375,000        |    |
| 390132    | Hot Mix Asphalt (Type A)                              | TON  | 12,800   | х   | 130.00          | =   | \$    | 1,664,000      |    |
| 198209A   | Subgrade Enhancement Geotextile, Class TBD (B2 or B3) | SQYD | 14,500   | х   | 10.00           | =   | \$    | 145,000        |    |
| 260203    | Class 2 Aggregate Base                                | CY   | 14,300   | х   | 85.00           | =   | \$    | 1,215,500      |    |
| 397005    | Tack Coat                                             | TON  | 16       | х   | 1,200.00        | =   | \$    | 19,200         |    |
| 731521    | Minor Concrete (Sidewalk)                             | CY   | 150      | х   | 800.00          | =   | \$    | 120,000        |    |
| 731502    | Minor Concrete (Miscellaneous Construction)           | CY   | 510      | х   | 750.00          | =   | \$    | 382,500        |    |
| 731504    | Minor Concrete (Curb and Gutter)                      | CY   | 225      | х   | 800.00          | =   | \$    | 180,000        |    |
| 730020    | Minor Concrete (Curb)                                 | CY   | 95       | х   | 750.00          | =   | \$    | 71,250         |    |
| 39407X    | Place Hot Mix Asphalt Dike (Type TBD)                 | LF   | 2,800    | х   | 12.00           | =   | \$    | 33,600         |    |
| 394090    | Place Hot Mix Asphalt (Miscellaneous Area)            | SQYD | 100      | х   | 75.00           | =   | \$    | 7,500          |    |
| 153103    | Cold Plane Asphalt Concrete Pavement                  | SQYD | 500      | х   | 15.00           | =   | \$    | 7,500          |    |
|           |                                                       |      |          |     |                 |     |       |                |    |
|           |                                                       |      | TOTAL PA | VEM | ENT STRUCTU     | RAL | . SEC | CTION ITEMS \$ | 3, |

#### EA: 01-0K300 PID: 120000056

### SECTION 3: DRAINAGE

| Item code |                                          | Unit | Quantity |   | Unit Price (\$) |    |     | Cost        |           |
|-----------|------------------------------------------|------|----------|---|-----------------|----|-----|-------------|-----------|
| 710136    | Remove Pipe                              | LF   | 800      | х | 20.00           | =  | \$  | 16,000      |           |
| 710152    | Remove Headwall                          | EA   | 4        | х | 500.00          | =  | \$  | 2,000       |           |
| 710150    | Remove Inlet                             | EA   | 1        | х | 500.00          | =  | \$  | 500         |           |
| 152430    | Adjust Inlet                             | EA   | 3        | х | 3,000.00        | =  | \$  | 9,000       |           |
| 510502    | Minor Concrete (Minor Structure)         | CY   | 70       | х | 3,000.00        | =  | \$  | 210,000     |           |
| 610108    | 18" Alternative Pipe Culvert             | LF   | 1,720    | х | 190.00          | =  | \$  | 326,800     |           |
| 610112    | 24" Alternative Pipe Culvert             | LF   | 250      | х | 260.00          | =  | \$  | 65,000      |           |
| 705311    | 18" Alternative Flared End Section       | EA   | 7        | х | 1,000.00        | =  | \$  | 7,000       |           |
| 721XXX    | Rock Slope Protection (TBD, Method B)    | CY   | 45       | х | 300.00          | =  | \$  | 13,500      |           |
| 72901X    | Rock Slope Protection Fabric (Class TBD) | SQYD | 140      | х | 30.00           | =  | \$  | 4,200       |           |
| 750001    | Miscellaneous Iron and Steel             | LB   | 8,100    | х | 3.00            | =  | \$  | 24,300      |           |
|           |                                          |      |          |   |                 |    |     |             |           |
|           |                                          |      |          |   | тот             | AL | DRA | INAGE ITEMS | \$<br>678 |

### SECTION 4: SPECIALTY ITEMS

| Item code |                                              | Unit | Quantity |   | Unit Price (\$) |    |      | Cost    |           |
|-----------|----------------------------------------------|------|----------|---|-----------------|----|------|---------|-----------|
| 141120    | Treated Wood Waste                           | LB   | 13,000   | х | 1.00            | =  | \$   | 13,000  |           |
| 839752    | Remove Guardrail                             | LF   | 1,200    | х | 2.50            | =  | \$   | 3,000   |           |
| 800302    | Chain Link Fence (Type CL-4)                 | LF   | 700      | х | 100.00          | =  | \$   | 70,000  |           |
| 80XXXX    | Chain Link Fence (Abutment Security Fencing) | LS   | 1        | х | 30,000.00       | =  | \$   | 30,000  |           |
| 832055    | Midwest Guardrail System                     | LF   | 120      | х | 60.00           | =  | \$   | 7,200   |           |
| 839584    | Alternative In-line Terminal System          | EA   | 2        | х | 3,500.00        | =  | \$   | 7,000   |           |
| 83964X    | Concrete Barrier (Type TBD)                  | LF   | 260      | х | 300.00          | =  | \$   | 78,000  |           |
| 511035    | Architectural Treatment                      | SQFT | 5,598    | х | 40.00           | =  | \$   | 223,920 |           |
| XXXXXX    | Remove Railroad Facilities                   | LS   | 1        | х | 50,000.00       | =  | \$   | 50,000  |           |
|           |                                              |      |          |   | тот             | AL | SPEC |         | \$<br>482 |

#### SECTION 5: ENVIRONMENTAL

| 5A - ENVIRONMENTAL MITIGATION                       |      |          |   |                 |      |         |                   |    |           |
|-----------------------------------------------------|------|----------|---|-----------------|------|---------|-------------------|----|-----------|
| Item code                                           | Unit | Quantity |   | Unit Price (\$) |      |         | Cost              |    |           |
| XXXXXX Biological Mitigation                        | LS   | 1        | х | 40,000.00       | =    | \$      | 40,000            |    |           |
|                                                     |      |          |   | Subtotal        | Envi | ronn    | nental Mitigation | \$ | 40,000    |
| 5B - LANDSCAPE AND IRRIGATION                       |      |          |   |                 |      |         | -                 |    |           |
| Item code                                           | Unit | Quantity |   | Unit Price (\$) |      |         | Cost              |    |           |
| 20XXXX Landscaping and Irrigation System            | LS   | 1        | х | 1,000,000.00    | =    | \$      | 1,000,000         |    |           |
|                                                     |      | •        | ~ |                 |      | •       | be and Irrigation | \$ | 1,000,000 |
| 5C - EROSION CONTROL                                |      |          |   | Gubtotur        | Lune | locup   | o ana migatori    | Ψ  | 1,000,000 |
| Item code                                           | Unit | Quantity |   | Unit Price (\$) |      |         | Cost              |    |           |
| 210010 Move In/Move Out (Erosion Control)           | EA   | 3        | х | 2000.00         | =    | \$      | 6.000             |    |           |
| 210350 Fiber Rolls                                  | LF   | 6,000    | x | 6.00            | =    | φ<br>\$ | 36,000            |    |           |
| 210430 Hydroseed                                    | SQFT | 85,000   | x | 0.20            | =    | ф<br>\$ | 17,000            |    |           |
| 211111 Permanent Erosion Control Establishment Work | LS   | 05,000   | x | 20000.00        | =    | ф<br>\$ | 20.000            |    |           |
|                                                     |      | I        | ~ |                 | Cub  | •       | Erosion Control   | ¢  | 70.000    |
|                                                     |      |          |   |                 | Sub  | lotai   | Erosion Control   | \$ | 79,000    |
| 5D - NPDES                                          |      | • • • •  |   |                 |      |         | <b>a</b> .        |    |           |
| Item code                                           | Unit | Quantity |   | Unit Price (\$) |      |         | Cost              |    |           |
| 130300 Prepare SWPPP                                | LS   | 1        | х | 5,000.00        | =    | \$      | 5,000             |    |           |
| 130100 Job Site Management                          | LS   | 1        | х | 40,000.00       | =    | \$      | 40,000            |    |           |
| 130330 Storm Water Annual Report                    | EA   | 2        | х | 2,000.00        | =    | \$      | 4,000             |    |           |
| 130310 Rain Event Action Plan (REAP)                | EA   | 25       | х | 500.00          | =    | \$      | 12,500            |    |           |
| 130320 Storm Water Sampling and Analysis Day        | EA   | 30       | х | 700.00          | =    | \$      | 21,000            |    |           |
| 130520 Temporary Hydraulic Mulch                    | SQYD | 10,000   | х | 1.00            | =    | \$      | 10,000            |    |           |
| 130505 Move-In/Move-Out (Temporary Erosion Control) | EA   | 12       | х | 1,000.00        | =    | \$      | 12,000            |    |           |
| 130640 Temporary Fiber Roll                         | LF   | 4,000    | х | 10.00           | =    | \$      | 40,000            |    |           |
| 130900 Temporary Concrete Washout                   | LS   | 1        | х | 10,000.00       | =    | \$      | 10,000            |    |           |
| 130710 Temporary Construction Entrance              | EA   | 4        | х | 5,000.00        | =    | \$      | 20,000            |    |           |
| 130610 Temporary Check Dam                          | LF   | 300      | х | 20.00           | =    | \$      | 6,000             |    |           |
| 130620 Temporary Drainage Inlet Protection          | EA   | 30       | х | 250.00          | =    | \$      | 7,500             |    |           |
| 130730 Street Sweeping                              | LS   | 1        | х | 50,000.00       | =    | \$      | 50,000            |    |           |
|                                                     |      |          |   |                 |      | Su      | btotal NPDES      | \$ | 238.000   |
|                                                     |      |          |   |                 |      | 50      |                   | Ψ  | 230,000   |
|                                                     |      |          |   | тот             | AL   | ENV     | RONMENTAL         | \$ | 1,357,000 |
| Supplemental Work for NPDES                         |      |          |   |                 |      |         |                   |    |           |

1

1

1

| ouppion |                                              |    |
|---------|----------------------------------------------|----|
| 066595  | Water Pollution Control Maintenance Sharing* | LS |
| 066596  | Additional Water Pollution Control**         | LS |
| 066597  | Storm Water Sampling and Analysis***         | LS |

x 10,000.00 = \$ 10,000 x 10,000.00 = \$ 10,000 x 5,000.00 = \$ 5,000 Subtotal Supplemental Work for NDPS \$

25,000

#### SECTION 6: TRAFFIC ITEMS

| 6A - Traffic Electrical                               |      |          |       |                  |       |        |                  |    |           |
|-------------------------------------------------------|------|----------|-------|------------------|-------|--------|------------------|----|-----------|
| Item code                                             | Unit | Quantity |       | Unit Price (\$)  |       |        | Cost             |    |           |
| 770090 Lighting (City Street)                         | LS   | 1        | х     | 350,000.00       | =     | \$     | 350,000          |    |           |
| 77009X Lighting (Trail)                               | LS   | 1        | х     | 25,000.00        | =     | \$     | 25,000           |    |           |
| 870600 Traffic Monitoring Station System              | LS   | 1        | х     | 100,000.00       | =     | \$     | 100,000          |    |           |
| 872001A Temporary Lighting Systems (Freeway)          | LS   | 1        | х     | 25,000.00        | =     | \$     | 25,000           |    |           |
| 872131A Modify Lighting Systems (Freeway)             | LS   | 1        | х     | 40,000.00        | =     | \$     | 40,000           |    |           |
|                                                       |      |          |       | Su               | ıbtot | al Tra | affic Electrical | \$ | 540,000   |
| 6B - Traffic Signing and Striping                     |      |          |       |                  |       |        |                  |    |           |
| Item code                                             | Unit | Quantity |       | Unit Price (\$)  |       |        | Cost             |    |           |
| 56601X Roadside Sign (Type TBD)                       | EA   | 80       | х     | 300.00           | =     | \$     | 24,000           |    |           |
| 810170 Delineator (Class 1)                           | EA   | 60       | х     | 50.00            | =     | \$     | 3,000            |    |           |
| 82013X Object Marker (Type TBD)                       | EA   | 12       |       | 50.00            | =     | \$     | 600              |    |           |
| 8207XX Furnish Single Sheet Aluminum Sign (Thick TBD) | SQFT | 1,000    | х     | 30.00            | =     | \$     | 30.000           |    |           |
| 8202XX Remove Roadside Sign                           | EA   | 30       | x     | 100.00           | =     | \$     | 3,000            |    |           |
| 820XXX Relocate Roadside Sign                         | EA   | 10       | x     | 250.00           | =     | \$     | 2,500            |    |           |
| 820860 Install Sign (Strap and Saddle Bracket Method) | EA   | 5        | ~     | 150.00           |       | \$     | 750              |    |           |
| 84XXXX Permanent Pavement Delineation (EWNV + RPMs    | LS   | 1        | х     | 180,000.00       | =     | \$     | 180,000          |    |           |
|                                                       |      |          |       | Subtotal Traff   | fic S | ignin  | g and Striping   | \$ | 243,850   |
| 6C - Traffic Management Plan                          |      |          |       |                  |       |        |                  |    |           |
| Item code                                             | Unit | Quantity |       | Unit Price (\$)  |       |        | Cost             |    |           |
| 12865X Portable Changeable Message Signs              | EA   | 5        | х     | \$ 10,000.00     | =     | \$     | 50,000           |    |           |
| 129152 Temporary Radar Speed Feedback                 | EA   | 4        | x     | \$ 6,000.00      | =     |        | 24,000           |    |           |
|                                                       |      |          |       | Subtotal Tra     | affic | Man    | agement Plan     | \$ | 74,000    |
| 6C - Stage Construction and Traffic Handling          |      |          |       |                  |       |        |                  |    |           |
| Item code                                             | Unit | Quantity |       | Unit Price (\$)  |       |        | Cost             |    |           |
| 01XXXX Alternative Temporary Crash Cushion            | EA   | 5        | х     | 5,000.00         | =     | \$     | 25,000           |    |           |
| 120XXX Channelizing Devices (Various)                 | LS   | 1        | x     | 10,000.00        | =     | \$     | 10,000           |    |           |
| 120100 Traffic Control System                         | LS   | 1        | x     | 350,000.00       | =     | \$     | 350,000          |    |           |
| 120320 Temporary Barrier System                       | LF   | 700      | x     | 60.00            | =     | \$     | 42,000           |    |           |
| 1201XX Temporary Pavement Delineation                 | LS   | 1        | x     | 25,000.00        | =     | \$     | 25,000           |    |           |
|                                                       |      | Subto    | tal S | tage Constructio | on ai | nd Tr  | affic Handling   | \$ | 452,000   |
|                                                       |      |          |       | т                | ота   | L TR   | AFFIC ITEMS      | \$ | 1,309,900 |
|                                                       |      |          | L     |                  | -     |        |                  | Ŧ  | ,,        |

SECTION 7: DETOURS
Includes constructing, maintaining, and removal

| Item code<br>XXXXXX Temporary Road Wideni          | ing & Removal        | <i>Unit</i><br>LS |       | <b>Quantity</b><br>1 | x | <b>Unit Price (\$)</b><br>100,000.00 | =          | \$    | <b>Cost</b><br>100,000 |    |           |
|----------------------------------------------------|----------------------|-------------------|-------|----------------------|---|--------------------------------------|------------|-------|------------------------|----|-----------|
|                                                    |                      |                   |       |                      |   | TOTAL                                | DE         | TOU   | RS                     | \$ | 100,000   |
|                                                    |                      |                   |       |                      |   |                                      |            |       |                        |    |           |
|                                                    |                      |                   |       |                      | 5 | SUBTOTAL SE                          | СТІ        | ONS   | 1 through 7            | \$ | 9,230,500 |
| SECTION 8: MINOR ITEMS                             | ;                    |                   |       |                      |   |                                      |            |       |                        |    |           |
| 8A - Americans with Disabilities                   | Act Items            |                   |       |                      |   |                                      |            |       |                        |    |           |
| ADA Items<br>8B - Bike Path Items                  |                      |                   |       |                      |   | 1.0%                                 |            | \$    | 92,305                 |    |           |
| Bike Path Items (Include<br>8C - Other Minor Items | ed in items)         |                   |       |                      |   | 0.0%                                 |            | \$    | -                      |    |           |
| Other Minor Items                                  |                      |                   |       |                      |   | 3.0%                                 |            | \$    | 276,915                |    |           |
|                                                    | Total of Section 1-7 |                   | \$    | 9,230,500            | x | 4.0%                                 | =          | \$    | 369,220                |    |           |
|                                                    |                      |                   |       |                      |   | TOTAL                                |            | OR IT | EMS                    | \$ | 369,300   |
|                                                    |                      |                   |       |                      |   |                                      |            |       |                        |    |           |
| SECTIONS 9: ROADWAY                                | NOBILIZATION         |                   |       |                      |   |                                      |            |       |                        |    |           |
| ltem code<br>999990                                | Total Section 1-8    |                   | \$    | 9,599,800            | x | 10%                                  | =          | \$    | 959,980                |    |           |
|                                                    |                      |                   | Ŷ     | 0,000,000            | ~ |                                      |            | •     | ,                      |    |           |
|                                                    |                      |                   |       |                      |   | TOTAL RO                             | ADV        | VAYN  | OBILIZATION            | \$ | 960,000   |
|                                                    |                      |                   |       |                      |   |                                      |            |       |                        |    |           |
| SECTION 10: SUPPLEMEN                              | ITAL WORK            |                   |       |                      |   |                                      |            |       |                        |    |           |
| Item code                                          |                      | Unit              |       | Quantity             |   | Unit Price (\$)                      |            |       | Cost                   |    |           |
| 066670<br>Payment Adjustments For                  | or Price Index       | LS                |       | 1                    | х | 52,800.00                            | =          | \$    | 52,800                 |    |           |
| 066070 Maintain Traffic                            |                      | LS                |       | 1                    | х | 50,000.00                            | =          | \$    | 50,000                 |    |           |
| 066094 Value Analysis                              |                      | LS                |       | 1                    | х | 10,000.00                            | =          | \$    | 10,000                 |    |           |
| 066919 Dispute Resolution Boar                     | ď                    | LS                |       | 1                    | х | 7,500.00                             | =          | \$    | 7,500                  |    |           |
| 066015 Federal Trainee Program                     |                      | LS                |       | 1                    | х | 7,200.00                             | =          | \$    | 7,200                  |    |           |
| 066610 Partnering                                  |                      | LS                |       | 1                    | x | 20,000.00                            | =          | \$    | 20,000                 |    |           |
| XXXXXX Additional Earthwork                        |                      | LS                |       | 1                    | x | 50,000.00                            | =          | \$    | 50,000                 |    |           |
|                                                    | Cost of <b>NPD</b>   |                   | oleme | ntal Work spe        |   | d in Section 5D                      | =          | \$    | 25,000                 |    |           |
|                                                    | Total Section 1-8    |                   | \$    | 9,599,800            |   | 0.5%                                 | =          | \$    | 47,999                 |    |           |
|                                                    |                      |                   |       |                      |   |                                      |            | EME   | NTAL WORK              | \$ | 270,500   |
|                                                    |                      |                   |       |                      |   | IUTAL SU                             | <b>7 7</b> |       | ITTAL WORK             | φ  | 270,500   |

### SECTION 11: STATE FURNISHED MATERIALS AND EXPENSES

| tem code |                                                                                                                                                                               | Unit                      | Quant              | ly i                   | Unit Price (\$)                                  |           |           | Cost                       |           |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|------------------------|--------------------------------------------------|-----------|-----------|----------------------------|-----------|
| 066062   | COZEEP Contract                                                                                                                                                               | LS                        | 1                  |                        | 100,000.00                                       | =         |           | \$100,000                  |           |
| 066063   | Traffic Management Plan - Public Information                                                                                                                                  | LS                        | 1                  | 2                      | 10,000.00                                        | =         |           | \$10,000                   |           |
| 066105   | Resident Engineers Office                                                                                                                                                     | LS                        | 1                  | 2                      | 83,200.00                                        | =         |           | \$83,200                   |           |
|          | Water Expenses                                                                                                                                                                | LS                        | 1                  | 2                      | 1,000.00                                         | =         |           | \$1,000                    |           |
| 066871   | Electrical Service Connections                                                                                                                                                | LS                        | 1                  | 1                      | 20,000.00                                        | =         |           | \$20,000                   |           |
|          | Total Section 1-8                                                                                                                                                             |                           | \$ 9,5             | 9,800                  | 0.50%                                            | =         | \$        | 47,999                     |           |
|          |                                                                                                                                                                               |                           |                    |                        | то                                               | TAL S     | TATE      | FURNISHED                  | \$152,200 |
| ECTION   | N 12: TIME-RELATED OVERHEAD<br>Total of Roadway and Structures Contract Items excluding<br>Total Construction Cost (excluding TRO and C<br>Estimated Time-Related Overhead (T | Contingency)              | \$13               | 668,563 (u             | · · ·                                            | greater   | r than \$ | 5 million excluding contin | gency)    |
|          | Total of Roadway and Structures Contract Items excluding<br>Total Construction Cost (excluding TRO and C                                                                      | Contingency)<br>RO) Perce | \$1:<br>entage (0% | 668,563 (u<br>o 10%) : | sed to check if project is                       | : greater | r than \$ | -                          | gency)    |
| ECTION   | Total of Roadway and Structures Contract Items excluding<br>Total Construction Cost (excluding TRO and C                                                                      | Contingency)              | \$13               | 668,563 (u<br>o 10%) : | sed to check if project is                       | greater   | r than \$ | 5 million excluding contin | gency)    |
| em code  | Total of Roadway and Structures Contract Items excluding<br>Total Construction Cost (excluding TRO and C                                                                      | Contingency)<br>RO) Perce | \$1:<br>entage (0% | 668,563 (u<br>o 10%) : | sed to check if project is 3.00% Unit Price (\$) | : greater | r than \$ | -                          | gency)    |

| Total Section 1-12 | \$<br>11,345,300 | х | 15% | =     | \$1,701,795 |             |
|--------------------|------------------|---|-----|-------|-------------|-------------|
|                    |                  |   |     | TOTAL | CONTINGENCY | \$1,701,800 |

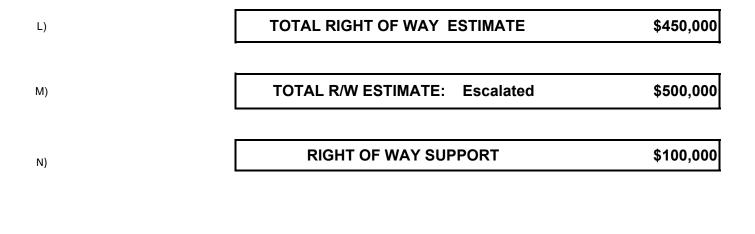
### **II. STRUCTURE ITEMS**

| DATE OF ESTIMATE<br>Bridge Name<br>Bridge Number<br>Structure Type<br>Width (Feet) [out to out]<br>Total Bridge Length (Feet)<br>Total Area (Square Feet) | Retaining Walls<br>Ground Anchor Walls<br>08/03/22<br>N/A<br>N/A<br>Ground Anchor<br>0 LF<br>0 LF<br>2150 SQFT | Retaining WallsSoil Nail Walls06/30/22N/AN/ASoil Nail0LF06220SQFT | -<br>0 LF<br>0 LF<br>0 SQFT |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------|
| Structure Depth (Feet)<br>Footing Type (pile or spread)                                                                                                   | 0 LF                                                                                                           | 0 LF                                                              | 0 LF                        |
| Cost Per Square Foot                                                                                                                                      | \$330<br>\$709,500                                                                                             | \$200                                                             | \$0<br><b>\$0</b>           |

| DATE OF ESTIMATE<br>Bridge Name<br>Bridge Number<br>Structure Type<br>Width (Feet) [out to out]<br>Total Bridge Length (Feet)<br>Total Area (Square Feet)<br>Structure Depth (Feet)<br>Footing Type (pile or spread)<br>Cost Per Square Foot | -<br>0 LF<br>0 SQFT<br>0 LF<br>\$0 | -<br>0 LF<br>0 LF<br>0 SQFT<br>0 LF<br>\$0 | -<br>0 LF<br>0 LF<br>0 SQFT<br>0 LF<br>\$0 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------|--------------------------------------------|
| COST OF EACH                                                                                                                                                                                                                                 | \$0                                | \$0                                        | \$0                                        |

|                                                                                                                                                      | TOTAL COST O            | TOTAL COST OF BRIDGES   |             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------|--|
|                                                                                                                                                      | TOTAL COST OF           | TOTAL COST OF BUILDINGS |             |  |
|                                                                                                                                                      | STRUCTURES MOBILIZATION | 10%                     | \$195,350   |  |
| Recommended Contingency: (Pre-PSR 30%-50%, PSR 25%, Draft PR 20%, PR<br>Total recommended percentages includes any quantified risk based contingency | , , ,                   |                         |             |  |
| Total recommended percentages includes any quantified risk based contingency                                                                         | STRUCTURES CONTINGENCY  | 25%                     | \$537,213   |  |
| то                                                                                                                                                   | TAL COST OF STRUCTURES  |                         | \$2,686,063 |  |

Estimate Prepared By:


Anthony Richardson, Biggs Cardosa Associates, Inc.

Date

### **III. RIGHT OF WAY**

Fill in all of the available information from the Right of Way Data Sheet.

| A) | <ul><li>A1) Acquisition, including Excess Land Purchases, Damages &amp; Goodwill, Fees</li><li>A2) SB-1210</li></ul> | \$<br>\$ | 250,000<br>0 |
|----|----------------------------------------------------------------------------------------------------------------------|----------|--------------|
| B) | Acquisition of Offsite Mitigation                                                                                    | \$       | 0            |
| C) | <ul><li>C1) Utility Relocation (State Share)</li><li>C2) Potholing (Design Phase)</li></ul>                          | \$<br>\$ | 200,000<br>0 |
| D) | Railroad Acquisition                                                                                                 | \$       | 0            |
| E) | Clearance / Demolition                                                                                               | \$       | 0            |
| F) | Relocation Assistance (RAP and/or Last Resort Housing Costs)                                                         | \$       | 0            |
| G) | Title and Escrow                                                                                                     | \$       | 0            |
| H) | Environmental Review                                                                                                 | \$       | 0            |
| I) | Condemnation Settlements 0%                                                                                          | \$       | 0            |
| J) | Design Appreciation Factor 0%                                                                                        | \$       | 0            |
| K) | Utility Relocation (Construction Cost)                                                                               | \$       | 0            |



| Support Cost Estimate<br>Prepared By              | Project Coordinator <sup>1</sup>                  | Phone                                         |  |
|---------------------------------------------------|---------------------------------------------------|-----------------------------------------------|--|
| Utility Estimate Prepared                         |                                                   |                                               |  |
| Ву                                                | Utility Coordinator <sup>2</sup>                  | Phone                                         |  |
| R/W Acquisition Estimate                          |                                                   |                                               |  |
| Prepared By                                       | Right of Way Estimator <sup>3</sup>               | Phone                                         |  |
|                                                   |                                                   |                                               |  |
| Note: Items G & H applied to items A + I          | 3                                                 |                                               |  |
| <sup>1</sup> When estimate has Support Costs only | <sup>2</sup> When estimate has Utility Relocation | <sup>3</sup> When R/W Acquisition is required |  |

#### EA: 01-0K300 PID: 120000056

#### IV. SUPPORT COST ESTIMATE SUMMARY

Run a Support Cost Estimate Summary report (D11 Project Management Support onramp) for component data.

|                                |                 | Unescalated-Risk Loaded |      |      |      |                    | Escalated (4.2% per year for ETC, effective 1/2/2018) |      |      |      |           |  |
|--------------------------------|-----------------|-------------------------|------|------|------|--------------------|-------------------------------------------------------|------|------|------|-----------|--|
| Total by FY                    |                 | PA&ED                   | PS&E | RW   | CON  | Total \$           | PA&ED                                                 | PS&E | RW   | CON  | Total \$  |  |
| <2016                          | Expended        |                         |      |      |      |                    |                                                       |      |      |      |           |  |
|                                | ETC             |                         |      |      |      |                    |                                                       |      |      |      |           |  |
| 2017                           | Expended        |                         |      |      |      |                    |                                                       |      |      |      |           |  |
|                                | ETC             |                         |      |      |      |                    |                                                       |      |      |      |           |  |
| 2018                           | Expended        |                         |      |      |      |                    |                                                       |      |      |      |           |  |
|                                | ETC             |                         |      |      |      |                    |                                                       |      |      |      |           |  |
| 2019                           | Expended        |                         |      |      |      |                    |                                                       |      |      |      |           |  |
|                                | ETC             |                         |      |      |      |                    |                                                       |      |      |      |           |  |
| 2020                           | Expended        |                         |      |      |      |                    |                                                       |      |      |      |           |  |
|                                | ETC             |                         |      |      |      |                    |                                                       |      |      |      |           |  |
| 2021                           | Expended        |                         |      |      |      |                    |                                                       |      |      |      |           |  |
|                                | ETC             |                         |      |      |      |                    |                                                       |      |      |      |           |  |
| 2022                           | Expended        |                         |      |      |      |                    |                                                       |      |      |      |           |  |
|                                | ETC             |                         |      |      |      |                    |                                                       |      |      |      |           |  |
| 2023                           | Expended        |                         |      |      |      |                    |                                                       |      |      |      |           |  |
|                                | ETC             |                         |      |      |      |                    |                                                       |      |      |      |           |  |
| 2024                           | Expended        |                         |      |      |      |                    |                                                       |      |      |      |           |  |
|                                | ETC             |                         |      |      |      |                    |                                                       |      |      |      |           |  |
| 2025                           | Expended        |                         |      |      |      |                    |                                                       |      |      |      |           |  |
|                                | ETC             |                         |      |      |      |                    |                                                       |      |      |      |           |  |
| 2026                           | Expended        |                         |      |      |      |                    |                                                       |      |      |      |           |  |
|                                | ETC             |                         |      |      |      |                    |                                                       |      |      |      |           |  |
| 2027                           | Expended        |                         |      |      |      |                    |                                                       |      |      |      |           |  |
|                                | ETC             |                         |      |      |      |                    |                                                       |      |      |      |           |  |
| 2028<br>2029<br>>2030          | Expended        |                         |      |      |      |                    |                                                       |      |      |      |           |  |
|                                | ETC<br>Expended |                         |      |      |      |                    |                                                       |      |      |      |           |  |
|                                | EXpended        |                         |      |      |      |                    |                                                       |      |      |      |           |  |
|                                |                 |                         |      |      |      |                    |                                                       |      |      |      |           |  |
|                                | Expended<br>ETC |                         |      |      |      |                    |                                                       |      |      |      |           |  |
| EAC (Expor                     |                 | \$0                     | \$0  | \$0  | \$0  | \$0                | \$0                                                   | \$0  | \$0  | \$0  | <u>60</u> |  |
| EAC (Expended + ETC)           |                 |                         |      |      |      |                    |                                                       |      |      |      |           |  |
| sk Amount from Risk Register   |                 | \$0                     | \$0  | \$0  |      | Escalated Risk Amo | \$0                                                   | \$0  | \$0  | \$0  | \$0       |  |
| Support Escalation Rate        |                 | 0.0%                    | 0.0% | 0.0% | 0.0% |                    |                                                       |      |      |      |           |  |
| ration to mid-point component  |                 | 0.00                    | 0.00 | 0.00 | 0.00 |                    |                                                       |      |      |      |           |  |
| Total including Risk Amount    |                 | \$0                     | \$0  | \$0  | \$0  | Total Esc. Support | \$0                                                   | \$0  | \$0  | \$0  | \$0       |  |
| Approved Bu                    |                 |                         |      |      |      |                    |                                                       |      |      |      |           |  |
| Difference (Budget - EAC)      |                 | \$0                     | \$0  | \$0  | \$0  |                    |                                                       |      |      |      |           |  |
| Support Ratio (EAC / Cap Cost) |                 | 0.0%                    | 0.0% | 0.0% | 0.0% | 0.0%               | 0.0%                                                  | 0.0% | 0.0% | 0.0% | 0.0%      |  |

| Total Capital Cost:                | \$16,184,000 |  |
|------------------------------------|--------------|--|
| Total Capital Outlay Support Cost: | \$0          |  |
| Overall Percent Support Cost:      | 0.00%        |  |

PRSM workplan hours/costs verified against approved MWA:

Approved by:

Office Chief -

Date

Project Control -

Date